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Abstract: In recent years, chaotic synchronization has received a lot of interest in applications in
different fields, including in the design of private and secure communication systems. The purpose of
this paper was to achieve the synchronization of the Méndez–Arellano–Cruz–Martínez (MACM) 3D
chaotic system coupled in star topology. The MACM electronic circuit is used as chaotic nodes in the
communication channels to achieve synchronization in the proposed star network; the corresponding
electrical hardware in the slave stages receives the coupling signal from the master node. In addition, a
novel application to the digital image encryption process is proposed using the coupled-star-network;
and the switching parameter technique is finally used to transmit an image as an encrypted message
from the master node to the slave coupled nodes. Finally, the cryptosystem is submitted to statistical
tests in order to show the effectiveness in multi-user secure image applications.

Keywords: complex network synchronization; star coupled network; MACM; chaotic encryption

1. Introduction

Synchronization has received a lot of interest in applications in different fields [1–4],
and in recent years, chaotic synchronization has received attention in the implementa-
tion of private and secure communication systems [1,5–14]. Confidential information is
encrypted into a transmission using a chaotic signal by direct modulation, masking, or
other techniques [7,11]. Thus, one widely studied chaotic system is that of the Chua circuit
in synchronization and communication applications [15–19]. In optical communication
applications, chaotic synchronization is achieved using a transmitter and a receiver to
extract hidden information from the transmitted signal; some studies have been reported
in [20–27].

Synchronization in complex dynamic networks has direct applications in different
fields, as synchronization is carried out in complex dynamic networks using nodes in
different topologies which are connected and coupled, and displaying chaotic behavior
in their dynamics once synchronization is achieved, as can be seen in e.g., [9,13,28–35].
Additionally, the synchronization of the two-well Duffing equation is reported using two
unidirectionally and bidirectionally coupled piecewise linear maps [36], and the chaotic
behavior of the two-well Duffing equation with forcing is computed using the topological
entropy—studies of the kneading theory are conducted for symmetric unimodal maps and
bimodal maps [37]. Furthermore, the synchronization of complex network spaces has re-
cently been studied in network topologies and explicitly determined in regular ring-lattices
[38], whilst networks of discontinuous piecewise linear maps with different slopes [39] are
characterized by circulating matrices and the conditional Lyapunov exponents.

Star-coupled networks have several applications in the transmission of information
which are implemented using nodes in network coupling, where the master node is the
transmitter and it provides a digital message to multiple receivers as slave nodes, e.g.,
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using electronic and optical circuits [31,40], and the experimental proofs to validate the
chaos existence using optical circuit communications is proposed in [24].

The objective of this work was to obtain network coupling synchronization using
the chaotic MACM circuits in star topology [41]. A single-master circuit with four slave
circuits is proposed using the complex systems theory, and the continuous version of
the proposed network coupling and the simulation of the electronic circuit simulation is
conducted using the Proteus 8 Professional of Labcenter Electronics. The MATLAB tools
were used to transmit encrypted confidential digital messages from a single transmitter
to multiple receivers, and the digital message process is validated using security analysis
such as histograms, correlation analysis, and information entropy.

The organization of the paper is as follows: In Section 2, a brief review on network
synchronization theory is provided. In Section 3, a mathematical model of the MACM
circuit being used like nodes is described. Section 4 shows the mathematical model of
the star coupled network and its synchronization using the MACM circuit, and we show
the physical implementation and experimental results for chaos network synchronization
using MATLAB and analog circuit simulation as communication channels. In Section 5,
we apply the results obtained in the experimental network synchronization to transmit
encrypted information from a transmitter to multiple receivers and the security analysis to
validate the digital image as a message. Finally, the conclusions are given in Section 6.

2. Brief Review on Synchronization of Complex Networks

In this section, a brief review on complex dynamical networks is given, particularly
on star coupling topology and its synchronization.

2.1. Synchronization of Complex Network

We consider a complex network as composed of N identical nodes, which are linearly
and diffusively coupled through the first state of each node. In this network, each node
constitutes an n-dimensional dynamical system, described as follows

ẋi = f(xi) + ui, i = 1, 2, . . . , N, (1)

where xi = (xi1, xi2, . . . , xin)
T ∈ Rn are the state variables of the node i, ui = ui1 ∈ R is

the input signal of the node i, and is defined by

ui1 = k
N

∑
j=1

aijΓxj, i = 1, 2, . . . , N, (2)

the constant k > 0 represents the coupling strength of the complex network, and Γ ∈ Rn×n

is a constant 0–1 matrix linking coupled state variables. For simplicity, assume that Γ =
diag(r1, r2, . . . , rn) is a diagonal matrix with ri = 1 for a particular i and rj = 0 for j 6= i.
This means that two coupled nodes are linked through their i-th state variables. Whereas,
A =

