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Abstract: In this article, new properties of the Poisson distribution of order k with parameter λ are
found. Based on them, the modes of the Poisson distributions of order k = 3 and 4 are derived for
λ in (0, 1). They are 0, 3, 5, and 0, 4, 7, 8, respectively, for λ in specified subintervals of (0, 1). In
addition, using Mathematica, computational results for the modes of the Poisson distributions of
order k = 2, 3, and 4 are presented for λ in specified subintervals of (0, 2).
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1. Introduction

Following the papers of Philippou and Muwafi [1], Philippou et al. [2], Philippou [3–5],
Aki et al. [6] and Aki [7], there has been an upsurge in the study of distributions of or-
der k (distributions of runs) due to their theoretical importance and great applicability
in reliability, start-up demonstration tests, sampling inspection, etc. See, e.g., Ling [8],
Mohanty [9], Chang [10], Johnson et al. [11], Shmueli and Kohen [12], Balakrishnan
and Koutras [13], Fu and Lou [14], Eryilmaz [15], Rakitzis and Antzoulakos [16], Daf-
nis et al. [17], Sengar et al. [18], Kwon [19], and references therein. However, the modes of
these distributions are not yet known, except for the modes of the geometric distribution of
order k and partial results for the mode(s) of the Poisson distribution of order k and the
negative binomial distribution of the same order derived by Luo [20], Georghiou et al. [21],
Philippou [22], Shao and Fu [23], and Georghiou et al. [24].

The Poisson distribution of order k (k ≥ 1, integer) with parameter λ(>0) say Pk(λ),
has probability mass function (pmf)

fk(x; λ) = e−kλ ∑
λx1+x2+···+xk

x1!x2! · · · xk!
, x = 0, 1, 2, . . . , (1)

where the summation is taken over all k-tuples of non-negative integers x1, x2, . . . , xk such
that x1 + 2x2 + · · ·+ kxk = x.

It was derived by Philippou et al. [2] as a limit of the negative binomial distribution of
order k, and it was named so, since, for k = 1, it reduces to the Poisson distribution with
parameter λ. It is a special case, for λ1 = λ2 = · · · = λk = λ, of the multiparameter Poisson
distribution of order k (Philippou [25]), also known as k stuttering Poisson distribution
(Galliher et al. [26], Patel [27]). The latter author discussed the estimation of the parameters
of the triple and quadruple stuttering distributions and noted that the cases k = 2, 3, and 4
are more frequently observed in practice.

Let mk,λ denote the mode(s) of fk(x; λ), i.e., the value(s) of x for which fk(x; λ) attains
its maximum. It is well known that m1,λ = λ or λ − 1 if λ ∈ N and m1,λ = bλc, if λ
does not belong to N, where bαc denotes the greatest integer part of α. Philippou [3]
derived some properties of fk(x; λ) and posed the problem of finding its mode(s) for k ≥ 2.
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Hirano et al. [28] presented several graphs of fk(x; λ) for λ ∈ (0, 1) and 2 ≤ k ≤ 8, and
Luo [20] derived the following lower bound inequality for mk,λ,

mk,λ ≥ kλ
k√k!− 1

2
k(k + 1), k ≥ 1, λ > 0.

Georghiou et al. [21] employed the probability generating function of the Poisson
distribution of order k to improve the lower bound of Luo [20] and also to give an upper
bound for mk,λ

1
2

k(k + 1)(λ− 1) + 1− δk,1 ≤ mk,λ ≤
⌊

1
2

k(k + 1)λ
⌋
= uk,λ, k ≥ 1, λ > 0, (2)

where δk,1 denotes the Kronecker delta. With the bounds of mk,λ in (2), they showed that

mk,λ =
1
2

k(k + 1)λ−
⌊

k
2

⌋
, 2 ≤ k ≤ 5, λ ∈ N. (3)

Using the upper bound uk,λ of (2) and the definition of mk,λ, Philippou [22] found that:

(a) For any integer k ≥ 1 and 0 < λ < 2/k(k + 1), the Poisson distribution of order k has
a unique mode mk,λ = 0.

