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Abstract: In recent years, with the frequency of marine disasters, water quality has become an
important environmental problem for researchers, and much effort has been put into the prediction of
marine water quality. The temporal and spatial correlation of marine water quality parameters directly
determines whether the marine time-series data prediction task can be completed efficiently. However,
existing research has only focused on the correlation analysis of marine data in a certain area and has
ignored the temporal and spatial characteristics of marine data in complex and changeable marine
environments. Therefore, we constructed a spatio-temporal dynamic analysis model of marine water
quality based on a cross-recurrence plot (CRP) and cross-recurrence quantitative analysis (CRQA).
The time-series data of marine water quality were first mapped to high-dimensional space through
phase space reconstruction, and then the dynamic relationship among various factors affecting water
quality was visually displayed through CRP. Finally, their correlation was quantitatively explained by
CRQA. The experimental results showed that our scheme demonstrated well the dynamic correlation
of various factors affecting water quality in different locations, providing important data support for
the spatio-temporal prediction of marine water quality.

Keywords: marine water quality; CRP; CRQA; dynamic correlation; spatio-temporal analysis

1. Introduction

With the acceleration of industrialization, the discharge load of industrial, agricultural,
and domestic sewage in coastal areas has increased, and the deterioration of marine water
quality has worsened year by year. Red tide disasters and the eutrophication of water
bodies occur frequently. The quality of marine water is not only important for the economy,
but it also affects human life. Therefore, the analysis of marine water quality has become a
hot topic for researchers in recent years. Industrialization, mining, pollution, and natural
disasters affect water quality. They introduce or change various parameters of water, thus
affecting whether water is suitable for human consumption or general use [1].

Because of the important role of the marine environment in social development, marine
data analysis has always been a hot topic. Water quality is affected by many factors, such as
meteorology, chemistry, and human activities, which leads to the nonlinearity, randomness,
and delay of water quality parameters. Statistical learning and other methods are widely
used in the analysis and modeling of marine data. Jiang et al. [2] used the parallel FP-
growth algorithm to analyze the oxygen, temperature, phosphates, nitrates, and silicates in
the ocean. Meanwhile, based on association rules, they analyzed the correlation between
different data. Erni-Cassola et al. [3] used the meta-analysis method to detect increased
marine plastic debris in the sea surface and explored the separation degree of plastic debris
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in the water according to the density of microplastic polymers, so as to further determine
whether the plastic debris sank under the sea. Lemenkova [4] used a statistical database
embedded in Python for data analysis to study the interaction between environmental
factors affecting the seafloor geomorphology of the Mariana Trench, established a geospatial
data model, and studied the inhomogeneity of the seafloor structure. Deng et al. [5] put
forward a water quality analysis framework based on the time-series data-mining method,
determined the relationship between water quality in the main stream and tributaries of the
Yangtze River and the variation rule of dissolved oxygen, and effectively mined valuable
knowledge from historical time-series data of water quality. However, the above research
methods did not pay attention to the changes in the data across time and space, ignoring
the effects brought about by cross-regional factors. Additionally, they lacked an analysis of
the internal dynamic characteristics and spatial characteristics of the data. It is necessary to
accurately analyze the non-stationarity and spatial heterogeneity of marine data.

A CRP can mine the correlation characteristics of time-series data in space-time,
process nonlinear and non-stationary high-dimensional data, and realize the visualization
analysis of marine data information. A CRP detects the correlation between signals by
mapping two signals to the same phase space. The details of dynamic changes between
two signals can be intuitively explained by the classical structure of points, diagonals,
and rectangles. In addition, the traditional analysis method of a CRP is CRQA, which
describes the CRP of signals in different states through nonlinear characteristic quantities
such as the recurrence rate, certainty rate, recurrence entropy, and stratification rate. Both
have excellent applications in disease diagnosis, industrial fault identification, financial
market analysis, intelligent oceans, and many other fields. Kanakambaran et al. [6] used
a CRP to analyze signals captured by fiber sensors in order to improve the accuracy of
partial discharge detection and localization. González et al. [7] used a CRP and CRQA to
analyze systolic blood pressure and inter-beat intervals in healthy persons and nephrotic
patients. Wang et al. [8] applied a CRP and CRQA to the time recording of current and
voltage fluctuations in electrochemical noise analysis to identify dynamic characteristics
and achieve efficient detection results. Li et al. [9] demonstrated the dependent behavior
of chlorophyll a with various marine factors using a CRP and CRQA and quantified their
dynamic similarity using recurrence analysis. Currently, the use of CRPs and CRQA in the
marine field mainly focuses on a single area and lacks the exploration of the spatio-temporal
dynamic characteristics of marine data. In view of the advantages of CRPs and CRQA in
many fields and in the analysis of marine environmental data, in this study, we used them
to analyze the dynamic correlation of marine water quality in time and space.