(
aij
)
∈ RN×N is the coupling matrix, which represents the coupling topology of

the complex network. If there is a connection between node i and node j, then aij = 1;
otherwise, aij = 0 for i 6= j. The diagonal elements of the coupling matrix A are defined as

aii = −
N

∑
j=1, j 6=i

aij = −
N

∑
j=1, j 6=i

aji, i = 1, 2, . . . , N. (3)

If the degree of node i is di, then aii = −di, i = 1, 2, . . . , N.
Now, suppose that the complex network is connected without isolated clusters. Then,

A is a symmetric irreducible matrix. In this case, it can be shown that zero is an eigenvalue
of A with a multiplicity of 1 and all the other eigenvalues of A are strictly negative [29,30].
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The synchronization state of nodes in complex systems can be characterized by the
nonzero eigenvalues of A. The complex networks (1) and (2) are said to (asymptotically)
achieve synchronization if [30]:

x1(t) = x2(t) = . . . = xN(t), as t→ ∞. (4)

The diffusive coupling condition (3) guarantees that the synchronization state is a solution,
s(t) ∈ Rn, of an isolated node, that is

ṡ(t) = f(s(t)), (5)

where s(t) can be an equilibrium point, a periodic orbit, or a chaotic attractor. Thus, the stability
of the synchronization state

x1(t) = x2(t) = . . . = xN(t) = s(t), (6)

of complex network (1) and (2) is determined by the dynamics of an isolated node—function
f and solution s(t)—the coupling strength c, the inner linking matrix Γ, and the coupling
matrix A.

2.2. Star Coupled Networks

In this work, we consider complex networks (1) and (2) as composed of coupled chaotic
nodes in star topology. We assume that all the nodes are connected, without self-loops,
and without multiple edges between two nodes. The coupling matrix for star-coupled
master–slave networks is given by

A =


0 0 0 . . . 0
1 −1 0 . . . 0
1 0 −1 . . . 0
...

. . . . . . . . .
...

1 0 0 . . . −1

. (7)

The eigenvalues of A are (0,−1,−1, . . . ,−1). Therefore, the second largest eigenvalue
of A is λ2 = −1, which is unrelated to the size of the network.

2.3. Synchronization Analysis Based on Master Stability Function Approach

We consider a simple complex dynamical network consisting of two coupled chaotic
continuous-time nonlinear oscillators (1) in a master–slave configuration. The well-known
master stability function approach [2] is the stability analysis used for studying the syn-
chronous solution in (1). The generic variational equation governing the behavior around
the synchronous solution is

ξ̇q =
[
Df(s) + ζqΓ

]
ξq (8)

where Df is the local Jacobian of the vector function f evaluated on a (bounded) trajectory
s, in this case of the master system, q = 0, 1, 2, . . . , N − 1 with ζq being an eigenvalue of
the coupling matrix A, with ζ0 = 0. We calculated the maximum Floquet or Lyapunov ex-
ponents λmax for the generic variational Equation (8) as a function of the coupling strengths
k, where the synchronous state for λmax > 0 is unstable if λmax < 0 the synchronous state
is stable. For the computational calculation of the λmax, we use the programming software
Matlab with initial conditions s(0) = [1.2, 1, 1]T .

3. MACM Circuit like Node

In this section, we describe the MACM electronic circuit used as a node to construct
the network in the star topology. The objective of this paper was to achieve experimental
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synchronization in this network using OAs like communication channels [41]. The MACM
chaotic system is described as follows

ẋ
ẏ
ż

=
=
=

−ax− byz,
−x + cy,
d− y2 − z.

(9)

MACM’s circuit consists of two no. linear multipliers, it has seven terms and four
parameters a, b, c, and d, ∈ R+, where b and d are characterized as the bifurcation parameters
a = 2, b = 2, c = 0.5, and d = 4.

The electronic implementation of the MACM system is given by the following elec-
tronic circuit representation:

ẋ
ẏ
ż

=
=
=

1
RC1 (−

R
R1 x− R

10R2 yz),
1

RC2 (−x + R
R6 y),

1
RC3 (

R
R9 d− R

10R10 y2 − z).
(10)

From the system (10), the electronic components are OAs TL084 U2, U3, analog-
multipliers AD633 U1, U4, capacitors C1 = C2 = C3 = 10 nF, and the resistors R1 = 500 kΩ,
R2 = 47 kΩ, R3 = R4 = R7 = R8 = R12 = R13 = 10 kΩ, R = R5 = R9 = R11 = 1 MΩ, R6 = 2 MΩ,
and R10 = 94 kΩ. The bifurcation parameter d was fixed in Vd = +3.8 V, the circuit is powered
with +Vcc = +18 V and −Vcc = −18 V. Evaluating the proposed electrical components in the
system (10), the set of parameters of system (9) are conducted using a = R