(b) The Poisson distribution of order 2 has a unique mode mk,λ = 0 if 0 < λ <
√

3− 1; it
has two modes mk,λ = 0 and 2 if 0 < λ =

√
3− 1, and it has a unique mode mk,λ = 2

if
√

3− 1 < λ < 1. (The number
√

3− 1 is the positive root (say r2) of the quadratic
equation λ2 + 2λ− 2 = 0.)

Remark 1. Since the modes of the Poisson distribution of order k with parameter λ are defined as
the values of x ∈ {0, 1, 2, . . .}, which maximize fk(x; λ), they are its most probable values and they
may be obtained numerically for any given positive integer k and positive λ, from

fk(mk,λ; λ) = max
{

fk(x; λ)
∣∣∣ x ∈ {0, 1, 2, . . . , uk(λ)}

}
.

In the present short note, we derive some additional properties of fk(x; λ) and find the
modes of the Poisson distribution of order k = 3 and k = 4 for 0 < λ < 1. Furthermore,
Section 3 presents computational results for the modes of the Poisson distributions of order
k = 2, 3, and 4 for λ ∈ (0, 2). Finally, in Section 4, we briefly discuss our results, give the
moment estimator of λ (> 0) for k ≥ 1, and indicate further research.

2. Main and Preliminary Results

The mode(s) of a discrete probability mass function is (are) its most probable value(s).
In this section, we derive the modes of the Poisson distributions of order 3 and 4, respec-
tively, when 0 < λ < 1 (see Propositions 1 and 2). In order to do so, we first state and prove
three lemmas, regarding hk(x; λ) = ekλ fk(x; λ), which we use, along with relation (2), to
prove the propositions.

Because of (1),

hk(x; λ) = ∑
λx1+x2+···+xk

x1!x2! · · · xk!
, x = 0, 1, 2, . . . ; λ > 0, (4)

where the summation is taken over all k-tuples of non-negative integers x1, x2, . . . , xk
such that x1 + 2x2 + · · ·+ kxk = x. Note that hk(0; λ) = 1 and hk1(x; λ) = hk2(x; λ), for
1 ≤ x ≤ k1 ≤ k2.
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Georghiou et al. [21] provided a recursive form of fk(x; λ) as

x fk(x; λ) =
k

∑
j=1

jλ fk(x− j; λ), x ≥ 1. (5)

It can be restated, in terms of hk(x; λ), as

xhk(x; λ) =


∑x

j=1 jλhk(x− j; λ) 1 ≤ x ≤ k

∑k
j=1 jλhk(x− j; λ) x > k,

(6)

with hk(0; λ) = 1.

Lemma 1. For 2 ≤ x ≤ k and a fixed λ > 0,

λ ≤ hk(x− 1; λ) < hk(x; λ).

Proof. To avoid the abuse of notation, let h(x) ≡ hk(x; λ). From (4), it is easy to see
h(1) = λ. Using (6), for 2 ≤ x ≤ k,

xh(x)− (x− 1)h(x− 1) = λ
x

∑
j=1

jh(x− j)− λ
x−1

∑
j=1

jh(x− 1− j)

= λ
x

∑
j=1

jh(x− j)− λ
x

∑
j=2

(j− 1)h(x− j)

= λ
x

∑
j=1

jh(x− j)− λ
x

∑
j=2

jh(x− j) + λ
x

∑
j=2

h(x− j)

= λh(x− 1) + λ
x

∑
j=2

jh(x− j)− λ
x

∑
j=2

jh(x− j) + λ
x

∑
j=2

h(x− j)

= λh(x− 1) + λ
x

∑
j=2

h(x− j)

= λ
x

∑
j=1

h(x− j)

From (6), since (x− 1)h(x− 1) = ∑x−1
j=1 jλh(x− 1− j), we have

x
[

h(x)− h(x− 1)
]
= xh(x)− (x− 1)h(x− 1)− h(x− 1)

= λ

[
x

∑
j=1

h(x− j)− 1
x− 1

x−1

∑
j=1

jh(x− 1− j)

]

= λ

[
x

∑
j=1

h(x− j)− 1
x− 1

x

∑
j=2

(j− 1)h(x− j)

]

= λ

[
h(x− 1) +

x

∑
j=2

h(x− j)− 1
x− 1

x

∑
j=2

(j− 1)h(x− j)

]

= λ

[
h(x− 1) +

x

∑
j=2

(
1− j− 1

x− 1

)
h(x− j)

]
> 0.