In order to solve the problem that marine water quality data analysis mainly focuses on
a single region and ignores the spatio-temporal impact across regions, this paper proposes
a spatio-temporal dynamic analysis model of marine water quality data based on CRPs
and CRQA. Due to the complex and changeable characteristics of the marine environment,
various data not only interact with each other, but also interact with factors in different
locations. Considering the influence of time and space, the accurate analysis of marine data
is the key premise for water quality prediction. Therefore, we selected eight major factors
from three stations to analyze the dynamic correlation among different stations. Specifically,
the scheme consisted of phase space reconstruction (PSR), spatio-temporal dynamic CRP
analysis, and CRQA quantification. Firstly, a marine factor of one station and influencing
factors of the other two stations were mapped to the same phase space, and then their
dynamic correlation was displayed through a CRP. Some key indicators of CRQA are used
to evaluate the correlation of multiple marine water quality parameters. In particular,
mutual information entropy can be used to measure the dependence between two discrete
variables, so mutual information entropy is commonly used as an index to evaluate the
correlation degree of marine factors. Finally, we could screen out the key factors affecting
water quality. The results indicated that the scheme proved the interaction between marine
data of different stations and effectively selected important factors, providing data support



Entropy 2023, 25, 689 3 of 14

for the input of future marine prediction models. The key contributions of this work can be
summarized as follows.

• This was the first attempt to use CRPs and CRQA to study the dynamic association
between water quality factors at different stations, as well as to analyze the factors in
time and space.

• The water quality time-series data were converted to high-dimensional phase space
through phase space reconstruction. After the reconstruction parameters were deter-
mined, the dynamic correlation relationship between the water quality data of different
stations was displayed through a CRP, and the correlation degree was quantitatively
described by CRQA and mutual information entropy.

• The spatial correlation of different influencing factors of water quality was confirmed,
providing more reliable data support for the input of marine prediction tasks.

Specifically, the framework of the model is shown in Figure 1.

Figure 1. Marine water quality spatio−temporal analysis framework based on CRPs and CRQA.

The rest of this paper is structured as follows. Section 2 summarizes some relevant
concepts in the correlation analysis of water quality factors. In Section 3, the experimental
results from the CRP and CRQA investigation of the dynamic correlation between water
quality factors at different stations are presented, and the correlation between the main
water quality factors is discussed and explained. Finally, Section 4 provides conclusions
and prospective research directions.

2. Materials and Methods

Herein, a new spatio-temporal recurrence analysis model for the influencing factors of
marine water quality is introduced in detail. Firstly, the model is summarized, and then
the main components of the model are introduced, including PSR, CRP, and CRQA.

2.1. Overview

In order to find the factors affecting the dynamic correlation of marine water quality
in time and space and determine the main influencing factors of the quality of the water,
we set up an analysis model based on CRPs and CRQA. According to the investigation and
analysis, we selected eight kinds of water-quality-influencing factors from three stations



Entropy 2023, 25, 689 4 of 14

to analyze the spatio-temporal correlation between them. Specifically, our model consisted
of the following three parts: PSR, CRP analysis, and CRQA quantification.

Taking pH as an example, firstly, the pH of the center station and the water-quality-
influencing factors of the other three stations were mapped to the same phase space to
calculate the reconstruction parameters. Secondly, the cross-recurrence matrix of the time
series of the pH and another water quality factor was obtained through a CRP. Finally, some
CRQA indicators were used to quantify the influence degree of each water quality factor
on the pH. Based on the above experimental results, the temporal and spatial correlation
between water quality factors was analyzed.

2.2. PSR Conversion

For chaotic time-series analysis, it is necessary to reconstruct the phase space formed by
these sequence changes to explore the temporal dynamics of the system [10]. PSR can trans-
form a one-dimensional time series to high-dimensional phase space. The reconstructed
marine water quality time series could exhibit more nonlinear dynamic characteristics while
preserving the continuity of the original series. PSR was considered as a prerequisite for
CRPs in the task of the spatio-temporal correlation analysis of marine water quality factor
data. Its purpose was to project the corresponding marine series into the high-dimensional
phase space to obtain chaotic attractors. For the one-dimensional water quality time series
w(t)= w1, w2, . . . , wi with a length of i, the reconstructed n-dimensional phase space could
be expressed as follows:

w =


w1
w2
...

wN

 =


w1+t w1+2t · · · w1+(n−1)t
w2+t w2+2t · · · w2+(n−1)t

...
...