R1 = 2, b = R
10R2 =

2.127, c = R
R6 = 0.5, and d = R

R9 = 1.
Figure 1 shows the electronic circuit of the MACM system (10), and its circuit simulation

is conducted using the Proteus 8 Professional from Labcenter Electronics [42]. Figure 2
shows temporary trajectories and the phase-planes of the system (10).

d

-x11

-z11

y11

y11

-x11

-z11

-y11

y11

-z11

-x11

-y11 y11

z11

x11

3

2
1

4
11

U3 A

TL084

3

2
1

4
11

U3 B

TL084

R12
10K

R13

10K

R10
94K

R11

1M

R9

1M

3

2
1

4
11

U2 C

TL084

3

2
1

4
11

U2 D

TL084

R7
10K

R8

10K

R6

2M

R5

1M

3

2
1

4
11

U2 A

TL084

3

2
1

4
11

U2 B

TL084

R3
10K

R2
47K

R1

500K

X11

X22

Y13

Y24

VS+ 8

W 7

Z 6

VS- 5

U1

AD633

X11

X22

Y13

Y24

VS+ 8

W 7

Z 6

VS- 5

U4

AD633

R4

10K

C1

0.01u

C2

0.01u

C3

0.01u

+18

-18

+18

-18

+18 -18

+18

-18

+18

-18

+18+18

+18 -18

-18-18

+3.8

x(t)

y(t)

z(t)

Figure 1. Electronic circuit of the MACM’s system (10).
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State x(t)

5.00 V/Div

State y(t)

2.00 V/Div

State z(t)

2.00 V/Div

Time

50.00 ms/Div

0

State x(t)

2.00 V/Div

State y(t)

1.00 V/Div

Time

20.00 ms/Div

(a) (b)

State x(t)

2.00 V

State z(t)

1.00 V/Div

Time

20.00 ms/Div

State y(t)

1.00 V/Div

State z(t)

1.00 V/Div

Time

20.00 ms/Div

(c) (d)

Figure 2. Electronic circuit simulation of the chaotic 3D MACM system (1): (a) time evolution of
states x(t), y(t), and z(t); (b) phase plane x(t) versus y(t); (c) phase plane x(t) versus z(t); and (d)
phase plane y(t) versus z(t).

As such, the normalized MACM’s circuit is given by
ẋ1
ẋ2
ẋ3

=
=
=

−ax1 − bx2x3,
−x1 + cx2,
d− x2

2 − x3.
(11)
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4. Star Network Synchronization of MACM’s Circuits

In this section, we describe the complex network to be constructed with N-coupled
MACM’s circuits (11), which take the following form (according to Equations (1) and (2)): ẋi1

ẋi2
ẋi3

 =

 −axi1 − bxi2xi3 + ui1
−xi1 + cxi2
d− x2

i2 − xi3

, i = 1, 2, . . . , N, (12)

ui1 = k
N

∑
j=1

aijΓxj. (13)

If the control signal in (13) is ui1 ≡ 0 for i = 1, 2, . . . , N, then we have the original set
of N uncoupled MACM’s circuits, which evolve according to their own dynamics. We con-
sider, for illustrative purposes, in this work, that N = 5, i.e., we have five-coupled MACM’s
circuit-like nodes to be synchronized in a star-coupling topology and Γ = diag(1, 0, 0, 0, 0)
and a coupling constant k. In particular, we consider a single master node N1 and four slave
nodes N2, N3, N4, and N5, for the physical implementation of this network (12) and (13),
the topology of which is shown in Figure 3.

N1N2

N3

N4

N5

Figure 3. Star network with master node N1 and four slave nodes.

Five isolated nodes, such as Equation (11) are considered to be synchronized in a star
network with master node N1 and slave nodes N2, N3, N4, and N5. The master node N1 of
the dynamical network is arranged as follows ẋ11

ẋ12
ẋ13

 =

 −ax11 − bx12x13 + u11
−x11 + cx12
d− x2

12 − x13

, (14)

u11 = 0, (15)

the first slave node N2 is given by ẋ21
ẋ22
ẋ23

 =

 −ax21 − bx22x23 + u21
−x21 + cx22
d− x2

22 − x23

, (16)

u21 = k(x11 − x21), (17)
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the second slave node N3 by means of ẋ31
ẋ32
ẋ33

 =

 −ax31 − bx32x33 + u31
−x31 + cx32
d− x2

32 − x33

, (18)

u31 = k(x11 − x31), (19)

the third slave node N4 as follows ẋ41
ẋ42
ẋ43

 =

 −ax41 − bx42x43 + u41
−x41 + cx42
d− x2

42 − x43

, (20)

u41 = k(x11 − x41), (21)

and the fourth slave node N5 given by ẋ51
ẋ52
ẋ53

 =

 −ax51 − bx52x53 + u51
−x51 + cx52
d− x2

52 − x53

, (22)

u51 = k(x11 − x51). (23)

