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Abstract: In this paper, we propose a new discrete-time risk model of an insurance portfolio with
stochastic premiums, in which the temporal dependence among the premium numbers of consecutive
periods is fitted by the first-order integer-valued autoregressive (INAR(1)) process and the temporal
dependence among the claim numbers of consecutive periods is described by the integer-valued
moving average (INMA(1)) process. To measure the risk of the model quantitatively, we study the
explicit expression for a function whose solution is defined as the Lundberg adjustment coefficient
and give the Lundberg approximation formula for the infinite-time ruin probability. In the case of
heavy-tailed claim sizes, we establish the asymptotic formula for the finite-time ruin probability
via the large deviations of the aggregate claims. Two numerical examples are provided in order to
illustrate our theoretical findings.
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1. Introduction

As an absolutely necessary part of the modern financial system, insurance is one of
the most effective ways for people to manage risks, such that it plays a significant role in
our daily life. A very important task of insurance companies is to quantitatively analyze
future claims. Consequently, risk theory has become an active research field of actuarial
science. For the classical mathematical risk model, the so-called Lundberg–Cramér surplus
process has the following form:

U0
t = u + ct−

N0
t

∑
i=1

Yi, t ≥ 0, (1)

in which u ≥ 0 is the initial capital of an insurance portfolio, c > 0 is the constant rate of
premium income, {N0

t , t ≥ 0} is a homogeneous Poisson process with intensity λ, the total
claim numbers are denoted up to time t, and Yi describes the size of the ith claim. In the
literature, Asmussen and Albrecher [1] presented excellent reviews about this well-known
and important model.

In model (1), independent structures are usually assumed. For example, the claim
amount {Yi, i ≥ 1} is a sequence of non-negative independent and identically distributed
(i.i.d.) random variables, and the claim numbers of different periods are assumed to
be a sequence of i.i.d. random variables. However, these are not always true in practice
because of the increasing complexity of individual risks. To avoid this restriction, a growing
number of actuaries have been paying attention to the model with dependent risks. As
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stated in Yang and Zhang [2], there are mainly two kinds of correlation in insurance: one is
the correlation among lines of businesses, and the other is temporal dependence, such as
the correlation between the current claim and the previous claims. For recent works about
the first type of correlation, Refs. [3,4] studied the dependence among individual risks,
Refs. [5,6] discussed the two-dimensional risk models with dependent surplus processes,
and [7,8] examined the risk models that have multiple classes of insurance business with
thinning dependence structure. The relevant results have been used in a variety of actuarial
areas, including, among others, value at risk, dividend strategies, reinsurance, capital
allocation, etc.

In this paper, we focus on the second type. To deal with this problem, the use of a
time series is a critical method. Gerber [9] considered the calculation of ruin probabilities
in a Gaussian linear risk model; Gourieroux and Jasiak [10] applied the integer-valued
time series model to update the premiums in vehicle insurance; and many researchers
have extensively revisited the relevant results afterwards. Considering that the com-
pound distributions are the cornerstones of a great number of risk models in risk theory,
Cossette et al. [11] proposed some new discrete-time risk models, where the first-order
integer-valued moving average (INMA(1)) and first-order integer-valued autoregressive
(INAR(1)) processes are used to describe the dependence structures among the number of
claims for each period. The authors derived expressions for the functions that allow people
to find the Lundberg adjustment coefficients and discussed the Lundberg approximation
formulas for infinite-time ruin probabilities. Along the same line, Cossette et al. [12] de-
termined the distributions of aggregate claim amount and provided an effective way to
measure some related risk quantities, including VaR, TVaR, and the stop-loss premium.
Shi and Wang [13] gave an approximation method for the risk model with the Poisson
INAR(1) claim number process in order to obtain the upper bound of the infinite-time ruin
probability. Zhang et al. [14] solved the problem of optimal reinsurance strategy for the
risk model with the INMA(1) claim number process. Afterwards, Hu et al. [15] and Chen
and Hu [16] further generalized this kind of model by replacing the Poisson innovations
with compound Poisson innovations in the INAR(1) and INMA(1) claim number pro-
cesses, respectively. Guan and Hu [17] even utilized an INAR(1) process with an arbitrary
innovations’ distribution to specify the temporal dependence among the claim numbers.

In the papers mentioned above, it should be noted that the incomes of all the risk
models are linear functions of time t, because the premiums are collected continuously
with positive deterministic constant rate c, providing great convenience for risk analysis.
However, this assumption is obviously lacking in terms of describing the real situation
of insurance portfolios; for example, it cannot capture the uncertainty of the customers’
arrivals. As an alternative to a fixed premium rate, Boikov [18] supposesed that the pre-
mium income also follows a compound Poisson process and calculates the ruin probability.
From then on, the risk models with stochastic premiums have been extensively improved
by many actuaries. Wang et al. [19] studied the investment problem of such models. Labbé
and Sendova [20] discussed the Gerber–Shiu function. Zhao and Yin [21] proposed a
renewal risk model with stochastic incomes. Recently, Su et al. [22] provided a statistical
method for estimating the Gerber–Shiu function; Ragulina [23] investigated the De Vylder
approximation for the ruin probability and a constant dividend strategy in the risk model
with stochastic premiums; and Dibu and Jacob [24] focused on a double barrier hybrid
dividend strategy. Wang et al. [25] quantitatively assessed the impact of the stochastic
income process on some ruin quantities in detail.

Similar to the classical risk model, the premium numbers of different periods are
commonly set to be a sequence of i.i.d. random variables in the aforementioned papers. To
better characterize the uncertainty and capture the variability of an insurer’s income process,
Guan and Wang [26] proposed modeling the temporal dependence among the premium
numbers of each period by a Poisson INAR(1) process. In this paper, we follow this trend of
research. We also aim to study a new dependent risk model with stochastic premiums based
on time series for count random variables, in which the INAR(1) process and INMA(1)
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process are applied to fit the temporal dependence among the premium numbers and the
temporal dependence among the claim numbers of consecutive periods, respectively. Our
goal is to approximate the infinite-time ruin probability of the proposed surplus process by
the Lundberg adjustment coefficient and discuss the asymptotic formula for the finite-time
ruin probability when the claim sizes follow distributions with heavy tails.

Our model generalizes the classical discrete-time surplus process of an insurance
portfolio with stochastic premiums to a new dependent risk model, and our results extend
what has been studied in the existing literature. The contributions of our paper mainly
include the following two aspects:

• In contrast to the assumption that either claim numbers or premium numbers have
a temporally dependent structure, we propose a new risk model of an insurance
portfolio with both claim numbers and premium numbers being dependent within
the integer-valued time series framework, which is more flexible in insurance practice.

• In addition to studying the distribution of the aggregate claims, the Lundberg ad-
justment coefficient, and the Lundberg approximation formula for the infinite-time
ruin probability in the case of light-tailed claim sizes, we also explore the large de-
viations of the aggregate claims and the asymptotic formula for the finite-time ruin
probability when the claim sizes are heavy-tailed, which enlarges the applicability of
the risk model.

The remainder of the paper is organized as follows: Section 2 introduces our con-
cerned risk model and considers some probabilistic properties of the proposed model.
Section 3 defines the Lundberg adjustment coefficient via the solution of an explicit equa-
tion. Section 4 establishes an exponential asymptotic estimation for the infinite-time ruin
probability. Section 5 studies the large deviations of the aggregate claims when the claim
sizes follow a class of heavy-tailed distributions and presents an asymptotic formula for the
finite-time ruin probability. Section 6 illustrates the main results by numerical simulations.
Section 7 finally concludes this paper.