...
...

wN+t wN+2t · · · wN+(n−1)t

 (1)

where N = i + (n − 1)t, t represents the delay time, and n represents the embedding
dimension. In our paper, the mutual information method was considered to select the
appropriate delay time, and the false nearest neighbors was used to select the suitable
embedding dimension [11,12]. Note that unified reconstruction parameters should be
selected so that two marine series can be reconstructed into the same phase space. A higher
embedding dimension n and smaller delay time t were chosen in our scheme.

2.3. CRP Visualization

PSR is the first step in analyzing time series using a CRP [13]. After PSR, a CRP was
used to detect the dynamic information of two marine water quality time series in the
same phase space, and the data were visualized by two-dimensional graphics. The CRP
was determined by a cross-recurrence matrix. For two reconstruction variables~a and~b,
the matrix is defined as follows:

CR
~ai ·~bj
i,j (ε) = Θ

(
ε−

∥∥∥~ai −~bj

∥∥∥), i = 1 . . . N, j = 1 . . . M (2)

Θ(e) =
{

1, e ≥ 0
0, e < 0

(3)

where N and M denote the length of~ai and~bj, respectively; ε is the threshold that is 0.6%
of the maximum phase space diameter [11]; and Θ(•) represents the Heaviside function.

CRi,j is a two-dimensional matrix containing 1 and 0. When the distance between two
sequences in the same phase space is less than ε, CRi,j is 1 and represented as a black point
in the CRP; otherwise, CRi,j is 0 and represented as a white point in the CRP. Matching
black and white dots with 1 and 0 were used to visualize similar behavior between two
time series.



Entropy 2023, 25, 689 5 of 14

2.4. CRQA Quantification

In the analysis of marine time-series data, we used CRQA to quantify the frequency of
similar changes between the time series of two water quality factors and then confirmed
the dynamic spatial correlation of the time series of different water quality factors. CRQA
indexes include mean diagonal line length (MDL), determinism (DET), laminarity (LAM),
and recurrence rate (RR) [14–18].

RR, a metric for the density of recurrence points, exposes the probability that the
time series of water quality factors remain similar under a certain delay. A high RR value
indicates a high probability of similar states between both time series. It is determined by

RR(ε) =
1

N2

N

∑
i,j=1

CRi,j(ε) (4)

DET represents the ratio of diagonal structures. Usually, a high DET implies a de-
terministic process, while a low DET suggests a random process. In our case, it could
evaluate the regularity and predictability of the interaction between two marine time series,
expressed by

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

(5)

where lmin is set to 2 [19], and P(l) denotes the histogram of diagonals, defined as

P(l) =
N

∑
i,j=1

(
1− CRi−1,j−1

)(
1− CRi+l,j+l

)
×

l−1

∏
k=0

CRi+k,j+k

(6)

LAM is the percentage of recurrence points comprising vertical structures. It hints at
the steady states between two marine water quality time series, calculated as follows:

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

(7)

where vmin is set to 2, and P(v) denotes the histogram of verticals, given by

P(v) =
N

∑
i,j=1

(
1− CRi−1,j−1

)(
1− CRi,j+v

)
×

v−1

∏
k=0

CRi,j+k

(8)

MDL refers to the mean length of diagonal lines, and its value is the average time
for which the time series of the marine water quality factors in the two groups are similar,
given by

MDL =
∑N

l=lmin
lP(l)

∑N
l=lmin

P(l)
(9)

2.5. Mutual Information Entropy

Information entropy is a measure of the uncertainty of random variable X in statistics.
The higher the uncertainty of X, the greater the entropy. For a discrete random variable X,
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its probability distribution is consistent with p(x) = P(X = x) , where x ∈ X. Information
entropy is defined as follows:

H(X) = − ∑
x∈X

p(x) log p(x) (10)

For two discrete random variables X and Y, the joint distribution probability is p(X, Y),
and the marginal distribution probability is p(X), p(Y), where x ∈ X and y ∈ Y. Then,
according to the definition of information entropy, the joint distribution entropy is

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (11)

Mutual information entropy is used to measure the degree to which one random
variable X reduces the uncertainty of another random variable Y. The mutual information
entropy between X and Y can be defined as

I(X; Y) = H(X) + H(Y)−H(X, Y) (12)

3. Results

In this section, we present a thorough experimental evaluation of marine water quality
within the framework of CRPs and CRQA. Firstly, we introduce the sources of the marine
water quality data used in this study, followed by the determination of the PSR parameters.
Secondly, a CRP was used to visualize the spatio-temporal characteristics of the marine
water quality parameters at the three stations. Finally, some key CRQA indicators and
mutual information entropy were used to quantify the degree of the temporal and spatial
correlation of these parameters. We also explain the importance of the above research work
for future marine water quality prediction tasks.