Now, using Equations (14) and (23) as chaotic nodes, we have constructed the star
network with master node N1 to be synchronized according to Figure 3. The corresponding
coupling matrix is given by

A =


0 0 0 0 0
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

. (24)

with eigenvalues λ1 = 0, λ2 = λ3 = λ4 = λ5 = −1.
Figure 4 shows λmax applying the coupling matrix (24) for a range 0 ≤ k ≤ 35 using the

MACM system (9) as a node, where the sufficient coupling strength k to achieve network
synchronization is k > 7; therefore, this analysis is used to consider the coupling strengths
used in the numerical simulations and in the corresponding electronic implementation.

Figure 4. Maximum Lyapunov exponent λmax applying coupling matrix A for 0 ≤ k ≤ 35.

4.1. Synchronization Analysis Based on Master Stability Function Approach and Its Simulation

The chaotic synchronization in a star network topology is implemented in MATLAB
for numerical results. We use the ODE45 function to integrate the system of differential
equations of first order using the explicit formula Runge–Kutta (4,5) [43]. The control
parameters are the same for each MACM system (9), i.e., a = 2, b = 2, c = 0.5, and d = 4,
but with different initial conditions for each system presented in Table 1, and the time-series
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and phase-plane graphics of master MACM system 1 are shown in Figure 5. Thus, all the
MACM systems present chaotic behavior.

Table 1. Initial conditions of five master MACMs for numerical results in MATLAB.

Initial Master 1 Slave 2 Slave 3 Slave 4 Slave 5
Condition MACM MACM MACM MACM MACM

xi1(0) −4.0 2.0 2.5 −4.5 2.2
xi2(0) −4.0 2.0 2.5 −4.5 2.2
xi3(0) −3.0 4.0 4.5 −3.5 4.2

Figure 5. Master MACM system in chaotic regime: (a) x versus time; (b) y versus time; (c) z versus
time; (d) x versus y; (e) x versus z; and (f) y versus z.

We define the error synchronization as e2 = x11 − x21, e3 = x11 − x31, e4 = x11 −
x41, e5 = x11 − x51. In Figures 6 and 7, the time series of the errors and the phase graphics
between the master and the four slaves are presented without coupling, i.e., the cou-
pling constant is defined as zero. The results show that the network is not synchronized.
Considering a coupling constant k = 10, the four slave MACM systems in the star net-
work synchronize with the master MACM system after the transient time, as presented in
Figure 8 with the errors over time, and Figure 9 shows the synchronization graphic by
plotting the corresponding phases between the MACM master and the four MACM slaves
systems and producing a line with 45 degrees after the transient time. Based on the simula-
tion results, the synchronization is achieved in the three chaotic states after 40 time units.

Figure 6. Time series of the errors for each MACM system in the star network without coupling:
(a) e2; (b) e3; (c) e4; and (d) e5.
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Figure 7. Phase graphics between the master MACM and slaves in the star network without coupling:
(a) x11 versus x21; (b) x11 versus x31; (c) x11 versus x41; and (d) x11 versus x51.

Figure 8. Time series of the errors for each MACM system in the star network with coupling constant
k = 10: (a) e2; (b) e3; (c) e4; and (d) e5.

x
11

-20 -10 0 10 20

x 2
1

-20

0

20

x
11

-20 -10 0 10 20

x 3
1

-20

0

20

(a) (b)

x
11

-20 -10 0 10 20

x 4
1

-20

0

20

x
11

-20 -10 0 10 20

x 5
1

-20

0

20

(c) (d)

Figure 9. Phase graphics between the master MACM and slaves in the star network with coupling
constant k = 10: (a) x11 versus x21; (b) x11 versus x31; (c) x11 versus x41; and (d) x11 versus x51.
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4.2. Star Network Electronic Circuit Synchronization

In this section, we describe the simulation of the electronic circuit implementation of
the coupled-star-network and its synchronization to conduct the set-up among the master
node (N1) and four slave nodes (N2, N3, N4, and N5). Based on the arrangement of five
coupled MACM circuits, as shownvi in Equations (14)–(23) with the coupling signal u11 ≡ 0
in (15), the entire electronic circuit implementation is conducted by the means of analog
circuits and passive electrical components which are shown in Figure 10. Table 2 shows the
hardware used in the electronic implementation of the coupled-star-network to achieve
network synchronization in each channel, the same power supply of Figure 1 was used in
this electronic implementation using Vd = +3.8 V, +Vcc = +18 V and −Vcc = −18 V, and the
set of 15 capacitors and 97 resistors electronic components, 10 analog multipliers AD633,
and 9 OAs TL084 as ICs.