2. Risk Model and Basic Properties

In this section, we first describe the new dependent risk model, and then, provide
some moment results of the premiums and claims. Let Ut be the surplus of an insurance
portfolio at the end of period t, and we define the surplus process by the dynamic equation

Ut = Ut−1 + Pt − Lt = Ut−1 +
Mt

∑
k=1

Xt,k −
Nt

∑
j=1

Yt,j, t = 1, 2, · · · , (2)

where U0 = u ≥ 0 is the initial surplus level; Pt =
Mt
∑

k=1
Xt,k aggregates the premiums during

period t, in which Mt counts the number of individual income and Xt,k represents the

amount of the kth premium income for the insurance portfolio during period t; Lt =
Nt
∑

j=1
Yt,j

is the aggregate claims during period t, in which Nt denotes the number of claims and
Yt,j is the size of the jth payment to the insured in period t. For mathematical tractability,
the following assumptions are made:

(1) Both {Xt,k, t = 1, 2, · · · , k = 1, 2, · · · } and {Yt,j, j = 1, 2, · · · , k = 1, 2, · · · } are
arrays of i.i.d. random variables, which have the same distributions as non-negative X and
Y, respectively.

(2) {Xt,k, t = 1, 2, · · · , k = 1, 2, · · · }, {Yt,j, j = 1, 2, · · · , k = 1, 2, · · · }, {Mt, t =
1, 2, · · · }, and {Nt, t = 1, 2, · · · } are mutually independent.

The dependence structures of the model are constructed in the following ways:
(i) {Mt, t = 1, 2, · · · } constitutes a Poisson INAR(1) process that satisfies

Mt = α ◦Mt−1 + εt, t = 2, 3, · · · , (3)
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where the so-called binomial thinning operator “◦” is given by

α ◦Mt−1 =
Mt−1

∑
m=1

B(1)
t,m, t = 2, 3, · · · , (4)

in which the following statements are true:

• The thinning parameter α ∈ [0, 1).

• {B(1)
t,m, t = 2, 3, · · · , m = 1, 2, · · · } is an array of i.i.d. Bernoulli random variables with

mean α.
• {εt, t = 2, 3, · · · } is a sequence of i.i.d. Poisson random variables with mean λ1.

• M1, {B(1)
t,m, t = 2, 3, · · · , m = 1, 2, · · · } and {εt, t = 2, 3, · · · } are independent.

(ii) {Nt, t = 1, 2, · · · } constitutes a Poisson INMA(1) process that satisfies

Nt = β ◦ ηt−1 + ηt, t = 1, 2, · · · , (5)

where “◦” is similarly defined by

β ◦ ηt−1 =
ηt−1

∑
m=1

B(2)
t,m, t = 1, 2, · · · , (6)

in which the following are true:

• The thinning parameter β ∈ [0, 1).

• {B(2)
t,m, t = 1, 2, · · · , m = 1, 2, · · · } is an array of i.i.d. Bernoulli random variables with

mean β.
• {ηt, t = 0, 1, · · · } is a sequence of i.i.d. Poisson random variables with mean λ2.

• {B(2)
t,m, t = 1, 2, · · · , m = 1, 2, · · · } and {ηt, t = 1, 2, · · · } are independent.

Remark 1. Time series analysis is one of the most important methods for dealing with dependent
data and has attracted a lot of interest during the last decades. However, the classical real-valued
time series models with continuous ranges can not account for discreteness, so they are of limited use
for fitting the premium numbers and the claim numbers, which are typical count random variables
fairly common in practice. Their poor performances in modeling this class of data mainly include:
(1) the data generating mechanism can not be explained; (2) the approximate errors are big; and
(3) the forecast results are not integer-valued. Therefore, models and methods for integer-valued
time series have been covered by a large number of papers in recent years. Refs. [27–30] present
comprehensive surveys on this fascinating research area. As two core models of integer-valued time
series, INAR(1) process and INMA(1) process have been extensively applied in the literature of
actuarial science, and the relevant results have been widely used in a variety of risk management.

Remark 2. The INAR(1) process (3) shows that the premium number in period t is composed of
two parts: εt denotes the new incomes arriving between period t− 1 and t, and α ◦Mt−1 presents a
random proportion of the premium number in the previous period. This can be reasonably explained
for the insurance practice that states: every insured entity could continue to pay a premium with
probability α; or withdraw from the contract with probability 1− α in the next period. When α = 0,
(3) becomes Mt = εt, meaning that the premium number in period t could be totally determined by
εt, and our model (2) will reduce to the classical discrete-time risk model with stochastic premiums,
where the premium numbers of different periods are independent (please see Appendix A for details).

Remark 3. The INMA(1) process (5) reveals that the claim number in period t also consists of two
parts: ηt is the new claim during period t, and β ◦ ηt−1 indicates the claims of period t− 1 that
could produce another accident with probability β in period t. Instead of (3), we use the INMA(1)
process (5) to fit the temporal dependence among the claim numbers for each period, considering
that the insured parties cannot receive benefits every year for some insurance products. Taking
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unemployment insurance as an example, every time the claimant is out of work, they could receive
the benefits for up to 2 years, if the premiums for at least 1 year have been paid. Another appropriate
example might be some medical insurance contracts, which state that no matter how long the patient
stays in the hospital, the insurer would pay the benefits for at most (for instance) 2 months. Similarly,
if β = 0, our proposed model will reduce to the classical case, where the claim numbers of different
periods are independent.

As stated in Al-Osh and Alzaid [31], under the condition of 0 ≤ α < 1, it follows that
the process of premium numbers {Mt, t = 1, 2, · · · } is a stationary and ergodic Markov
chain. Furthermore, if we assume εt ∼ P(λ1), then Mt is also Poisson distributed with mean

λ1
1−α . Hence, by the law of iterated expectation and the assumption that {Xt,k, k = 1, 2, · · · }
and Mt are independent, it is easy to find that

E(Pt = E[E(Pt|Mt)] = E

[
E

(
Mt

∑
k=1

Xt,k|Mt

)]
= E

[
Mt

∑
k=1

E(Xt,k|Mt)

]
= E

[
Mt

∑
k=1

E(Xt,k)

]
= E(Mt)E(X) =

λ1

1− α
E(X). (7)

Meanwhile, by the law of total variance, we can obtain

Var(Pt) = Var[E(Pt|Mt)] + E[Var(Pt|Mt)]

= Var

[
E

(
Mt

∑
k=1

Xt,k|Mt

)]
+ E

[
Var

(
Mt

∑
k=1

Xt,k|Mt

)]

= Var

[
Mt

∑
k=1

E(Xt,k|Mt)

]
+ E

[
Mt

∑
k=1

Var(Xt,k|Mt)

]

= Var

[
Mt

∑
k=1

E(Xt,k)

]
+ E

[
Mt

∑
k=1

Var(Xt,k)

]
= Var[Mt · E(X)] + E[Mt ·Var(X)]

= E(Mt)Var(X) + Var(Mt)[E(X)]2 =
λ1

1− α
E(X2). (8)

Furthermore, Al-Osh and Alzaid [31] show that

Cov(Mt, Mt+h) = αhVar(Mt) =
λ1αh

1− α
,

from which we can obtain

Cov(Pt, Pt+h) = E(PtPt+h)− E(Pt)E(Pt+h)

= E[E(PtPt+h|Mt, Mt+h)]− E(Mt)E(Mt+h)[E(X)]2

= E[E(Pt|Mt)E(Pt+h|Mt+h)]− E(Mt)E(Mt+h)[E(X)]2

= E(Mt Mt+h)[E(X)]2 − E(Mt)E(Mt+h)[E(X)]2

= [E(X)]2Cov(Mt, Mt+h) =
λ1αh

1− α
[E(X)]2, h = 1, 2, · · · . (9)

Similarly, for the process of claim numbers {Nt, t = 1, 2, · · · }, under the condition of
0 ≤ β < 1, its marginal distribution is uniquely determined by the law of {ηt, t = 0, 1, · · · }.
Therefore, the assumption of ηt ∼ P(λ2) will result in Nt being Poisson distributed with a
mean of (1 + β)λ2. Consequently, by the same method to drive (7)–(9), we have

E(Lt) = E(Nt)E(Y) = (1 + β)λ2E(Y),
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Var(Lt) = E(Nt)Var(Y) + Var(Nt)[E(Y)]2 = (1 + β)λ2E(Y2).

and

Cov(Lt, Lt+h) = [E(Y)]2Cov(Nt, Nt+h) =

{
λ2β[E(Y)]2, h = 1,
0, h > 1.