3.1. Datasets

The data used in this experiment came from a region in the Bohai Sea of China, and the
data were collected by land-based stations and ocean buoys. A total of 4320 samples were
collected from 22 July to 20 October 2021, with an interval of 30 min. After consulting the
data, eight factors affecting the marine water quality were selected, including dissolved
oxygen (Do), chlorophyll a (Chl), turbidity (Turb), blue-green algae (Bga), total dissolved
solids (Tds), dissolved oxygen saturation (DoP), water temperature (Temp), and pH [20–25].
In order to explore the spatio-temporal characteristics of the marine water quality factors,
the water quality factors were gathered from three adjacent stations. The locations and
distances are shown in Figure 2. Specially, due to the large number of parameters calculated,
the following example uses pH as the key indicator of marine water quality in order to
illustrate the experimental process.
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Figure 2. Geographical location of the three marine monitoring stations.

3.2. Parameter Determination

Before CRP was used for the dynamic correlation analysis of the marine water water
quality data, one-dimensional time-series data of water quality had to be mapped to high-
dimensional space, which was achieved through PSR. The delay time and embedding
dimension had to be calculated. Taking pH as an example, the dynamic correlation between
other water quality factors and the pH value was analyzed. Tables 1 and 2, respectively,
show the embedding dimension and delay time of each water quality factor in the three
stations. Table 3 shows the optimal matching of PSR parameters when pH and other
water quality time series were reconstructed into the same high-dimensional space. A
larger embedding dimension and a smaller delay time were generally considered the
best matches.

Table 1. Determination of embedding dimension of water quality sequences at the three stations.

Station Do Chl Turb Bga Tds DoP Temp pH

ST1 5 8 6 5 6 5 5 6
ST2 4 9 8 8 7 6 5 6
ST3 4 7 15 17 7 5 6 5

Table 2. Determination of delay time of water quality sequences at the three stations.

Station Do Chl Turb Bga Tds DoP Temp pH

ST1 18 28 42 22 19 14 14 9
ST2 22 18 22 22 35 15 15 18
ST3 13 15 24 24 20 21 26 18

Table 3. Taking pH as an example, the best-match results of embedding dimension/delay time.

Station Do Chl Turb Bga Tds DoP Temp pH

ST1 6/9 8/9 6/9 6/9 6/9 6/9 6/9 6/9
ST2 6/9 9/9 8/9 8/9 7/9 6/9 6/9 6/9
ST3 6/9 7/9 15/9 17/9 7/9 6/9 6/9 6/9

3.3. Spatio-Temporal Visualization and Results

A CRP contains many classical structures to analyze the correlation of series, including
recurrence points, diagonal lines, and vertical/horizontal diagonal distribution. Figures 3–5
show the correlation between the pH at ST1 and the other water quality factors at ST1, ST2,
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and ST3. Taking pH as an example, we qualitatively determined the correlation between
the water quality time-series data of the three stations and the pH of the central station, as
shown in the figures below.

Figure 3 shows the correlation analysis between the pH and the other factors of the
central station (ST1). It can be seen from the black recurrence points, rectangular structures,
vertical horizontal lines, and other CRP structures in Figure 3 that all factors had a certain
degree of correlation with the pH. Specifically, there are significantly more CRP structures
in Figure 3d and Figure 3e,g than in Figure 3b,c. This indicates that the similarity of the
recurrence behavior between Bga, Tds, and Temp and pH was stronger than that for Chl
and Turb in ST1. The latter had a weak correlation with pH.

Figures 4 and 5 show the analysis results of the temporal and spatial correlation
between the water quality factors at ST2 and ST3 and the pH at the central station (ST1),
respectively. It can be clearly seen that the factors in Figures 4 and 5 also had similar charac-
teristics to those in Figure 3. Specifically, there are a large number of rectangular structures
in Figures 4e and 5e, and there are many horizontal line segments in Figures 4g and 5g.
Nevertheless, in Figures 4b and 5b, there are few black recurrence points and large areas
of blank space. This reflects a more synchronized state between the Tds and Temp at
ST2 and ST3 and the pH at the central station. The pH and Chl at ST1 did not present
obvious behavioral similarities. The above visualization results were consistent with those
shown in Figure 3. By analyzing the recurrence behavior of factors among multiple stations,
the temporal and spatial dynamic correlation characteristics of the marine water quality
factors were verified.