Table 2. Hardware description of the coupled-star-network to achieve network synchronization, as
depicted in Figure 10.

Component or IC Value or Description

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11,
C12, C13, C14, C15 10 nF

R1, R25, R38, R51, R64 500 kΩ

R2, R37, R63 47 kΩ

R3, R4, R7, R8, R12, R13, R14, R15, R19, R20,
R23, R26, R27, R28, R32, R33, R36, R39, R40,
R41, R45, R46, R49, R52, R53, R54, R58, R59,
R62, R66, R66, R67, R68, R69, R70, R71, R72,
R73, R74, R75, R76, R77, R78, R79, R80, R81,
R82, R83, R84, R85, R86, R87 R88, R89, R90,

R91, R92, R93

10 kΩ

R5, R9, R11, R17, R18, R22, R31, R30, R35, R43,
R44, R48, R56, R57, R61, R94, R95, R96, R97 1 MΩ

R6, R21, R34, R47, R60 2 MΩ

R10, R16, R42 94 kΩ

R24 47.5 kΩ

R50 48 kΩ

R29 94.5 kΩ

R55 95 kΩ

U1, U4, U5, U6, U8, U9, U12, U13, U15, U16 Analog-multiplier AD633

U2, U3, U7, U10, U11, U14, U17, U18, U19 OA TL084

In order to obtain different initial conditions in the electronic simulation of
Figure 10, we propose the initial condition settings for each node using electric com-
ponents with slightly different values; for the slave nodes N2, N3, N4, and N5, we used the
resistors R24, R50, R29, and R55, respectively.

The chaotic dynamics of the states x11(t) and x12(t) and the chaotic attractor (x11
versus x12) of the electrical simulation corresponding to the master MACM circuit, as
shown in Figure 11.
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Figure 10. Experimental set-up for network synchronization of five coupled MACM electronic circuits
in star topology: (a) master node N1; (b) slave node N2; (c) slave node N3; (d) slave node N4; and
(e) slave node N5.
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Figure 11. Chaotic trajectories of the system of the Equations (14) and (23): (a) state x11(t), error
e2(t) = x11(t) − x21(t), and state x21(t); (b) state x11(t), error e3(t) = x11(t) − x31(t), and state
x31(t); (c) state x11(t), error e4(t) = x11(t) − x41(t), and state x41(t); and (d) state x11(t), error
e5(t) = x11(t)− x51(t), and state x51(t).

As the state x11(t) of master N1 versus state x21(t) of slave N2 is shown in Figure 12,
we can see the chaotic nodes N1 and N2 without coupling. The synchronization of the
MACM circuits of the Equations (14) and (23) is achieved using the proposed network
circuit depicted in Figure 12, the errors are shown in Figure 13, and the phase-planes are
shown in Figure 14. For the other three slave nodes N3, N4, and N5, we used the same
process given for the synchronization of N1 versus N2.
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Figure 12. Plane phase of the system of Equations (14) and (23): (a) x21(t) versus x11(t); (b) x11(t)
versus x31(t); (c) x11(t) versus x41(t); and (d) x11(t) versus x51(t).
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Figure 13. Chaotic trajectories of Equations (14) and (23): (a) state x11(t), error e2(t) = x11(t)− x21(t),
and state x21(t); (b) state x11(t), error e3(t) = x11(t)− x31(t), and state x31(t); (c) state x11(t), error
e4(t) = x11(t)− x41(t), and state x41(t); and (d) state x11(t), error e5(t) = x11(t)− x51(t), and state
x51(t).
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State x11(t)
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Figure 14. Plane phase of Equations (14) and (23): (a) x21(t) versus x11(t); (b) x11(t) versus x31(t);
(c) x11(t) versus x41(t); and (d) x11(t) versus x51(t).

5. Application to Image Encryption

The encryption of sensitive data in networks provides privacy to users. Particularly,
digital images are transmitted over insecure channels throughout the Internet. The appli-
cation of chaos synchronization to secure communications was proposed by Pecora and
Carrol in 1990 [1].

In contrast with chaos-based cryptography which uses permutation and diffusion to
encrypt image data to one receptor [44,45], we present the application of image encryption
in a star network to securely transmit a digital image from the master MACM system to four
slave MACM systems (multiple receptors) using chaotic synchronization and switching
parameter technique [40,46]. In Figure 15, the schematic of the proposed image encryption
process is presented. The process to transmit the digital image is described in the next
steps:

1. Binary string. The 8-bit gray-scale digital image with M(row)× N(columns) pixels
are placed row-by-row in a binary string with M× N × 8 bits.

2. Synchronization of star network. We used a coupling constant of k = 10 between the
master and slave MACM systems; different initial conditions are used for each MACM
system (see Table 1); the control parameters are the same in all MACM systems, i.e.,
a = 2, b = 2, c = 0.5, and d = 4. After 50 time units (transient time), the star network
is synchronized as shown in Figure 16.