(10)

These results are consistent with those in [11].

3. Definition of the Lundberg Adjustment Coefficient

In this section, we first consider how to calculate the moment generating functions
(m.g.f.) of the aggregate premiums and aggregate claims up to period t, and then, define
the Lundberg adjustment coefficient of the proposed dependent risk model with stochastic
premiums based on time series for count random variables by means of a equation.

After recursive calculation, we can rewrite model (2) as

Ut = Ut−1 + Pt − Lt = Ut−1 +
Mt

∑
k=1

Xt,k −
Nt

∑
j=1

Yt,j

= u +
t

∑
i=1

Mi

∑
k=1

Xi,k −
t

∑
i=1

Ni

∑
j=1

Yi,j = u + Wt − St, t = 1, 2, · · · , (11)

in which Wt =
t

∑
i=1

Pi =
t

∑
i=1

Mi
∑

k=1
Xi,k and St =

t
∑

i=1
Li =

t
∑

i=1

Ni
∑

j=1
Yi,j represent the aggregate

premium incomes and aggregate claim payments up to time t, respectively. As for the m.g.f.
of Wt and St, by the definition, we have that

MWt(r) = E(erWt)

= E[er(P1+···+Pt)]

= MP1,··· ,Pt(r, · · · , r)

= PM1,··· ,Mt(MX(r), · · · , MX(r))

= E[MX(r)M1 · · ·MX(r)Mt ]

= PM1+···+Mt(MX(r)), (12)

where MX(·) denotes the m.g.f. of X and PM1+···+Mt(·) presents the probability generating
function (p.g.f.) of the total premium number up to period t of the proposed model (2).

Similarly, it holds that

MSt(r) = PN1+···+Nt(MY(r)), (13)

where MY(·) denotes the m.g.f. of Y, and PN1+···+Nt(·) presents the p.m.f. of the total claim
number up to period t of the proposed model (2).

In order to compute MWt(r) and MSt(r), we find the explicit expressions for PM1+···+Mt(·)
and PN1+···+Nt(·) in the following two lemmas, respectively.

Lemma 1. For t = 1, 2, · · · , when 0 ≤ s ≤ 1, the p.g.f. of M1 + · · ·+ Mt is given by

PM1+···+Mt(s) = exp
{

λ
s− 1

1− αs

[
t +

1− (αs)t

1− α
− 1− (αs)t

1− αs

]}
. (14)

Proof. Since M1 ∼ P( λ1
1−α ), it is obvious that

PM1(s) = exp
{

λ1

1− α
(s− 1)

}
.
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When t ≥ 2, we denote

α(t) ◦M1 = α ◦ · · · ◦ α◦︸ ︷︷ ︸
t−fold operation

M1.

By the property of the binomial thinning operator (see Scotto et al. [28] for example), we
can rewrite M1 + · · ·+ Mt as

M1 + · · ·+ Mt = M1 + α ◦M1 + α(2) ◦M1 + · · ·+ α(t−1) ◦M1

+ ε2 + α ◦ ε2 + · · ·+ α(t−2) ◦ ε2

+ · · ·
+ εt−1 + α ◦ εt−1

+ εt. (15)

For the p.g.f. calculation, we have

PM1+α◦M1+α(2)◦M1+···+α(t−1)◦M1
(s) = E(sM1+α◦M1+α(2)◦M1+···+α(t−1)◦M1)

= E
[
sM1 sα◦M1 · · · sα(t−2)◦M1 E

(
sα(t−1)◦M1 |M1, · · · , α(t−2) ◦M1

)]
= E

[
sM1 sα◦M1 · · · sα(t−2)◦M1(αs + 1− α)α(t−2)◦M1

]
= E

[
sM1 sα◦M1 · · · sα(t−3)◦M1(h2(s))α(t−2)◦M1

]
= E

[
sM1 sα◦M1 · · · sα(t−3)◦M1(αh2(s) + 1− α)α(t−3)◦M1

]
= E

[
sM1 sα◦M1 · · · sα(t−4)◦M1(h3(s))α(t−3)◦M1

]
= · · ·

= E
[
sM1(αht−1(s) + 1− α)α◦M1

]
= exp

{
λ1

1− α
(ht(s)− 1)

}
, (16)

in which h1(s) = s and ht(s) = s(αht−1(s) + 1− α).
Similarly, we can obtain

Pε2+α◦ε2+···+α(t−2)◦ε2
(s) = exp{λ1(ht−1(s)− 1)}, · · · , Pεt(s) = exp{λ1(h1(s)− 1)}. (17)

Combining (15)–(17), it follows that

PM1+···+Mt(s)

=PM1+α◦M1+α(2)◦M1+···+α(t−1)◦M1
(s)× Pε2+α◦ε2+···+α(t−2)◦ε2

(s)× · · · × Pεt−1+α◦εt−1(s)× Pεt(s)

= exp
{

λ1

1− α
(ht(s)− 1)

} t−1

∏
i=1

exp{λ1(hi(s)− 1)}. (18)

Moreover, from the definition ht(s) = s(αht−1(s) + 1− α), it is easy to find that

ht(s)− 1 = s− 1 + αs(ht−1(s)− 1).

Then, recursive calculation results in

ht(s)− 1 = (s− 1)
1− (αs)t

1− αs
. (19)
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Finally, inserting (19) into (18), we can obtain

PM1+···+Mt(s) = exp
{

λ
s− 1

1− αs

[
t +

1− (αs)t

1− α
− 1− (αs)t

1− αs

]}
.

This completes the proof.

Lemma 2. For t = 1, 2, · · · , when s ≥ 0, the p.g.f. of N1 + · · ·+ Nt is given by

PN1+···+Nt(s) = exp
{

λ2(1 + β)(s− 1) + λ2(t− 1)[βs2 + (1− β)s− 1]
}

. (20)

Proof. By (5), it holds that

PN1+···+Nt(s) = E(sN1+···+Nt)

= E(sβ◦η0+η1 sβ◦η1+η2 · · · sβ◦ηt−1+ηt)

= E(sβ◦η0 sη1+β◦η1 · · · sηt−1+β◦ηt−1 sηt)

= E(sβ◦η0)E(sη1+β◦η1) · · · E(sηt−1+β◦ηt−1)E(sηt)

= exp
{

λ2(1 + β)(s− 1) + λ2(t− 1)[βs2 + (1− β)s− 1]
}

,

which follows from ηt ∼ P(λ2), β ◦ η0 ∼ P(βλ2) and

Pεi+β◦εi (s) = E(sεi+β◦εi )

= E[E(sεi sβ◦εi |εi)]

= E[sεi E(sβ◦εi |εi)]

= E[sεi (βs + 1− β)εi ]

= exp
{

λ2[βs2 + (1− β)s− 1]
}

, i = 1, 2, · · · , t− 1.

The proof then is completed.

To further analyze the insurance portfolio, we write

ct(r) =
1
t

ln E([er(St−Wt)]), (21)

and let

c(r) = lim
t→+∞

ct(r). (22)

Then, the positive solution to the equation c(r) = 0 can be defined as the Lundberg
adjustment coefficient, which is denoted by R and can be used to approximate the infinite-
time ruin probability of the proposed model (2). The following result gives the explicit
expression for c(r).

Theorem 1. For r ≥ 0, we have

c(r) = λ1
MX(−r)− 1

1− αMX(−r)
+ λ2[βM2

Y(r) + (1− β)MY(r)− 1]. (23)

Proof. Due to the non-negativity of r and X, it follows that

0 ≤ MX(−r) ≤ 1, 0 ≤ αMX(−r) < 1.