(a) Do

0 2160 4320
Chla series

0

2160

4320

pH
 s

er
ie

s

(b) Chl (c) Turb (d) Bga

(e) Tds (f) DoP (g) Temp

Figure 3. CRP visualization of correlation between marine factors and pH at ST1 station.
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Chla series
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(b) Chl (c) Turb (d) Bga

(e) Tds (f) DoP (g) Temp

Figure 4. CRP visualization of correlation between marine factors at ST2 station and pH at ST1 station.

(a) Do (b) Chl (c) Turb (d) Bga

(e) Tds (f) DoP (g) Temp

Figure 5. CRP visualization of correlation between marine factors at ST3 station and pH at ST1 station.

3.4. CRQA Analysis

As a quantitative analysis method of CRPs, CRQA includes several indicators to
measure the influence degree of factors including RR, DET, MDL, LAM. In this study,
we analyzed the influence degree of water quality factors through these four indicators
and quantitatively evaluated the correlation of water quality factors by integrating the four
indicators. Table 4 shows the quantification results of the four CRQA indexes for the corre-
lation between seven water quality factors at three stations and pH at the central station.

RR indicates the probability that two water quality sequences had similar states. In the
central station ST1, the RR value of Tds was 0.0727, which was significantly higher than
that of the other water quality factors, indicating more similar recurrence states between the
Tds and pH series. The RR value of Chl was only 0.0114, indicating a very weak correlation
between the CHL and pH sequences. We also reached the same conclusion for the ST2 and
ST3 stations, which indicated that the Tds at the ST2, ST3, and ST1 stations had a highly
similar impact on the pH of the ST1 station. Similarly, Chl had the lowest RR values among
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the three stations, indicating that there was no obvious correlation between Chl and pH
when analyzing the impact of a single station or multiple stations.

As an important measure of the similarity of two time series, MDL reveals the average
duration of similar states in the phase space of two time series. The values of Tds were
6.5991, 8.8260, and 7.0533, and the values of Temp were 9.0706, 7.3402, and 8.5231. These
were still higher than the values for other water quality factors. The Chl MDL values were
3.4141, 3.6056, and 3.5846, representing the worst performance.

DET characterizes the determinacy of two sequences by calculating the ratio of the
diagonal lines in the CRP. When two deterministic processes have similar phase space
states, the corresponding DET value is larger. At the three stations, the values of Tds
were 0.9355, 0.9513, and 0.9387, and the values of Temp were 0.9562, 0.9582, and 0.9531,
respectively. The DET values of the two were significantly higher than those of the other
factors, indicating that their states were more similar to the phase space of the pH sequence,
while the findings for Chl were the opposite.

LAM represents the synchrony between sequences by quantifying the vertical/
horizontal structures. From Table 4, it can be seen that the Tds and Temp values were the
largest, while the Chl value was the smallest. This implied that Tds and Temp were more
in sync with the pH sequences, and Chl was almost out of sync with pH.

Table 4. CRQA quantification results of associations between seven factors from three stations and
pH at the central station.