3. Extended plain binary data. Since synchronization is achieved after a transient time
and to avoid data loss in the receptors, the plain binary string is mounted over 400 time
units for each bit producing an extended plain binary data of M× N × 8× 400. As an
example, Figure 16a–d show the first two bytes of the plain image transmitted, which
are defined as 1010010010100011 with a length of 6400 time units (dashed line).

4. Switching parameter d of master MACM. The parameter d of the master node is
switched between d = 4 and d = 4.05, for 0 and 1 in the extended plain binary data,
respectively. During this time, the absolute synchronization error is determined in
e2, e3, e4, and e5, which are shown in Figure 16a–d with a blue line. Since initial
conditions are considerably different at the start communication, the error is bigger in
the first time units.

5. Processing the error. The recovered binary string in the receptor is calculated with
the sum of the last 100 data in each error signal considering windows of 400 data; if
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the sum is greater than 0.7, a bit of 1 is defined for such window or bit of 0 in other
case. Figure 16e–h presents the first recovered binary string in each slave MACM
system (receptor).

6. Image construction. The digital image is constructed using the recovered binary
string and the inverse process of step 1; the string is separated into 8-bit segments and
assigned to rows and columns to form the corresponding digital image. Figure 16i–l
present the difference between the plain image and recovered image at the bit level
(first 8000 bits) for slaves 2–5, respectively.

Binary string

bit

𝑎 = 2
𝑏 = 2
𝑐 = 0.5
𝑑 = 4

0

1

𝑎 = 2
𝑏 = 2
𝑐 = 0.5
𝑑 = 4.05

Master 1 MACM

Slave 2 MACM

𝑒2

+ -

Processing Binary string 

Image construction

𝑥21𝑥11

𝑥11

One transmitter Multiple receptors

Insecure 
channel
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Processing Binary string 
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Slave 5 MACM
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+ -

Processing Binary string 

Image construction

𝑥51𝑥11

Figure 15. Schematic of the proposed image encryption process.

The proposed image encryption process is implemented at the software level in
MATLAB (R2015a) in one laptop with a Intel Core 2.9 GHz processor, 8 GB of RAM, and
operative system Windows 10 of 64 bits. The results of image encryption and decryption
with the coupling constant k = 10 are presented in Figure 17. Figure 17a shows the plain
image of Lena with 150× 150 pixels to be transmitted by the master MACM; Figure 17b
shows the cryptogram, which is constructed with the chaotic signal x11 as a noise image;
Figure 17c–f present the decrypted image in slaves 1–4, respectively. When the network is
not synchronized, the images cannot be recovered in the slaves.
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Figure 16. First bytes transmitted and recovered data: (a) absolute of e2 (blue line) and plain binary
data (dashed line); (b) absolute of e3 (blue line) and plain binary data (dashed line); (c) absolute of e4

(blue line) and plain binary data (dashed line); (d) absolute of e5 (blue line) and plain binary data
(dashed line); (e) recovered data in slave 2; (f) recovered data in slave 3; (g) recovered data in slave 4;
(h) recovered data in slave 5; (i) error between plain image end recovered image in slave 2; (j) error
between plain image end recovered image in slave 3; (k) error between plain image end recovered
image in slave 4; and (l) error between plain image end recovered image in slave 5.

(a) (c) (e)

(b) (d) (f)

Figure 17. Experimental results of image encryption with the coupling constant k = 10: (a) plain
Lena image; (b) cryptogram; (c) decrypted image in slave 2 MACM; (d) decrypted image in slave 3
MACM; (e) decrypted image in slave 4 MACM; and (f) decrypted image in slave 5 MACM.

On the other hand, the results of image encryption and decryption with coupling
constant k = 5 is presented in Figure 18. Figure 18a shows the plain image of Lena with
150× 150 pixels to be transmitted by the master MACM; Figure 18b shows the cryptogram,
which is constructed with the chaotic signal x11 as a noise image; and Figure 18c–f present
the decrypted image in slaves 1–4, respectively. Since slaves nodes do not synchronize with
the master node, the Lena image cannot be recovered correctly.
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(a) (c) (e)

(b) (d) (f)

Figure 18. Experimental results of image encryption with coupling constant k = 5: (a) plain Lena
image; (b) cryptogram; (c) decrypted image in slave 2 MACM; (d) decrypted image in slave 3 MACM;
(e) decrypted image in slave 4 MACM; and (f) decrypted image in slave 5 MACM.

5.1. Security Analysis

In this subsection, we present the security analysis such as histograms, correlation,
and entropy tests to show the effectiveness of the propose encryption mechanism.