Then, by Lemma 1, we have
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lim
t→+∞

1
t

ln E(e−rWt) = lim
t→+∞

1
t

ln PM1+···+Mt(MX(−r))

= lim
t→+∞

1
t

ln
(

exp
{

λ
MX(−r)− 1

1− αMX(−r)

[
t +

1− (αMX(−r))t

1− α
− 1− (αMX(−r))t

1− αMX(−r)

]})
= λ

MX(−r)− 1
1− αMX(−r)

. (24)

On the other hand, from (13) and (20), we obtain

lim
t→+∞

1
t

ln E(erSt) = lim
t→+∞

1
t

ln PN1+···+Nt(MY(r))

= lim
t→+∞

1
t

ln
(

exp
{

λ2(1 + β)(MY(r)− 1) + λ2(t− 1)[βM2
Y(r) + (1− β)MY(r)− 1]

})
= λ2(1 + β) lim

t→+∞

1
t
(MY(r)− 1) + lim

t→+∞

t− 1
t

λ2[βM2
Y(r) + (1− β)MY(r)− 1]

= λ2[βM2
Y(r) + (1− β)MY(r)− 1]. (25)

Then, combining (24) and (25) with (21) and (22) yields

c(r) = lim
t→+∞

ct(r)

= lim
t→+∞

1
t

ln E([er(St−Wt)])

= lim
t→+∞

1
t

ln E(erSt) + lim
t→+∞

1
t

ln E(e−rWt)

= λ1
MX(−r)− 1

1− αMX(−r)
+ λ2[βM2

Y(r) + (1− β)MY(r)− 1],

This completes the proof.

Remark 4. When α = 0, the proposed model (2) degenerates to the discrete-time risk model based
on the Poisson INMA(1) process studied by [11,14], where only the temporal dependence among the
claim numbers of consecutive periods is considered. Consequently, (23) becomes

c(r) = λ1[MX(−r)− 1] + λ2[βM2
Y(r) + (1− β)MY(r)− 1],

which corresponds to (7) in [11,14].

Remark 5. When β = 0, the proposed model (2) reduces to the discrete-time risk model with
stochastic premiums and dependence based on the Poisson INAR(1) process studied by [26], where
only the temporal dependence among the premium numbers of consecutive periods is considered. As
a result, (23) becomes

c(r) = λ1
MX(−r)− 1

1− αMX(−r)
+ λ2[MY(r)− 1],

which corresponds to (3.10) in [26].

4. Lundberg Approximation Formula for the Infinite-Time Ruin Probability

Let the ruin time of our proposed surplus process (2) be T = inf
t∈{0,1,2,··· }

{t, Ut ≤ 0} if

Ut goes below 0 at least once; otherwise, take T = +∞. As a consequence, the infinite-time
ruin probability ψ(u) is defined by

ψ(u) = P(T < +∞|U0 = u).
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Ruin probability ψ(u) is well-known as one of the most common and important quantities
used to measure the riskiness of an insurance portfolio in the risk-theoretic context. How-
ever, as can be seen from the expression (11), our proposed model releases the condition
that Pt and Lt are independent of Ut−1, which is a key but defective assumption in the
classical risk model with stochastic premiums and allows for the temporal dependence
among the premium numbers and claim numbers. Therefore, Pt and Lt are correlated
with Ut−1, and {Ut, t = 1, 2, · · · } is no longer a Lévy process with stationary independent
increments in our model. Consequently, it is not easy to derive the upper bounds and
explicit expression for the infinite-time ruin probability such as those in some classical
models. As an efficient alternative, the following result gives an asymptotic estimation for
ψ(u) of our proposed model (2).

Theorem 2. In the discrete-time dependent risk model with stochastic premiums based on the
Poisson INAR(1) process and Poisson INMA(1) process, if

λ1

1− α
E(X) > λ2(1 + β)E(Y), (26)

we can obtain the Lundberg approximation formula for the infinite-time ruin probability ψ(u),
which has the following expression:

lim
u→+∞

− ln(ψ(u))
u

= R, (27)

where u and R are the initial capital and the Lundberg adjustment coefficient, respectively.

Proof. According to Theorem 2.1 in Müller and Pflug [32], it is sufficient for us to prove
that the equation c(r) = 0 has a unique positive solution, which can be defined as the
Lundberg adjustment coefficient R. To this end, we derive the following four properties of
the function c(r).

Firstly, noting that MX(0) = MY(0) = 1, we have

c(0) = λ1
MX(0)− 1

1− αMX(0)
+ λ2[βM2

Y(0) + (1− β)MY(0)− 1] = 0. (28)

Secondly, it is easy to calculate that

c′(r) =
−λ1(1− α)M′X(−r)
[1− αMX(−r)]2

+ λ2[2βMY(r)M′Y(r) + (1− β)M′Y(r)].

Together with the fact M′X(0) = E(X) and M′Y(0) = E(Y), we obtain

c′(0) =
−λ1(1− α)M′X(0)
[1− αMX(0)]2

+ λ2[2βMY(0)M′Y(0) + (1− β)M′Y(0)]

= λ2(1 + β)E(Y)− λ1

1− α
E(X) < 0. (29)

Thirdly, it is easy to verify the convexity of c(r), which results from the fact that ct(r)
is convex and the definition of c(r) = lim

t→+∞
ct(r).

Finally, when the m.g.f. of Y exists, i.e., there exists some quantity r0, 0 < r0 ≤ +∞,
such that MY(r) is finite for all r < r0 with

lim
r→r−0

MY(r) = +∞,



Entropy 2023, 25, 698 11 of 25

then, it holds that

lim
r→r−0

c(r) = lim
r→r−0

(
λ1

MX(−r)− 1
1− αMX(−r)

+ λ2[βM2
Y(r) + (1− β)MY(r)− 1]

)
= +∞. (30)

Therefore, it can be concluded that there exists a unique positive solution to the
equation c(r) = 0, and then, (27) follows immediately.

Remark 6. In risk and ruin theory, the assumption (26) is the so-called relative safety loading
condition, which implies that the expected premium incomes should be more than the expected claim
expenses to guarantee that the insurance company can operate normally and profitably.

Remark 7. As a result of the approximation formula (27), we can asymptotically estimate the
infinite-time ruin probability ψ(u) by

ψ(u) w e−Ru, (31)

if the initial surplus u becomes large enough.

From (9) and (10), it can be seen that the thinning parameters α and β could quantita-
tively measure the degree of the dependence in the risk model (2); hence, it is necessary
for us to discuss their impacts on the adjustment coefficient and further on the risk of the
insurance portfolio.

Proposition 1. As a function of the two thinning parameters, the Lundberg adjustment coefficient
R of our proposed risk model (2) increases with respect to α and decreases with respect to β.

Proof. For convenience, we now rewrite c(r) as c(α, β, r); the Lundberg adjustment coeffi-
cient R is determined by c(α, β, R) = 0 and can be taken as a function of α and β. By the
properties derived in the proof of Theorem 2, we know that

∂c(α, β, R)
∂R

> 0.

Meanwhile, with R > 0 in mind, it follows that 0 ≤ MX(−R) < 1. Thus, we take the
partial derivative of c(α, β, R) with respect to variable α and then have

∂c(α, β, R)
∂α

=
∂

∂α

(
λ1

MX(−R)− 1
1− αMX(−R)

+ λ2[βM2
Y(R) + (1− β)MY(R)− 1]

)
=
−λ1MX(−R)[1− αMX(−R)] + λ1(1− α)MX(−R)MX(−R)

[1− αMX(−R)]2

=
λ1[M2

X(−R)−MX(−R)]
[1− αMX(−R)]2

< 0.