Station CRQA Do Chl Turb Bga Tds DoP Temp pH

ST1

MDL 5.2637 3.4141 5.2753 4.7075 6.5991 5.6745 9.0706 5.5753

RR 0.0411 0.0114 0.0570 0.0386 0.0727 0.0452 0.0452 0.0602

DET 0.8994 0.7758 0.8859 0.8684 0.9355 0.9063 0.9562 0.8940

LAM 0.9281 0.8402 0.9087 0.9097 0.9446 0.9234 0.9574 0.9384

ST2

MDL 7.6584 3.6056 4.1526 3.9768 8.8260 0.7376 7.3402 9.1455

RR 0.0848 0.0093 0.0339 0.0194 0.1029 0.0590 0.1082 0.1635

DET 0.9398 0.7600 0.8166 0.8312 0.9513 0.9333 0.9582 0.9745

LAM 0.9443 0.8580 0.8896 0.8874 0.9538 0.9417 0.9589 0.9866

ST3

MDL 4.7679 3.5846 5.8109 6.1439 7.0533 6.6590 8.5231 5.2118

RR 0.0330 0.0218 0.0566 0.0317 0.0698 0.0401 0.1120 0.0456

DET 0.8826 0.8180 0.8617 0.9069 0.9387 0.9222 0.9531 0.9236

LAM 0.8992 0.8701 0.9225 0.9310 0.9501 0.9331 0.9553 0.9591

3.5. Quantitative Analysis

In Section 3.4, we found that under the four indexes, the water quality factors did not
have exactly the same degree of influence on pH. For example, at ST2, the value of Turb
was higher than that of Bga considering the influence of MDL, but the opposite was true at
ST3. For LAM, the Do and DoP values also presented the same performance across stations.
A single index cannot measure the effect of several water quality factors on another factor.
Therefore, we added the value of mutual information entropy, normalized it with the four
CRQA indexes, calculated the geometric mean value, and comprehensively measured the
behavioral similarity among the water quality factors. By introducing mutual information
entropy, the correlation between the data could be mined from the perspective of recurrence
analysis and information theory, which made the scheme more convincing.
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Figure 6 shows the comprehensive evaluation results of CRQA and mutual information
entropy for the spatio-temporal correlation characteristics of the marine factors. The figure
in the heat map is the combined value of the correlation between the two factors, ranging
from 0 to 1. The larger the value, the stronger the temporal and spatial correlation between
the two factors. At the same time, the colors reflect the degree of correlation along with
the values. The darker the color, the stronger the relationship between the two factors.
Taking Figure 6h as an example, considering their impact on the pH of the central station,
the top four factors at ST1 were Temp, Tds, DoP, and Turb. At ST2, they were Temp, Tds,
Do, DoP. At ST3, they were Temp, Tds, DoP, and Turb. In the case of interference by
various factors, we could assume that the high-correlation factors of the three stations were
basically the same. In the pH prediction task, we could select the water quality factors
of the target station and the high-association factor data of the adjacent stations as the
input. High-correlation factors for other water quality factors can also be found in Figure 6.
In marine water quality multi-task prediction, one can conduct a comprehensive evaluation
of water quality by predicting various factors affecting water quality at the same time, so
that the prediction results are more convincing. In addition, the CRQA comprehensive
measurement values corresponding to the marine water quality factors in Figure 6 are
presented in Table A1.

Furthermore, in order to verify the scheme for multiple data lengths, we chose 2000
and 3000 pieces of data to draw a comparison with the analysis results of the total 4320
pieces of data. Figure 7 shows the correlation between the pH sequences for the three data
lengths and other factors. As can be seen from the values and color shades in this figure,
in the experiments with data lengths of 2000 and 3000, the correlation between the pH
sequence and Tds and Temp was still large, while that for Chl was small. This was almost
consistent with the results for 4320 pieces of data.

(a) Do (b) Chl (c) Turb (d) Bga

(e) Tds (f) DoP (g) Temp (h) pH

Figure 6. CRQA indicators and mutual information entropy comprehensive measurement results of
the associations among marine factors.
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(a) 2000 (b) 3000 (c) 4320

Figure 7. Comprehensive measurement results of correlation between pH sequences and other factors
for different data lengths.

4. Conclusions

In this paper, we developed a spatio-temporal analysis model of marine water quality
data based on CRPs and CRQA. Furthermore, mutual information entropy was introduced
as one of the evaluation indexes. In contrast to single-station analysis, this model could
analyze the spatio-temporal dynamic characteristics of water quality factors at multiple
stations. Accordingly, we could obtain better prior data as the input for subsequent marine
water quality forecasting tasks. Through spatio-temporal analysis, it could be concluded
that certain variation factors of the target station were largely affected by other factors at
adjacent stations. In future marine water quality multi-tasking prediction work, we will
give full consideration to the effects of other stations and consider comprehensive data
changes caused by many factors, so as to improve the accuracy of prediction and provide a
more novel research scheme for marine prediction work.
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Appendix A

Table A1. CRQA indicators and mutual information entropy comprehensive measurement results of
the associations among 8 factors from 3 stations, in contrast to the central station factors.