5.1.1. Histograms

In the histogram attack, the cryptanalyst attempts to find a statistical relation with
plain text. It must be uniform to resist such an attack. In Figures 19 and 20, the histograms of
Figures 17 and 18 are presented, respectively. The plain Lena image in all cases has its par-
ticular histogram curves, whereas the encrypted image and the incorrect recovered images
have a uniform data distribution. Thus, the proposed schema can resist a histogram attack.

5.1.2. Statistics of Histogram

The statistics of histograms are evaluated using the variance and standard deviation
as metrics of data dispersion, i.e., such metrics provide information about variations in a
dataset. First, the variance measures the average difference with respect the mean called m̄.
The more uniform the histogram is, the lower the variance is. The variance is calculated
with the following expression

α =
1

256

256

∑
i=1

(mi − m̄)2, (25)

where
m̄ =

M× N
256

, (26)

and where m is the frequency in the histogram, α is the variance, M is the rows of image, N
is the columns of the image, and m̄ is the mean of the histogram. On the other hand, the
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standard deviation provides information about the fluctuations versus the mean and it is
calculated as follows

β =
√

α, (27)

with β as the standard deviation.
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Figure 19. Histograms of images with the coupling constant k = 10: (a) plain Lena histogram;
(b) histogram of cryptogram; (c) histogram in slave 2 MACM; (d) histogram in slave 3 MACM;
(e) histogram in slave 4 MACM; and (f) histogram in slave 5 MACM.
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Figure 20. Histograms of images with coupling constant k = 5: (a) plain Lena histogram; (b) his-
togram of cryptogram; (c) histogram in slave 2 MACM; (d) histogram in slave 3 MACM; (e) histogram
in slave 4 MACM; and (f) histogram in slave 5 MACM.

Table 3 presents the variance and the standard deviation for Figure 17 (correct decryp-
tion in slaves with k = 10) and Figure 18 (incorrect decryption in slaves with k = 5) for the
plain and encrypted image of Lena with 150 pixels. The plain image presents high variance
and standard deviation since data in the histogram are not uniform with fluctuations of 60
around the mean. The uniformity of histograms in encrypted image reduces considerably
both metrics achieving a variance of 101.04 with fluctuations of just 10 around the mean.
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Table 3. Variance and standard deviation in histograms.

Plain Encrypted Image in Image in Image in Image in
Image Image Slave 2 Slave 3 Slave 4 Slave 5

α with k = 10 3713.12 101.04 3711.78 3711.78 3711.78 3.71178
β with k = 10 60.93 10.05 60.92 60.92 60.92 60.92

Plain Encrypted Image in Image in Image in Image in
Image Image Slave 2 Slave 3 Slave 4 Slave 5

α with k = 5 3713.12 101.04 96.91 96.87 96.91 96.93
β with k = 5 60.93 10.05 9.84 9.84 9.84 9.84

5.1.3. Structural Similarity Index

The structural similarity index (SSIM) is used to determine the similarity structurally
between the plain image and the encrypted image. SSIM uses the mean, standard deviation,
and the cross-correlation of two images P and E. SSIM is evaluated as follows

SSIM =
(2P̄Ē + T1)(2σPE + T2)

(P̄2 + Ē2 + T1)
(

β2
P + β2

E + T2
) , (28)

where

σPE =
1

M× N

M

∑
i=1

N

∑
j=1

[P(i, j)− P̄] [E(i, j)− Ē], (29)

and P̄ is the mean of the plain image, Ē is the mean of encrypted image, βP is the standard
deviation of plain image, βE is the standard deviation of encrypted image, σPE is the cross-
correlation of plain and encrypted image, and SSIM ≤ 1. T1 = (W1 L)2 and T2 = (W2 L)2

are used for stability, where L = 255 (for gray-scale) is the dynamic range of the pixel
values with W1 = 0.01 and W2 = 0.03.

Table 4 presents the SSIM for Figure 17 (correct decryption in slaves with k = 10) and
Figure 18 (incorrect decryption in slaves with k = 5). If both tested images are identical, the
SSIM=1. A value of SSIM close to zero means both tested images are structurally different,
as expected between plain image and correctly decrypted images in slaves (k = 10).
Nevertheless, the SSIM is close to 1 if k = 5 since the system does not synchronize and the
images cannot be recovered in slaves. Thus, the SSIM is close to 1 in such cases.

Table 4. Structural similarity index.

P E SSIM with k = 10 SSIM with k = 5

Plain image Plain image 1 1
Plain image Encrypted image 0.0030 0.0030
Plain image Image in slave 2 0.9998 0.0135
Plain image Image in slave 3 0.9998 0.0134
Plain image Image in slave 4 0.9998 0.0135
Plain image Image in slave 5 0.9998 0.0134

5.1.4. Correlation Analysis

Plain images present high correlation between the neighbors pixels that must be
eliminated in encrypted images to provide security and reduce the risk of statistical attacks.
It can be visually observed by using a graphical image correlation and calculating the
Pearson correlation coefficient [47].