As a result, using implicit function theorem, it holds that

∂R
∂α

= − (∂/∂α)c(α, β, R)
(∂/∂R)c(α, β, R)

> 0,

implying that R increases with respect to α.
Similarly, because MY(R) > 1 for R > 0, taking the partial derivative of c(α, β, R) with

respect to variable β yields

∂c(α, β, R)
∂β

=
∂

∂β

(
λ1

MX(−R)− 1
1− αMX(−R)

+ λ2[βM2
Y(R) + (1− β)MY(R)− 1]

)
= λ2[M2

Y(R)−MY(R)] > 0,
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from which we apply implicit function theorem again and obtain

∂R
∂β

= − (∂/∂β)c(α, β, R)
(∂/∂R)c(α, β, R)

< 0,

meaning that R decreases with respect to β.

Remark 8. As shown in Proposition 1, the degree of riskiness can be measured and quantified by
the Lundberg adjustment coefficient R, in the sense that it decreases with the thinning parameter α,
while it increases with the thinning parameter β. In insurance practice, it can be naturally explained
that when α increases, the insured parties would like to renew their insurance contracts with a
higher probability in the next period, which would lower the risk of the portfolio. On the contrary,
when β increases, a reported claim becomes more likely to produce another insurance accident in the
next period, which could make the portfolio much riskier.

5. Asymptotic Formula for the Finite-Time Ruin Probability

In this section, we turn our focus to the case of heavy-tailed claim sizes, which are
frequently used in insurance practice for catastrophe risks, such as earthquakes, hurricanes,
floods, financial crises, agricultural disasters, and so on. In these instances, the Lundberg
adjustment coefficient and Lundberg approximation estimation for infinite-time ruin prob-
ability can no longer be applied because MY(r) (the m.g.f. of Y) does not exist for r > 0.
Therefore, increasing numbers of researchers have increasingly paid close attention to the
precise large deviations in the aggregate of claims, as well as the asymptotic formulas
for infinite-time and finite-time ruin probabilities. The relevant study was initiated by
Klüppelberg and Mikosch [33] and then has been revisited by many researchers afterwards.
We refer to Chen et al. [34] and Fu et al. [35] for some recent contributions on this topic.
Cheng and Wang [36], Yang et al. [37], and Jing et al. [38] considered the asymptotic ruin
probabilities in risk models with dependence among the claim sizes. Xun et al. [39] obtained
the uniformly asymptotic result of ruin probability in a general risk model with stochastic
premiums. Yu [40] derived the precise large deviations of the aggregate amount of claims
for a risk model with the Poisson ARCH claim number process. Along the same line, in this
section, we investigate our proposed model (2) when the distribution of claim sizes belongs
to a heavy-tailed class.

First, we give some brief notations. Let a(x) and b(x) be two positive functions. We de-
note a(x) ∼ b(x) if lim

x→+∞
a(x)/b(x) = 1; denote a(x) . b(x) if lim sup

x→+∞
a(x)/b(x) ≤ 1; de-

note a(x) & b(x) if lim inf
x→+∞

a(x)/b(x) ≥ 1; and denote a(x) = o(b(x)) if lim sup
x→+∞

a(x)/b(x) =

0. We denote the common distribution functions of premium amount X and claim size Y
with FX(x) and FY(y), respectively.

Then, we recall a class of heavy-tailed distributions and one of its important prop-
erties. More detailed discussions can be found in Embrechts et al. [41], Asmussen and
Albrecher [1], etc.

A distribution function F on [0, ∞] is said to have a consistently varying tail, denoted
by F ∈ C, if

lim
y↑1

lim sup
x→+∞

F(xy)
F(x)

= lim
y↓1

lim inf
x→+∞

F(xy)
F(x)

= 1, (32)

where F(x) is the tail probability with F(x) = 1 − F(x). The class C is a wide class
of distributions commonly used in actuarial science, including the well-known Pareto,
Burr, and loggamma distributions. Ng et al. [42] established a very useful result for the
distributions of class C, which is given in the following lemma.
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Lemma 3. Suppose that {Yj, j = 1, 2, · · · } is a sequence of i.i.d. non-negative random variables

with common distribution function FY(y) ∈ C and E(Y) < +∞. Taking Qt =
t

∑
j=1

Yj, for any fixed

γ > 0, it holds uniformly for all y > γt that

P(Qt − tE(Y) > y) ∼ tFY(y), t→ +∞, (33)

in which the uniformity is understood in the following sense:

lim
t→+∞

sup
y≥γt

∣∣∣∣P(Qt − tE(Y) > y)
tFY(y)

− 1
∣∣∣∣ = 0.

Analogous to the infinite-time ruin probability ψ(u), for any fixed t = 1, 2, · · · , we
define the finite-time ruin probability ψ(u, t) of the discrete-time risk model (2) as

ψ(u, t) = P(T ≤ t|U0 = u).

In order to further study the asymptotic formula of ψ(u, t), which is also a core actuarial
quantity, we revise Lemma 3 as follows.

Lemma 4. Suppose that {Yj, j = 1, 2, · · · } is a sequence of i.i.d. non-negative random variables

with the common distribution function FY(y) ∈ C and E(Y) < +∞. Define Qt =
t

∑
j=1

Yj; then,

for any fixed γ > 0 and δ > 0, it holds uniformly for all y > γt1+δ that

P(Qt > y) ∼ tFY(y), t→ +∞. (34)

Proof. By the definition of class C, it follows for any fixed θ > 0 and sufficiently large y
that

FY((1 + θ)y)
FY(y)

≤ FY(y + o(y))
FY(y)

≤ FY((1− θ)y)
FY(y)

,

from which we can obtain

1 = lim
θ↓0

lim inf
y→+∞

FY((1 + θ)y)
FY(y)

≤ lim inf
y→+∞

FY(y + o(y))
FY(y)

≤ lim sup
y→+∞

FY(y + o(y))
FY(y)

≤ lim
θ↓0

lim sup
y→+∞

FY((1− θ)y)
FY(y)

= 1.

Hence, it holds that

lim
y→+∞

FY(y + o(y))
FY(y)

= 1. (35)

Furthermore, by Lemma 3 and (35), it follows that
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lim
t→+∞

sup
y>γt1+δ

∣∣∣∣P(Qt > y)
tFY(y)

− 1
∣∣∣∣ = lim

t→+∞
sup

y>γt1+δ

∣∣∣∣P(Qt − tE(Y) > y− tE(Y))
tFY(y− tE(Y))

× FY(y− tE(Y))
FY(y)

− 1
∣∣∣∣

≤ lim
t→+∞

sup
y>γt1+δ

FY(y− tE(Y))
FY(y)

×
∣∣∣∣P(Qt − tE(Y) > y− tE(Y))

tFY(y− tE(Y))
− 1
∣∣∣∣

+ lim
t→+∞

sup
y>γt1+δ

∣∣∣∣ FY(y− tE(Y))
FY(y)

− 1
∣∣∣∣

= lim
y→+∞

FY(y + o(y))
FY(y)

× lim
t→+∞

sup
y>γt1+δ

∣∣∣∣P(Qt − tE(Y) > y− tE(Y))
tFY(y− tE(Y))

− 1
∣∣∣∣

+ lim
y→+∞

∣∣∣∣ FY(y + o(y))
FY(y)

− 1
∣∣∣∣

= 0.

The proof is then completed.

Now, we give the precise large deviations of the aggregate claims, St, which is de-
scribed in model (11).

Theorem 3. For our proposed model (2), let FY(y) and E(Y) be the common distribution function
and expectation of the claim sizes, respectively. Assuming FY(y) ∈ C and E(Y) < +∞, then for
any fixed γ > 0 and δ > 0, it holds uniformly for all y > γt1+δ that

P(St > y) ∼ λ2(1 + β)tFY(y), t→ +∞. (36)

Proof. Let {Yj, j = 1, 2, · · · } be a sequence of i.i.d. non-negative random variables,
with their common distribution function denoted by FY(y). Suppose that ϕSt(r) is the

characteristic function of St =
t

∑
i=1

Ni
∑

j=1
Yi,j. With the same method to derive (12) and (13), we

can obtain
ϕSt(r) = E

[
(ϕY(r))N1+···+Nt

]
, (37)

where ϕY(r) is the characteristic function of Y.
On the other hand, direct calculation leads to

E

[
exp

{
ir

N1+···+Nt

∑
j=1

Yj

}]
= ∑

n
E

[
exp

{
ir

n

∑
j=1

Yj

}
× I{N1+···+Nt=n}

]
= ∑

n
[E exp{irY}]n × P{N1 + N2 + · · ·+ Nt = n}

= E[(ϕY(r))N1+···Nt ]. (38)

We conclude after checking (37) and (38) that

St
d
=

N1+···+Nt

∑
j=1

Yj, (39)

where ” d
=” means the identical distribution.