Therefore, hk(x; λ) > hk(x− 1; λ) for 2 ≤ x ≤ k with a fixed value of λ > 0.
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Lemma 2. For k ≥ 2 and 0 < λ < 1, the equation hk(k; λ) = hk(0; λ) has exactly one root
λ = rk (0 < rk < 1) such that{

hk(0; λ) > hk(k; λ), if 0 < λ < rk

hk(0; λ) < hk(k; λ), if rk < λ < 1.

Proof. First, note that hk(0; 1) = 1 and limλ→0+ hk(0; λ) = 1 because the relation (4) implies
hk(0; λ) = 1 for λ > 0. Since, for k ≥ 1, hk(k; λ) is a polynomial function of λ with positive
coefficient only and without constant term, we have limλ→0+ hk(k; λ) = 0. Note that
hk(1; λ) = λ and by Lemma 1, hk(1; λ) < hk(2; λ) < · · · < hk(k; λ) for λ > 0. Thus,
hk(k; 1) > hk(1; 1) = 1 for k ≥ 2.

Second, let gk(λ) = hk(k; λ)− hk(0; λ). Then, since limλ→0+ gk(λ) = limλ→0+ hk(k; λ)−
limλ→0+ hk(0; λ) = 0− 1 = −1 < 0, and gk(1) = hk(k; 1)− hk(0; 1) > hk(1; 1)− hk(0; 1) =
1− 1 = 0.

Lastly, Since hk(x; λ) is a polynomial function with positive coefficients only, we have
∂

∂λ gk(λ) > 0 for λ > 0, which implies gk(λ) is an increasing function of λ for 0 < λ < 1.
Therefore, gk(λ) has a unique root, say rk, between 0 and 1 with hk(0; λ) > hk(k; λ), if

0 < λ < rk and hk(0; λ) < hk(k; λ), if rk < λ < 1.

Lemma 3. For k ≥ 2 and 0 < λ ≤ rk < 1,

hk(k; λ) > hk(k + 1; λ),

where rk is defined in Lemma 2.

Proof. For notational simplicity, let h(x) ≡ hk(x; λ). From (6), we have

kh(k) =
k

∑
j=1

jλhk(k− j) and (k + 1)hk(k + 1) =
k

∑
j=1

jλhk(k + 1− j).

Thus, with h(0) = 1,

k
[

h(k)− h(k + 1)
]
=

k

∑
j=1

jλh(k− j)−
k

∑
j=1

jλh(k + 1− j) + h(k + 1)

=
k

∑
j=1

jλh(k− j)−
k−1

∑
j=0

(j + 1)λh(k− j) + h(k + 1)

=
k

∑
j=1

jλh(k− j)−
k−1

∑
j=0

jλh(k− j)−
k−1

∑
j=0

λh(k− j) + h(k + 1)

= kλh(0)−
k−1

∑
j=0

λh(k− j) + h(k + 1)

= λ

(
k−

k−1

∑
j=0

h(k− j)

)
+ h(k + 1). (7)

Since each hk(1; λ), hk(2; λ) , . . . , hk(k; λ) are increasing functions of lambda, they all have
the maximum value at λ = rk on λ ∈ (0, rk]. Moreover, by Lemma 1 and the definition of
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rk, we have hk(1; rk) < hk(2; rk) < · · · < hk(k; rk) = 1. Therefore, for 0 < λ ≤ rk, the first
term of (7) can be written as

k−
k−1

∑
j=0

hk(k− j; λ) ≥ k−
k−1

∑
j=0

hk(k− j; rk)

= k−
[

hk(k; rk) + hk(k− 1; rk) + · · ·+ hk(1; rk)
]

> k− k
[
(hk(k; rk)

]
= 0,

and it implies hk(k; λ) > hk(k + 1; λ).