Station Contrast
(from ST1) Do Chl Turb Bga Tds DoP Temp pH

ST1

pH 0.4926 0.1556 0.4348 0.4396 0.6524 0.6376 0.9546 0.1688

Temp 0.3273 0.4005 0.6604 0.4458 0.7331 0.4777 0.9510 0.3334

DoP 0.3380 0.5084 0.7046 0.5643 0.3453 0.4731 0.7425 0.1678

Tds 0.3555 0.2680 0.4942 0.3834 0.4703 0.4408 0.9915 0.4128

Bga 0.3133 0.5731 0.6329 0.4096 0.3461 0.5479 0.5989 0.1470

Turb 0.3581 0.5041 0.6588 0.5000 0.4146 0.6523 0.7975 0.1536

Chl 0.3256 0.3536 0.6343 0.6855 0.3435 0.5921 0.6374 0.1269

Do 0.2996 0.3534 0.5657 0.5580 0.5429 0.6927 0.9684 0.4373

ST2

Ph 0.7023 0.1466 0.3088 0.3071 0.8522 0.6880 0.9661 0.3852

Temp 0.6369 0.2865 0.4642 0.3107 0.8051 0.4656 0.9120 0.6564

DoP 0.6194 0.4081 0.3652 0.3205 0.4824 0.3296 0.7744 0.3503

Tds 0.5547 0.2150 0.3064 0.2659 0.4849 0.5318 0.9745 0.5902

Bga 0.4667 0.3378 0.4273 0.1976 0.4032 0.3696 0.5858 0.3931

Turb 0.6189 0.4773 0.3026 0.4256 0.5838 0.5106 0.8120 0.4762

Chl 0.3996 0.2243 0.5099 0.4696 0.4405 0.3768 0.6296 0.3444

Do 0.4799 0.1486 0.3901 0.2845 0.7852 0.6560 0.9962 0.7455

ST3

Ph 0.4373 0.2281 0.3979 0.4112 0.6905 0.5628 0.9225 0.2228

Temp 0.6400 0.5067 0.2518 0.2504 0.7099 0.4439 0.7983 0.3234

DoP 0.7424 0.5993 0.5131 0.2627 0.3043 0.2690 0.3572 0.2721

Tds 0.5074 0.4352 0.2022 0.1011 0.3837 0.4141 0.8927 0.3107

Bga 0.6131 0.4974 0.4845 0.2732 0.1623 0.3469 0.3840 0.2728

Turb 0.7233 0.7186 0.5131 0.4202 0.2569 0.3959 0.6505 0.2956

Chl 0.6179 0.3711 0.5648 0.3952 0.2800 0.3509 0.3155 0.2369

Do 0.4511 0.5302 0.1936 0.1698 0.4503 0.5844 0.8139 0.3917
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5. Deng, W.; Wang, G. A novel water quality data analysis framework based on time-series data mining. J. Environ. Manag. 2017,

196, 365–375. [CrossRef]
6. Kanakambaran, S.; Sarathi, R.; Srinivasan, B. Identification and localization of partial discharge in transformer insulation adopting

cross recurrence plot analysis of acoustic signals detected using fiber bragg gratings. IEEE Trans. Dielectr. Electr. Insul. 2017, 24,
1773–1780. [CrossRef]

7. González, G.H.; Infante, O.; Martínez-García, P.; Pérez-Grovas, H.; Saavedra, N.; Caviedes, A.; Becerra, B.; Lerma, C. Dynamical
interaction between heart rate and blood pressure of end-stage renal disease patients evaluated by cross recurrence plot diagonal
analysis. J. Appl. Physiol. 2020, 128, 189–196. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3172274
http://dx.doi.org/10.1007/s11227-018-2297-6
http://dx.doi.org/10.1016/j.jhazmat.2019.02.067
http://www.ncbi.nlm.nih.gov/pubmed/30826562
https://dergipark.org.tr/en/pub/jader/issue/49634/555979
http://dx.doi.org/10.1016/j.jenvman.2017.03.024
http://dx.doi.org/10.1109/TDEI.2017.006407
http://dx.doi.org/10.1152/japplphysiol.00364.2019


Entropy 2023, 25, 689 14 of 14

8. Liu, W.; Wang, D.; Chen, X.; Wang, C.; Liu, H. Recurrence plot-based dynamic analysis on electrochemical noise of the evolutive
corrosion process. Corros. Sci. 2017, 124, 93–102. [CrossRef]

9. Li, Z.; Cai, D.; Wang, J. Machine learning based dynamic correlation on marine environmental data using cross-recurrence
strategy. IEEE Access 2019, 7, 185121–185130. [CrossRef]

10. Shuai, H.; Wang, S.; Liu, Q. Phase space reconstruction driven spatio-temporal feature learning for dynamic facial expression
recognition. IEEE Trans. Affect. Comput. 2020, 13, 1466–1476. [CrossRef]

11. Li, Y.; Cai, D.; Wang, J.; Sun, X.; Li, Z.; Zhang, H.; Wang, N. Recurrence behavior statistics of blast furnace gas sensor data in
industrial internet of things. IEEE Internet Things J. 2020, 7, 5666–5676. [CrossRef]

12. Xu, Z.; Zhong, L.; Zhang, A. Phase space reconstruction-based conceptor network for time series prediction. IEEE Access 2019, 7,
163172–163179. [CrossRef]

13. Fan, G.F.; Peng, L.L.; Hong, W.C. Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel
regression model. Appl. Energy 2018, 224, 13–33. [CrossRef]

14. Coco, M.I.; Mønster, D.; Leonardi, G. Unidimensional and multidimensional methods for recurrence quantification analysis with
CRQA. arXiv 2020, arXiv:2006.01954. [CrossRef]