For any 0 < η < λ2(1 + β), we have
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P

(
N1+···+Nt

∑
j=1

Yj > y

)

=P

(
t

∑
i=1

Ni < b(λ2(1 + β) + η)tc,
N1+···+Nt

∑
j=1

Yj > y

)
+ P

(
t

∑
i=1

Ni ≥ b(λ2(1 + β) + η)tc,
N1+···+Nt

∑
j=1

Yj > y

)

≤P

(b(λ2(1+β)+η)tc

∑
j=1

Yj > y

)
+ P

(
t

∑
i=1

Ni ≥ b(λ2(1 + β) + η)tc
)

=∆1 + ∆2, (40)

in which b·c denotes the maximum integer not exceeding ′′·′′.
From Lemma 4, we know it holds uniformly for all y > γt1+δ that

∆1 ∼ b(λ2(1 + β) + η)tcFY(y). (41)

As for ∆2, for t = 1, 2, · · · , we write

t

∑
i=1

Ni =
bt/2c

∑
i=1

N2i +
bt/2c+p

∑
i=1

N2i−1,

where p = 0 if t is a even number, and p = 1 if t is an odd number. From the definition,
we know that {Ni, i = 1, 2, · · · } is a one-dependent stationary sequence with the common
Poisson distribution of mean λ2(1 + β) and m.g.f MN(r) = exp{λ2(1 + β)(er − 1)}; then,
it is easy to see that {N2i, 1 ≤ i ≤ bt/2c} and {N2i−1, 1 ≤ i ≤ bt/2c+ p} are two sequences
of i.i.d. random variables. Let a = λ2(1 + β) + η; by Cramér Theorem (Theorem 2.2.3 in
Dembo and Zeitonui [43]), we have

∆2 = P

(bt/2c

∑
i=1

N2i +
bt/2c+p

∑
i=1

N2i−1 ≥ b(λ2(1 + β) + η)tc
)

≤ P

(bt/2c

∑
i=1

N2i ≥ bλ2(1 + β) + ηcbt/2c
)
+ P

(bt/2c+p

∑
i=1

N2i−1 ≥ bλ2(1 + β) + ηc(bt/2c+ p)

)
∼ e−bt/2cI(a) + e−(bt/2c+p)I(a) → 0, t→ +∞, (42)

in which I(a) = sup
−∞<r<+∞

{ar− log(MN(r))} > 0.

Combining (40)–(42) gives

P

(
N1+···+Nt

∑
j=1

Yj > y

)
. b(λ2(1 + β) + η)tcFY(y). (43)

On the other hand, it holds that

P

(
N1+···+Nt

∑
j=1

Yj > y

)
≥ P

(
t

∑
i=1

Ni ≥ b(λ2(1 + β)− η)tc,
N1+···+Nt

∑
j=1

Yj > y

)

≥ P

(
t

∑
i=1

Ni ≥ b(λ2(1 + β)− η)tc,
b(λ2(1+β)−η)tc

∑
j=1

Yj > y

)

= P

(
t

∑
i=1

Ni ≥ b(λ2(1 + β)− η)tc
)
× P

(b(λ2(1+β)−η)tc

∑
j=1

Yj > y

)
, (44)

in which
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P

(
t

∑
i=1

Ni ≥ b(λ2(1 + β)− η)tc
)

= P

(
t

∑
i=1

Ni − λ2(1 + β)t ≥ b(λ2(1 + β)− η)tc − λ2(1 + β)t

)

≥ P

(
t

∑
i=1

Ni − λ2(1 + β) ≥ −ηt

)

≥ P

(∣∣∣∣∣ t

∑
i=1

Ni − λ2(1 + β)t

∣∣∣∣∣ ≤ ηt

)
→ 1, t→ +∞, (45)

because of the fact that

P

(∣∣∣∣∣ t

∑
i=1

Ni − λ2(1 + β)t

∣∣∣∣∣ > ηt

)

≤P

(∣∣∣∣∣bt/2c

∑
i=1

[N2i − λ2(1 + β)]

∣∣∣∣∣ > ηbt/2c
)
+ P

(∣∣∣∣∣bt/2c+p

∑
i=1

[N2i−1 − λ2(1 + β)]

∣∣∣∣∣ > η(bt/2c+ p)

)
→0, t→ +∞,

obtained from the classical law of large numbers.
Then, combining (44), (45), and Lemma 4 yields

P

(N1+···+Ny

∑
j=1

Yj > y

)
& b(λ2(1 + β)− η)tcFY(y). (46)

Generally, letting η ↓ 0 in (43) and (46) and keeping (39) in mind, we finally conclude
that

P(St > y) = P

(
N1+···+Nt

∑
j=1

Yj > y

)
∼ bλ2(1 + β)tcFY(y) ∼ λ2(1 + β)tFY(y).

Then, the proof is completed.

With the help of the above conclusion, we can manifest the asymptotic formula for the
finite-time ruin probability in the following theorem.

Theorem 4. Under the conditions of Theorem 3, for any fixed γ > 0 and δ > 0, the asymptotic
formula

ψ(u, t) ∼ λ2(1 + β)tFY(u) (47)

holds uniformly for all u > γt1+δ as t→ +∞.

Proof. From the definition of finite-time ruin probability, it is clear that

ψ(u, t) = P

(
sup

m∈{0,1,··· ,t}
(Sm −Wm) > u

)
≥ P(St −Wt > u)
= P(St > u + Wt)

= P
(

St > u +
λ1

1− α
tE(X) + Wt −

λ1

1− α
tE(X)

)
. (48)
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Noting that Wt =
t

∑
i=1

Pi =
t

∑
i=1

Mi
∑

k=1
Xi,k and keeping (9) in mind, for any η > 0, we have

P
(∣∣∣∣Wt −

λ1

1− α
tE(X)

∣∣∣∣ ≥ ηt
)
= P

(∣∣∣∣∣1t t

∑
i=1

Pi −
λ1

1− α
E(X)

∣∣∣∣∣ ≥ η

)

≤
E

(
1
t

t

∑
i=1

Pi −
λ1

1− α
E(X)

)2

η2

=
1

(ηt)2

t

∑
i,j=1

Cov(Pi, Pj)

=
λ1E(X2)

(1− α)(ηt)2

(
t + 2(t− 1)α + 2(t− 2)α2 + · · ·+ 2αt−1

)
≤ 2λ1E(X2)(1− αt)

tη2(1− α)2 → 0, t→ +∞,

from which we can obtain

lim
t→+∞

sup
u>γt1+δ

1
u

(
λ1

1− α
tE(X) + Wt −

λ1

1− α
tE(X)

)
= 0.

Then, for any θ > 0, if t is sufficiently large such that u is sufficiently large, it holds that

P(St > u + θu) ≤ P
(

St > u +
λ1

1− α
tE(X) + Wt −

λ1

1− α
tE(X)

)
≤ P(St > u− θu),

Furthermore, by Theorem 3 and let θ ↓ 0, we have

P
(

St > u +
λ1

1− α
tE(X) + Wt −

λ1

1− α
tE(X)

)
∼ λ2(1 + β)FY(u), uniformly for u > γt1+δ as t→ +∞. (49)

Plugging (49) into (48) gives

ψ(u, t) & λ2(1 + β)tFY(u). (50)

On the other hand, for any fixed γ > 0 and δ > 0, we have uniformly for all u > γt1+δ

that

ψ(u, t) = P

(
sup

m∈{0,1,··· ,t}
(Sm −Wm) > u

)
≤ P(St > u) ∼ λ2(1 + β)tFY(u).

which implies
ψ(u, t) . λ2(1 + β)tFY(u). (51)

Therefore, we complete the proof by combining (50) and (51).