Proposition 1. Let m3,λ denote the mode(s) of the Poisson distribution of order 3 with parameter
λ(> 0). Let r3 (=0.6016791318. . .) and r3,5 (=0.9962030611. . .) be the positive roots of the
equations λ3 + 6λ2 + 6λ− 6 = 0, and λ4 + 20λ3 + 100λ2 − 120 = 0, respectively. Then

m3,λ =



0, if 0 < λ < r3,
0 and 3, if λ = r3,
3, if r3 < λ < r3,5,
3 and 5, if λ = r3,5,
5, if r3,5 < λ < 1.

Proof. The Equation (2) implies

0 ≤ m3,λ ≤
⌊

3
2
(3 + 1)λ

⌋
= b6λc ≤ 5, for 0 < λ < 1.

Hence, it is enough we compare the magnitudes of f3(x; λ), or the magnitudes of h3(x; λ)
for 0 ≤ x ≤ 5. By Lemma 1, we have h3(1; λ) < h3(2; λ) < h3(3; λ) for 0 < λ < 1, and, by
Lemma 2 and 3, it is given 1 = h3(0; λ) > h3(3; λ) > h3(4; λ) for 0 < λ < r3. In addition,
the maximum of h3(5; λ) on λ ∈ (0, r3] is h3(5; rk) = r2

3 + r3
3 +

1
6 r4

3 +
1

120 r5
3 < 1. Hence,

m3,λ = 0 for 0 < λ < r3.
Furthermore, h3(3; λ) > h3(4; λ) for 0 < λ < 1. To see this, let dk(x; λ) = hk(k; λ)−

hk(x; λ). Then

d3(4; λ) = h3(3; λ)− h3(4; λ)

=

(
λ + λ2 +

1
6

λ3
)
−
(

3
2

λ2 +
1
2

λ3 +
1

24
λ4
)

= λ− 1
2

λ2 − 1
3

λ3 − 1
24

λ4,

with ∂2

∂λ2 d3(4; λ) = −1− 2λ− λ2/2 < 0, which implies that d3(4; λ) is concave down for
λ > 0. Since limλ→0+ d3(4; λ) = 0+, and d3(4; 1) = 1/8 > 0, we have h3(3; λ) > h3(4; λ)
for 0 < λ < 1. Hence, it suffices that we compare the magnitude of h3(0; λ), h3(3; λ) and
h3(5; λ) to find the modes for r3 < λ < 1.

d3(5; λ) = h3(3; λ)− h3(5; λ)

=

(
λ + λ2 +

1
6

λ3
)
−
(

λ2 + λ3 +
1
6

λ4 +
1

120
λ5
)

= λ− 5
6

λ3 − 1
6

λ4 − 1
120

λ5.

For λ > 0, d3(5; λ) is concave down because ∂2

∂λ2 d3(5; λ) = −5λ− 2λ2 − λ3/6 < 0. Since
limλ→0+ d3(5; λ) = 0+ and d3(5; 1) = −1/120, the equation d3(5; λ) = 0, equivalently
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λ4 + 20λ3 + 100λ2 − 120 = 0, has one positive root, say r3,5. Thus, h3(3; λ) > h3(5; λ) for
0 < λ < r3,5 and h3(3; λ) < h3(5; λ) for r3,5 < λ < 1. Since 0 < r3 = 0.601679. . .< r3,5 =
0.996203. . .< 1, we have

f3(0; λ) > f3(3; λ) > f3(5; λ), if 0 < λ < r3,
f3(3; λ) > f3(0; λ) & f3(3; λ) > f3(5; λ), if r3 < λ < r3,5,
f3(5; λ) > f3(3; λ) > f3(0; λ), if r3,5 < λ < 1.

Proposition 2. Let m4,λ denote the mode(s) of the Poisson distribution of order 4 with parameter
λ(>0), and let r4 (=0.5203510176. . .), r4,7 (=0.7947408725. . .), and r7,8 (=0.8944652714. . .),
respectively, be the positive roots of the equations λ4 + 12λ3 + 36λ2 + 24λ− 24 = 0, λ6 + 42λ5 +
630λ4 + 3990λ3 + 7560λ2− 2520λ− 5040 = 0, and λ6 + 48λ5 + 840λ4 + 6720λ3 + 18,480λ2−
20,160 = 0. Then

m4,λ =



0, if 0 < λ < r4,
0 and 4, if λ = r4,
4, if r4 < λ < r4,7,
4 and 7, if λ = r4,7,
7, if r4,7 < λ < r7,8,
7 and 8, if λ = r7,8,
8, if r7,8 < λ < 1.