First, the value between two pixels in any direction of the plain image is similar and
plotting the graphic correlation produces several points over the 45 degree line. On the
other hand, the encrypted image plot datas in all the space of the graphical correlation,
which means that two pixels proximate to one another are different in amplitude. In Figures
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21 and 22, the graphic correlation of Figures 17 and 18 are presented, respectively. The
plain image and the retrieved images in the five slaves graphically show high correlation
between the proximate pixels, whereas the encrypted image presents different pixel values
between the neighbors. In Table 5, the Pearson correlation coefficient is presented.
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Figure 21. Graphic correlation of images with the coupling constant k = 10: (a) plain Lena histogram;
(b) cryptogram; (c) correlation in slave 2 MACM; (d) correlation in slave 3 MACM; (e) correlation in
slave 4 MACM; (f) correlation in slave 5 MACM.
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Figure 22. Graphic correlation of images with coupling constant k = 5: (a) plain Lena histogram;
(b) correlation of cryptogram; (c) correlation in slave 2 MACM; (d) correlation in slave 3 MACM;
(e) correlation in slave 4 MACM; (f) correlation in slave 5 MACM.

Table 5. Pearson correlation coefficient.

Coupling Plain Encrypted Image in Image in Image in Image in
Constant Image Image Slave 2 Slave 3 Slave 4 Slave 5

k = 10 0.8757 0.1255 0.8520 0.8520 0.8520 0.8520
k = 5 0.8758 0.1256 0.1060 0.0957 0.1060 0.0957

5.1.5. Information Entropy

The information entropy is a metric to numerically determine the level of randomness
in images. Since plain images are based on 8-bit data, the maximum entropy is eight [48].
In Table 6, the entropy results of Figures 21 and 22 are presented, respectively. The entropy
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value close to 8 in an encrypted image means a highly unpredictable message, whereas
lower entropy is expected in plain images.

Table 6. Information entropy results.

Coupling Plain Encrypted Image in Image in Image in Image in
Constant Image Image Slave 2 Slave 3 Slave 4 Slave 5

k = 10 7.5250 7.9903 7.5253 7.5253 7.5253 7.5253
k = 5 7.5250 7.9903 7.9910 7.9910 7.9910 7.9910

5.1.6. Decryption Error Test

In several applications in chaos-based image encryption such as in telemedicine or
biometric systems, the decrypted image must be identical to an encrypted image. Thus, the
error between both images must be determined quantitatively, where the plain image and
the decrypted image are compared pixel-by-pixel. Based on [49], the decryption error is
defined as follows

E(%) =
100

M× N

M

∑
i=1

N

∑
j=1

Q(i, j) (30)

and

Q(i, j) =
{

0 if P(i, j) = D(i, j)
1 if P(i, j) 6= D(i, j)

(31)

and P is the original plain image, the D is the decrypted image, and E is the error calculated
in percentage. In Table 7, the errors in percentage between the plain image and the
decrypted images in the slaves are presented. When the coupling constant is k = 10, just
the 0.0044% of the pixels are lost, i.e., 8 bits of 180000. On the other hand, when the slaves
do not synchronize with the master system (k = 5), the error the in decrypted image is
close to 100%.

Table 7. Decryption error test.

P D E (%) with k = 10 E (%) with k = 5

Plain image Encrypted image 99.5688 99.5688
Plain image Image in slave 2 0.0044 99.6488
Plain image Image in slave 3 0.0044 99.6488
Plain image Image in slave 4 0.0044 99.6488
Plain image Image in slave 5 0.0044 99.6488

6. Conclusions

In this study, the simulation of the network synchronization among one-master and
four-slave chaotic MACM-systems was conducted by means of complex systems theory.
The electronic circuit of the MACM-system was carried-out using the Proteus 8 Labcenter
Electronics as an electrical circuit simulator to achieve the coupled-star-network synchro-
nization, the set of one-master and four-slave nodes were implemented using simple
integrated circuits, such as operational amplifiers, analog multipliers, and passive com-
ponents. In addition, the application of the secure communication was conducted in
the MATLAB simulation to transmit a digital image message encrypted from a chaotic
transmitter to four chaotic receivers, the coupled-star-network synchronization showed
good performance in the security analysis results, such as an uniform histogram, high
correlation between neighbors, and low performance in the tests of information entropy
and decryption error. Finally, the simulation results of the electronic circuits implemen-
tation and secure communication showed good performance in the synchronization of
the chaotic coupled-star network of the MACM system for encrypting, transmitting, and
recovering the secret messages. In future work, we will conduct the digital implementation
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of the coupled-star-network synchronization of the MACM chaotic system using embedded
systems.
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