Remark 9. Applying Lemma 3 instead of Lemma 4 in Theorem 3, it is not difficult to see that the
precise large deviation (36) also holds uniformly for all y > γt. In this paper, we restrict ourselves
to the interval y > γt1+δ in order to provide convenience for investigating the finite-time ruin
probability ψ(u, t). Moreover, we can prove that the asymptotic formula (47) in Theorem 4 holds
uniformly for all u ∈ Ω = {u; t = o(u)}, which includes u > γt1+δ as a special case. In practice,
when t is large enough, we can asymptotically estimate ψ(u, t) by λ2(1 + β)tFY(u), as the size of
claims belong to the distributions of class C and the insurer’s initial surplus is adequate in the sense
of u > γt1+δ.
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6. Numerical Examples

In this section, we aim to perform some numerical simulations to demonstrate and
assess the Lundberg adjustment coefficient and the Lundberg approximation results for
the infinite-time ruin probability ψ(u), as well as the asymptotic formula for the finite-time
ruin probability ψ(u, t), of our proposed model.

Example 1. We suppose that the gain amount X and the claim size Y follow exponential distri-
butions that have means 1/µ1 and 1/µ2, respectively. Therefore, we have the moment generating
functions of X and Y as follows:

MX(−r) =
µ1

µ1 + r
, MY(r) =

µ2

µ2 − r
, r > 0. (52)

Then, from Theorem 2, c(r) = 0 is equivalent to

λ1
1

(1− α)µ1 + r
= λ2

(1 + β)µ2 − r
(µ2 − 2)2 . (53)

The unique positive solution to Equation (53) can be found but appears tedious. In what follows, we
give some numerical results to show the properties and performance of R and e−Ru.

Without loss of generality, we set λ1 = 1, λ2 = 0.4, µ1 = 1, and µ2 = 0.5, and then, calculate
and discuss the Lundberg adjustment coefficient R and the approximated ruin probability e−Ru for
different values of α and β. When we consider the impacts of α and β on the main results, it should
be noted that the relative safety loading condition (26) has to be satisfied, i.e.,

λ1

1− α
· 1

µ1
> λ2 · (1 + β) · 1

µ2
, (54)

which, in our parameter scenario, implies

1
1− α

> 0.8(1 + β). (55)

Table 1 gives the computed values of Lundberg adjustment coefficients corresponding to
different values of α and β. We also illustrate these results in Figure 1, from which it can be clearly
seen that R increases as α increases, implying that the insurance portfolio would become less and
less dangerous because the approximated infinite-time ruin probability e−Ru decreases. In the same
sense, when β increases, R will decrease, meaning that there could be higher risks in the insurance
portfolio. (In Table 1, the notation “− ” means that the values of α and β do not satisfy the relative
safety loading condition, and the Lundberg adjustment coefficients are not considered for these
situations.)

Table 1. Lundberg adjustment coefficients for different α and β.

β

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.0680 0.0414 0.0183 - - - - - -
0.2 0.0968 0.0706 0.0481 0.0282 0.0104 - - - -
0.3 0.1256 0.1000 0.0781 0.0588 0.0416 0.0259 0.0115 - -
0.4 0.1545 0.1295 0.1082 0.0897 0.0731 0.0581 0.0443 0.0316 0.0198
0.5 0.1834 0.1591 0.1386 0.1208 0.1049 0.0906 0.0776 0.0655 0.0544
0.6 0.2124 0.1888 0.1691 0.1522 0.1371 0.1236 0.1113 0.1000 0.0895
0.7 0.2415 0.2187 0.2000 0.1839 0.1698 0.1571 0.1457 0.1351 0.1254
0.8 0.2707 0.2489 0.2312 0.2162 0.2031 0.1913 0.1807 0.1711 0.1622
0.9 0.3000 0.2794 0.2630 0.2491 0.2370 0.2264 0.2167 0.2080 0.2000
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Figure 1. Lundberg adjustment coefficients corresponding to different α and β.

In order to evaluate the performance of the approximated infinite-time ruin probability e−Ru, we
fix α = β = 0.5 in the proposed risk model and compute the true ruin probabilities corresponding to
different values of u by the Monte Carlo method used in Albrecher and Kantor [44]. For this purpose,
we randomly draw sample paths according to the Poisson INAR(1) process and the Poisson INMA(1)
process for the premium arrivals {Mt, t = 1, 2, · · · } and the claim numbers {Nt, t = 1, 2, · · · },
respectively. Afterwards, we simulate the surplus process (2) starting at U0 = u, with the premium
amounts and claim sizes following the given exponential distributions. These simulations are
replicated n = 3000 times; then, the trajectories with negative values (i.e., ruin event occurs) are
counted, and we denote this number by n1. Hence, the infinite-time ruin probability ψ(u) can be
estimated by

ψ̂(u) =
n1

n
. (56)

In addition, because of the fact that Ut → +∞ with probability one as t→ +∞ when the relative
safety loading condition holds, we know that Ut will never become negative when t is large enough.
Therefore, it is necessary for us to choose a suitable Tst at which we should stop the simulated surplus
process for each sample path if the ruin event does not occur before this time. As a consequence,
(56) is actually the estimate of the finite-time ruin probability ψ(u, Tst) = P(T ≤ Tst|U0 = u). In
this paper, we set Tst = 1000. In practice, we can choose larger values for Tst so that the bias of the
estimator for ψ(u) is less significant.

In Table 2 and Figure 2, we compare the simulated ruin probability with the approximated ruin
probability. As can be seen, when u grows, both of the ruin probabilities approach zero. However,
as alternatives to the true ruin probabilities, the approximations do not work well when the values of
u are small. We can explain these results with the following three reasons. Firstly, as the limit of
ψ(u) as u→ +∞, e−Ru may be very different than ψ(u) at the beginning. Secondly, the simulated
infinite-time ruin probabilities are indeed the estimated values for the finite-time ruin probability
ψ(u, Tst), which are smaller than the true values of ψ(u). Thirdly, the total number of simulated
trajectories n and the chosen time Tst affect the simulated results. We could increase n and Tst to
improve the performance, but a longer run time is needed.

On the other hand, the values of simulated ruin probability and the approximated ruin proba-
bility become closer and closer with the increase in u, implying that the approximation method could

work better as u grows. To strengthen this statement, we define γ(u) =
ψ̂(u)
e−Ru , and then, calculate

the values of γ(u) with respect to different values of u; the results are listed in the last column of
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Table 2. It can be seen that γ(u) approaches 1 asymptotically, which indicates that it is valid to
take e−Ru as the approximated result for ψ̂(u) and, furthermore, for ψ(u) when u is large enough.
Figure 3 also illustrates this conclusion visually. In practice, an insurer is always required to hold
a huge number of initial surplus to guarantee its solvency under certain regulatory frameworks;
therefore, the approximation method is of importance and is applicable in the risk management
of insurance.

Table 2. Comparison of the simulated and approximated ruin probability.

u ψ̂(u) e−Ru
γ(u) =

ψ̂(u)
e−Ru

10 0.2280 0.3503 0.6509
15 0.1386 0.2073 0.6686
20 0.0819 0.1227 0.6678
25 0.0497 0.0726 0.6846
30 0.0294 0.0430 0.6835
35 0.0183 0.0254 0.7186
40 0.0112 0.0151 0.7388
45 0.0067 0.0089 0.7575
50 0.0043 0.0053 0.8125

10 15 20 25 30 35 40 45 50

u

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

(u
)

Figure 2. The simulated and approximated ruin probabilities with respect to different values of u.