Proof. The Equation (2) implies

0 ≤ m4,λ ≤
⌊

4
2
(4 + 1)λ

⌋
= b10λc ≤ 9, for 0 < λ < 1.

Hence, it is enough we compare the magnitudes of f4(x; λ), or the magnitudes of h4(x; λ)
for 0 ≤ x ≤ 9. By Lemma 1, we have h4(1; λ) < h4(2; λ) < h4(3; λ) < h4(4; λ). Thus, we
will compare the magnitudes of h4(x; λ) for 4 ≤ x ≤ 9, and h4(0; λ). They are given by

h4(4; λ) = λ +
3
2

λ2 +
1
2

λ3 +
1

24
λ4

h4(5; λ) = 2λ2 + λ3 +
1
6

λ4 +
1

120
λ5

h4(6; λ) =
3
2

λ2 +
5
3

λ3 +
5

12
λ4 +

1
24

λ5 +
1

720
λ6

h4(7; λ) = λ2 + 2λ3 +
5
6

λ4 +
1
8

λ5 +
1

120
λ6 +

1
5040

λ7

h4(8; λ) =
1
2

λ2 + 2λ3 +
31
24

λ4 +
7
24

λ5 +
7

240
λ6 +

1
720

λ7 +
1

40,320
λ8

h4(9; λ) =
5
3

λ3 +
5
3

λ4 +
13
24

λ5 +
7

90
λ6 +

1
180

λ7 +
1

5040
λ8 +

1
362,880

λ9

Note that h4(x; λ), for 4 ≤ x ≤ 9, are strictly increasing functions of λ and h4(x; 0) = 1.
Table 1 displays the function values of h4(x; λ) for 4 ≤ x ≤ 9 with λ = 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, and 1.1. From the function values of the Table 1, we can see h4(4; λ) = 1 has a root
r4 ∈ (0.5, 0.6), h4(4; λ) = h4(7; λ) has a root r4,7 ∈ (0.7, 0.8), and h4(7; λ) = h4(8; λ) has a
root r7,8 ∈ (0.8, 0.9).
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Table 1. The function values of h4(x; λ) for x = 0 and 4 ≤ x ≤ 10 with λ = 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, and 1.1. The bolded value in each column stands for the maximum of h4(x; λ), which implies
m4,λ = x with a value of λ given in the corresponding column. Note that 0.5 < r4 < 0.6 < 0.7 <

r4,7 < 0.8 < r7,8 < 0.9. The function values are calculated based on substantially tight grid for λ. The
table displays only the meaningful λ values.

λ
x 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.9401 1.2534 1.6165 2.0331 2.5068 3.0417 3.6415
5 0.6357 0.9582 1.3644 1.8630 2.4633 3.1750 4.0084
6 0.6107 0.9573 1.4139 1.9980 2.7287 3.6264 4.7129
7 0.5561 0.9101 1.3981 2.0485 2.8931 3.9669 5.3085
8 0.4653 0.8035 1.2937 1.9766 2.8989 4.1139 5.6823
9 0.3307 0.6219 1.0725 1.7351 2.6724 3.9585 5.6799

10 0.2686 0.5273 0.9457 1.5861 2.5258 3.8593 5.7004

Therefore,
f4(0; λ) > f4(x; λ) where 1 ≤ x ≤ 9, if 0 < λ < r4,
f4(4; λ) > f4(x; λ) where 0 ≤ x ≤ 3, or 5 ≤ x ≤ 9 if r4 < λ < r4,7,
f4(7; λ) > f4(x; λ) where 0 ≤ x ≤ 6, or 8 ≤ x ≤ 9 if r4,7 < λ < r7,8,
f4(8; λ) > f4(x; λ) where 0 ≤ x ≤ 7, or x = 9 if r7,8 < λ < 1.

