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The present Special Issue of Entropy, entitled Information and Divergence Mea-
sures, covers various aspects and applications in the general area of Information and
Divergence Measures.

Measures of information appear everywhere in probability and statistics. They play
a fundamental role in communication theory. They have a long history dating back to
the papers of Fisher, Shannon, and Kullback. There are many measures each claiming
to capture the concept of information or simply being measures of divergence or dis-
tance between two probability distributions. Numerous generalizations of such measures
also exist.

The concept of distance is important in establishing the degree of similarity and/or
closeness between functions, populations, and distributions. The intense engagement of
many authors with entropy and divergence measures demonstrates the significant role
they are playing in the sciences. Indeed, distances and entropies are related to inferential
statistics, including both estimation and hypothesis testing problems [1–6], model selection
criteria [7–9] and probabilistic and statistical modelling with applications in multivariate
analysis, actuarial science, portfolio optimization, survival analysis, reliability theory,
change-point problems, etc. [10–15]. Thus, the significance of entropy and divergence
measures that emerges in these and many more scientific fields is a topic of great interest to
scientists, researchers, medical experts, engineers, industrial managers, computer experts,
data analysts, etc.

All the articles included in this Special Issue were reviewed and accepted for publica-
tion because they have been found to contribute research works of the highest quality and
at the same time, they highlight the diversity of the topics in this scientific area. The issue
presents twelve original contributions that span a wide range of topics. In [16], the authors
demonstrate how to employ the techniques of the calculus of variations with a variable
endpoint to search for the closest distribution from a family of distributions generated via
a constraint set on the parameter manifold. In [17], the authors consider weighted Tsallis
and Kaniadakis divergences and establish inequalities between these measures and Tsallis
and Kaniadakis logarithms. In [18], LPI waveforms are designed within the constraints of
the detection performance metrics of radar and PISs, both of which are measured by the
Kullback–Leibler divergence, and the resolution performance metric, measured by joint
entropy with the solution based on the sequential quadratic programming method. In [19],
a bootstrap approximation of the Kullback–Leibler discrepancy is utilized to estimate the
probability that the fitted null model is closer to the underlying generating model than
the fitted alternative model. The authors also propose a bias correction either by adding a
bootstrap-based correction or by adding the number of parameters in the candidate model.
In [20], the authors extend, and compute information measures related to Shannon and
Tsallis entropies, for the concomitants of the generalized order statistics from the Farlie–
Gumbel–Morgenstern family. In [21], the evaluation of academic performance by using
the statistical K-means (SKM) algorithm to produce clusters is investigated. A simulation
experiment on the top 20 universities in China shows the advantages of the SKM algorithm
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over traditional methods. In [22], the authors introduce a closed-form expression for the
Kullback–Leibler divergence between two central multivariate Cauchy distributions used
in different signal and image processing applications where non-Gaussian models are
needed. In [23], restricted minimum Rényi’s pseudodistance estimators are defined, and
their asymptotic distribution and influence function are derived. Further, robust Rao-type
and divergence-type tests based on minimum Rényi’s pseudodistance and restricted mini-
mum Rényi’s pseudodistance estimators are considered, and their asymptotic properties
are obtained. In [24], a skew logistic distribution is proposed and extended to the skew
bi-logistic distribution to allow the modelling of multiple waves in epidemic time series
data. The proposed distribution is validated by COVID-19 data from the UK and is evalu-
ated for goodness-of-fit using the empirical survival Jensen–Shannon divergence and the
Kolmogorov–Smirnov two-sample test statistic. In [25], an approach for the derivation
of families of inequalities for set functions is suggested and applied to obtain informa-
tion inequalities with Shannon information measures that satisfy sub/supermodularity
and monotonicity properties. The author also applies the generalized Han’s inequality
to analyse a problem in extremal graph theory, with an information–theoretic proof and
interpretation. In [26], the authors focus on a general family of measures of divergence
and purpose a restricted minimum divergence estimator under constraints and a new
double-index (dual) divergence test statistic which is thoroughly examined. Finally, in [27],
by calculating the Kullback–Leibler divergence between two probability measures belong-
ing to different exponential families dominated by the same measure, the authors obtain
a formula that generalizes the ordinary Fenchel–Young divergence and define the duo
Fenchel–Young divergence which is equivalent to a duo Bregman divergence. The au-
thor also proves that the skewed Bhattacharyya distances between truncated exponential
families amount to equivalent skewed duo Jensen divergences.
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