Example 2. We suppose that the gain amount X is distributed by the exponential distribution with
mean of 1/µ1, and the claim size Y follows the Pareto distribution, which has shape parameter τ1 and

scale parameter τ2, i.e., the distribution function FY(y) is given by FY(y) = 1−
(

τ2

τ2 + x

)τ1

, y > 0.

To perform the calculations, we set λ1 = 1, µ1 = 1, λ2 = 0.1, τ1 = 3, τ2 = 16, and α = β = 0.5. It
is not difficult to check that these values satisfy the relative safety loading condition (26). Our goal is to
compare the asymptotic result λ2(1+ β)tFY(y) (AS for simplification) with the simulated results of the
finite-time ruin probabilities obtained using the Monte Carlo method (MC for simplification). As can
be seen from Table 3, the ratio of MC to AS becomes closer and closer to one as t increases for different
u, indicating that the asymptotic formula stated in Theorem 4 is valid and applicable in practice.
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Table 3. Comparison of the simulated results and the asymptotic results for ψ(u, t).

u = 60 u = 70 u = 80 u = 90 u = 100

AS 0.0760 0.0560 0.0437 0.0300 0.0210
t = 50 MC 0.0700 0.0483 0.0347 0.0258 0.0197

AS/MC 1.0860 1.1595 1.2576 1.1628 1.0660

AS 0.0703 0.0487 0.0440 0.0280 0.0200
t = 40 MC 0.0560 0.0386 0.0278 0.0206 0.0157

AS/MC 1.2563 1.2596 1.5840 1.3592 1.2739

AS 0.0517 0.0360 0.0330 0.0170 0.0140
t = 30 MC 0.0420 0.0290 0.0208 0.0155 0.0118

AS/MC 1.2305 1.2423 1.5840 1.0985 1.1856

AS 0.0377 0.0247 0.0223 0.0140 0.0120
t = 20 MC 0.0280 0.0193 0.0139 0.0103 0.0079

AS/MC 1.3456 1.2768 1.6043 1.3570 1.5190

AS 0.0190 0.0130 0.0113 0.0077 0.0063
t = 10 MC 0.0140 0.0097 0.0069 0.0052 0.0039

AS/MC 1.3575 1.3402 1.6377 1.4862 1.6090

10 15 20 25 30 35 40 45 50

u

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(u
)

approximated ruin probability
simulated ruin probability

Figure 3. The values of ratio γ(u) with respect to different u.

7. Conclusions

In this paper, we examine a generalization of the classical discrete-time risk model of
an insurance portfolio with stochastic premiums, using a Poisson INAR(1) process and a
Poisson INMA(1) process to fit the temporal dependence among the premium numbers
and the temporal dependence among the claim numbers, respectively. We give the explicit
expression for the function satisfied by the Lundberg adjustment coefficient and find the
Lundberg approximation formula for the infinite-time ruin probability. Furthermore, we
discuss and analyze the impact of the two thinning parameters and manifest that the depen-
dence structure in the model has a significant influence on the risk of the surplus process in
an insurance company. When the claim sizes follow a class of heavy-tailed distributions,
we establish the large deviations of the aggregate claims and investigate the asymptotic
formula for the finite-time ruin probability. In the numerical examples, we use MATLAB
to randomly draw the sample paths of the proposed surplus process and compute esti-
mates of the true ruin probabilities corresponding to different values of u using the Monte
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Carlo method. From the simulated results, it can be seen that the approximation formula
and asymptotic formula we obtained are effective. Furthermore, these two formulas are
much simpler to use for calculating and estimating the ruin probabilities than the Monte
Carlo method.

As for future work, we could implement the same methodology by applying the
time series for count data with other distributed innovations or an arbitrary innovations’
distribution. Generally, using the same approach as that in Lemma 1 and Lemma 2, we can
extend (14) and (20) to

PM1+···+Mt(s) = PM1(ht(s))
t−1

∏
i=1

Pε(hi(s)),

and
PN1+···+Nt(s) = Pη(s)Pη(βs + (1− β))[Pη(βs2 + (1− β)s)]t−1,

respectively. Therefore, if we could derive the explicit expression of c(r), the properties of
the solution to the equation c(r) = 0 can be discussed, and the adjustment coefficient can
be obtained to measure the risk.

Additionally, we could adopt some higher-order processes to make the insurance
risk model much more practical and flexible. In this situation, it becomes more challeng-
ing to find the expressions of PM1+···+Mt(s) and PN1+···+Nt(s). As a consequence, there
might be some difficulties in deriving c(r) and defining the adjustment coefficient for an
insurance portfolio.

On the other hand, instead of fixing the distributions and the parameters to illustrate
the results by simulation, we can use the real dataset to fit the distributions and obtain the
statistical estimates of the parameters, so that the ruin problems of the risk model could be
analyzed in a more scientific way.
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Appendix A

In this appendix, we explicate the motivation and rationale of our proposed model (2)
by the following descriptions, in order to make this paper more accessible to the readers.
Let us begin with the classical discrete-time Lundberg–Cramér risk model

Ut = Ut−1 + c− Lt, t = 1, 2, · · · , (A1)

where Ut corresponds to the surplus of an insurance portfolio at time t, with U0 = u being
the initial surplus; c being the constant premium income per period, and Lt representing
the aggregate claim amount in period t that is defined as

Lt =
Nt

∑
j=1

Yt,j, (A2)
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in which Nt denotes the number of claims and Yt,j is the size of the jth payment to the
insured in period t. After recursively calculating, it is easy to see that the risk model (A1)
can be rewritten as

Ut = u + ct−
t

∑
i=1

Li = u + ct−
t

∑
i=1

Ni

∑
j=1

Yi,j, t = 1, 2, · · · ,

which is equivalent to the model (1) by denoting N0
t =

t
∑

i=1
Ni.

For simplicity, it is assumed that the claim numbers of different periods are indepen-
dent in the Lundberg–Cramér risk model, i.e., the claim number process {Nt, t = 1, 2, · · · }
is a sequence of i.i.d. random variables, which is certainly not realistic. As a consequence,
ref. [11] proposes some new discrete-time risk models, where the Poisson INMA(1) process
and Poisson INAR(1) process are used to describe the dependence structures among the
numbers of claims. That is to say, the claim number process {Nt, t = 1, 2, · · · } satisfies

Nt = α ◦ Nt−1 + εt, t = 2, 3, · · · ,

or
Nt = β ◦ ηt−1 + ηt, t = 1, 2, · · · .

On the other hand, both of the above two types of risk models suppose that the
premiums are collected with positive deterministic constant rate c, which is also lacks the
ability of describing the real situation of insurance portfolio. As an alternative to this case,
ref. [18] proposes the risk model with stochastic premiums that can be expressed as

Ut = Ut−1 + Pt − Lt, t = 1, 2, · · · , (A3)

where Lt is defined by (A2), and Pt aggregates the premiums in period t that is defined as

Pt =
Mt

∑
k=1

Xt,k, (A4)

in which Mt counts the number of individual income, and Xt,k represents the amount of
the kth premium income for the insurance portfolio in period t.

In the risk model (A3), it should be noted that both the premium number process
{Mt, t = 1, 2, · · · } and the claim number process {Nt, t = 1, 2, · · · } are supposed to be
sequences of i.i.d. random variables. Therefore, the goal of this paper is to introduce
the idea of [11] into the risk model with stochastic premiums by using time series for
count random variables to fit the temporal dependence among {Mt, t = 1, 2, · · · } and
{Nt, t = 1, 2, · · · }, respectively. Furthermore, considering some insurance practices (please
see Remarks 2 and 3), we assume that {Mt, t = 1, 2, · · · } constitutes a Poisson INAR(1)
process that satisfies

Mt = α ◦Mt−1 + εt, t = 2, 3, · · · ,

and {Nt, t = 1, 2, · · · } constitutes a Poisson INMA(1) process that satisfies

Nt = β ◦ ηt−1 + ηt, t = 1, 2, · · · .

Our proposed risk model can also be generalized in several aspects to make itself more
flexible and applicable, as discussed in the Conclusions.
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