3. More Computational Resutls

This section provides more computational results using the computer algebra system
Mathematica. Table 2 shows the modes of Poisson distribution of order k = 2, 3, and 4 for
0 < λ < 2. For λ > 1, we observe that the mode values frequently change as λ increases.
However, for every value of k, the first two modes are 0 and k for some subintervals of λ
between zero and one. We also note that for k = 2, 3, and 4, mk,1 = 2, 5, and 8, (the modes
of the Poisson distribution of order k with λ = 1) as it should, in accordance with (3).

Table 2. The modes of Poisson distribution of order k = 2, 3, and 4 for 0 < λ < 2. The lower and
upper bounds of λ are the approximated values.

k = 2 k = 3 k = 4
Mode Interval of λ Mode Interval of λ Mode Interval of λ

0 (0.0000, 0.7321) 0 (0.0000, 0.6017) 0 (0.0000, 0.5204)
2 (0.7321, 1.3412) 3 (0.6017, 0.9962) 4 (0.5204, 0.7947)
4 (1.3412, 1.8851) 5 (0.9962, 1.0612) 7 (0.7947, 0.8945)
5 (1.8851, 2.0000) 6 (1.0612, 1.3881) 8 (0.8945, 1.0950)

7 (1.3881, 1.4293) 10 (1.0950, 1.2056)
8 (1.4293, 1.6286) 11 (1.2056, 1.3244)
9 (1.6286, 1.8197) 12 (1.3244, 1.4332)
10 (1.8197, 1.9590) 13 (1.4332, 1.5124)
11 (1.9590, 2.0000) 14 (1.5124, 1.6183)

15 (1.6183, 1.7215)
16 (1.7215, 1.8210)
17 (1.8210, 1.9180)
18 (1.9180, 2.0000)

4. Moment Estimation of the Parameter λ of Pk(λ), Discussion, and Further Research

Despite the upsurge of the study of distributions of order k or runs since the early
1980s, their modes, due to the difficulty of obtaining them, are not known, except for
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the mode of the geometric distribution of order k and partial results for the modes of
the negative binomial and Poisson distributions of order k. Their probability generating
functions, however, and moments are well known.

The mean and variance of Pk(λ), for example, are (a) k(k + 1)λ/2 and (b) k(k + 1)
(2k + 1)λ/6 (see, e.g., Philippou [3,25]). By means of them and the method of moments
estimation, we now give the moment estimator λ̂ of λ of Pk(λ). Let X1, X2, . . . , Xn be
a random sample of size n from Pk(λ), and set X̄ = (X1 + X2 + · · · + Xn)/n. Then,
the moment estimator of λ is λ̂ = 2X̄/[k(k + 1)]. It is unbiased, and has variance
Var(λ̂) = 2(2k + 1)λ/[3k(k + 1)n]. In fact, by the method of moments and (a),
X̄ = k(k + 1)λ̂/2, which implies λ̂ = 2X̄/[k(k + 1)]. It follows by (a) and (b), respec-
tively, that λ̂ is unbiased for λ, since E(λ̂) = 2E(X̄)/[k(k + 1)] = λ, and has variance
Var(λ̂) = 4Var(X̄)/[k2(k + 1)2] = [4/k2(k + 1)2] · [k(k + 1)(2k + 1)λ/(6n)] = 2(2k +
1)λ/[3k(k + 1)n], which was to be shown.

In the present article, in addition to the above paragraph regarding Pk(λ), we derived
a few new properties of the Poisson distribution of order k, and using them, along with a
result of Georghiou et al. [21], we found the modes or most probable values of the Poisson
distributions of order 3 and 4 for λ in the interval (0, 1). In addition, using Mathematica
and a personal computer, we found the modes of the Poisson distributions of order 2, 3,
and 4 for λ ∈ (0, 2). We observe that for k = 2, 3, and 4, the first two modes are 0 for
0 < λ < rk, and k for rk < λ < rk + lk, where lk stands for the length of the interval on
which k is the mode of the Poisson distribution of order k. Further research may include
several interesting problems: Is it generally true that mk,λ = 0 for k ≥ 2 and 0 < λ < rk,
and mk,λ = k for k ≥ 2 and rk < λ < rk + lk? Does rk decrease as k increases? If it does, how
fast is rk decreasing? What positive integers cannot be modes of the Poisson distribution of
order k?
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