15. Yan, B.; Chan, P.W.; Li, Q. Dynamic analysis of meteorological time series in Hong Kong: A nonlinear perspective. Int. J. Climatol.
2021, 41, 4920–4932. [CrossRef]

16. Mukherjee, S.; Ray, R.; Samanta, R. Nonlinearity and chaos in wireless network traffic. Chaos Solitons Fractals 2017, 96, 23–29.
[CrossRef]

17. Amiri, A.; Samet, H.; Ghanbari, T. Recurrence plots based method for detecting series arc faults in photovoltaic systems. IEEE
Trans. Ind. Electron. 2021, 69, 6308–6315. [CrossRef]

18. Yang, D.; Ren, W.X.; Hu, Y.D. Selection of optimal threshold to construct recurrence plot for structural operational vibration
measurements. J. Sound Vib. 2015, 349, 361–374. [CrossRef]

19. Martín-González, S.; Navarro-Mesa, J.L.; Juliá-Serdá, G.; Ramírez-Ávila, G.M.; Ravelo-García, A.G. Improving the under-
standing of sleep apnea characterization using recurrence quantification analysis by defining overall acceptable values for the
dimensionality of the system, the delay, and the distance threshold. PLoS ONE 2018, 13, e0194462. [CrossRef]

20. Ashikur, M.; Rupom, R.; Sazzad, M. A remote sensing approach to ascertain spatial and temporal variations of seawater quality
parameters in the coastal area of bay of Bengal, Bangladesh. Remote. Sens. Appl. Soc. Environ. 2021, 23, 100593. [CrossRef]

21. Deswati, D.; Safni, S.; Khairiyah, K.; Yani, E.; Yusuf, Y.; Pardi, H. Biofloc technology: Water quality (ph, temperature, do, cod, bod)
in a flood & drain aquaponic system. Int. J. Environ. Anal. Chem. 2022, 102, 6835–6844. [CrossRef]

22. Elkiran, G.; Nourani, V.; Abba, S. Multi-step ahead modelling of river water quality parameters using ensemble artificial
intelligence-based approach. J. Hydrol. 2019, 577, 123962. [CrossRef]

23. Najafzadeh, M.; Ghaemi, A.; Emamgholizadeh, S. Prediction of water quality parameters using evolutionary computing-based
formulations. Int. J. Environ. Sci. Technol. 2019, 16, 6377–6396. [CrossRef]

24. Xu, Z.; Shen, J.; Qu, Y.; Chen, H.; Zhou, X.; Hong, H.; Sun, H.; Lin, H.; Deng, W.; Wu, F. Using simple and easy water quality
parameters to predict trihalomethane occurrence in tap water. Chemosphere 2022, 286, 131586. [CrossRef] [PubMed]

25. Susanti, N.D.; Sagita, D.; Apriyanto, I.F.; Anggara, C.E.W.; Darmajana, D.A.; Rahayuningtyas, A. Design and implementation of
water quality monitoring system (temperature, ph, tds) in aquaculture using iot at low cost. In Proceedings of the 6th International
Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021), Tangerang, Indonesia, 4–5 August 2021; pp. 7–11.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.corsci.2017.05.012
http://dx.doi.org/10.1109/ACCESS.2019.2960764
https://ieeexplore.ieee.org/abstract/document/9134869
http://dx.doi.org/10.1109/JIOT.2020.2980617
http://dx.doi.org/10.1109/ACCESS.2019.2952365
http://dx.doi.org/10.1016/j.apenergy.2018.04.075
https://arxiv.org/abs/2006.01954
http://dx.doi.org/10.1002/joc.7106
http://dx.doi.org/10.1016/j.chaos.2017.01.005
http://dx.doi.org/10.1109/TIE.2021.3095819
http://dx.doi.org/10.1016/j.jsv.2015.03.046
http://dx.doi.org/10.1371/journal.pone.0194462
http://dx.doi.org/10.1016/j.rsase.2021.100593
https://www.tandfonline.com/doi/abs/10.1080/03067319.2020.1817428
http://dx.doi.org/10.1016/j.jhydrol.2019.123962
http://dx.doi.org/10.1007/s13762-018-2049-4
http://dx.doi.org/10.1016/j.chemosphere.2021.131586
http://www.ncbi.nlm.nih.gov/pubmed/34303907
https://www.atlantis-press.com/proceedings/ic-fanres-21/125968101

	Introduction
	Materials and Methods
	Overview
	PSR Conversion
	CRP Visualization
	CRQA Quantification
	Mutual Information Entropy

	Results
	Datasets
	Parameter Determination
	Spatio-Temporal Visualization and Results
	CRQA Analysis
	Quantitative Analysis

	Conclusions
	Appendix A
	References

