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Abstract: This paper investigates lift, the likelihood ratio between the posterior and prior belief
about sensitive features in a dataset. Maximum and minimum lifts over sensitive features quantify
the adversary’s knowledge gain and should be bounded to protect privacy. We demonstrate that
max- and min-lifts have a distinct range of values and probability of appearance in the dataset,
referred to as lift asymmetry. We propose asymmetric local information privacy (ALIP) as a compatible
privacy notion with lift asymmetry, where different bounds can be applied to min- and max-lifts.
We use ALIP in the watchdog and optimal random response (ORR) mechanisms, the main methods
to achieve lift-based privacy. It is shown that ALIP enhances utility in these methods compared
to existing local information privacy, which ensures the same (symmetric) bounds on both max-
and min-lifts. We propose subset merging for the watchdog mechanism to improve data utility
and subset random response for the ORR to reduce complexity. We then investigate the related
lift-based measures, including `1-norm, χ2-privacy criterion, and α-lift. We reveal that they can only
restrict max-lift, resulting in significant min-lift leakage. To overcome this problem, we propose
corresponding lift-inverse measures to restrict the min-lift. We apply these lift-based and lift-inverse
measures in the watchdog mechanism. We show that they can be considered as relaxations of ALIP,
where a higher utility can be achieved by bounding only average max- and min-lifts.

Keywords: local information privacy; local differential privacy; watchdog privacy mechanism;
optimal random response

1. Introduction

With the recent emergence of “Big-Data”, generating, sharing, and analysing data
are proliferating via the advancement of communication systems and machine learning
methods. While sharing datasets is essential to achieve social and economic benefits, it
may lead to the leakage of private information, which has raised great concern about the
privacy preservation of individuals. The main approach to protect privacy is perturbing
the data via a privacy mechanism. Consider some raw data denoted by random variable
X and some sensitive features denoted by S, which are correlated via a joint distribution
PSX 6= PS × PX . A privacy mechanism (characterised by the transition probability PY|X) is
applied to publish Y as a sanitised version of X to protect S.

The design of a privacy mechanism depends on the privacy measure. Differential
privacy (DP) [1–3] is a widely used notion of privacy. DP restricts the chance of revealing
the individual’s presence in a dataset from the outcome of analysis over that dataset [4]. It
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ensures that neighboured sensitive features s and s′, which differ in only one entry, result in
a similar output probability distribution, by restricting the ratio between posterior beliefs
PY|S(y|s)/PY|S(y|s′) below a threshold eε. The neighbourhood assumption is relaxed in the
local differential privacy (LDP) [5–9], where the ratio between posterior beliefs is restricted
below eε for any two sensitive features s and s′, denoted by ε-LDP. The quantity of ε is
known as the privacy budget. DP and LDP are considered context-free privacy notions,
i.e., they do not take into account the prior distribution PS. In contrast, in information-
theoretic (IT) privacy, also known as context-aware privacy [10,11], it is assumed that the
distribution of data or an estimation of them is available. Some of the dominant IT privacy
measures are mutual information (MI) [10,12,13], maximal leakage [14–16], α-leakage [17],
and local information privacy (LIP) [11,18–28]. A challenge is that while data perturbation
restricts privacy leakage, it necessarily reduces data resolution and datasets’ usefulness.
Therefore, a privacy mechanism is desired to deliver a satisfactory level of data utility.
Depending on the application, data utility is quantified either by measures of similarity
between X and Y, such as f-divergence [7] and MI [7,12], or measures of dissimilarity and
error, such as Hamming distortion [8,9] and mean square error [22], respectively. This
tension between privacy and utility is known as the privacy–utility trade-off (PUT).

In this paper, we consider lift, a pivotal element in IT privacy measures, which is the
likelihood ratio between the posterior belief PS|Y(s|y) and prior belief PS(s) about sensitive
features in a dataset:

l(s, y) =
PS|Y(s|y)

PS(s)
=

PSY(s, y)
PS(s)PY(y)

. (1)

The logarithm of the lift i(s, y) = log l(s, y), which we call log-lift, is the information
density [24]. For each y, the more PS|Y(s|y) differs from PS(s), the more the adversary gains
knowledge about s [29]. Consequently, both min-lift and max-lift, denoted by mins l(s, y)
and maxs l(s, y), respectively, quantify the highest privacy leakage for each y. In [29], the
role of min-lift and max-lift in privacy breach was proposed, based on which information
privacy was introduced in [18]. Accordingly, min-lift is associated with revealing what
values are less probable for s after observing y, while max-lift is associated with the
more probable values. In addition, recently, other operational meanings for max-lift
have been revealed in guessing frameworks [30] and quantitative information flow [31].
In LIP, min-lift and max-lift are bounded below and above by thresholds e−ε and eε,
respectively, to restrict the adversary’s knowledge gain, denoted by ε-LIP. The main privacy
mechanisms to achieve ε-LIP are the watchdog mechanism [24,25] and optimal random
response (ORR) [28]. Watchdog mechanism bipartitions the alphabet of X into low-risk
and high-risk symbols, and only high-risk ones are randomised. It was proved in [25] that
X-invariant randomisation (e.g., merging all high-risk symbols) minimises privacy leakage
for the watchdog mechanism. ORR is an optimal mechanism for ε-LIP, which maximises
MI as the utility measure.

Contributions

We investigate lift and its related privacy notions such as LIP. We demonstrate that
min-lift and max-lift have distinct values and probability of appearance in the dataset.
More specifically, min-lifts have a broader range of values than max-lifts, while max-
lifts have a higher likelihood PSY(s, y) of appearing in the dataset. We call this property
lift asymmetry. However, ε-LIP allocates symmetric privacy budgets to mins i(s, y) and
maxs i(s, y) (−ε and ε, respectively), which is incompatible with the lift asymmetry. Thus,
we propose asymmetric-LIP (ALIP) as an amenable privacy notion to the lift properties,
where asymmetric privacy budgets can be allocated to mins i(s, y) and maxs i(s, y), denoted
by −ε l and εu, respectively. We demonstrate that ALIP implies ε-LDP and can result in
better utility than LIP in the watchdog and ORR mechanisms. Utility increases by relaxing
the bound on the min-lift, which has a lower probability of appearance in the dataset.

We propose two randomization methods to overcome the low utility of the watchdog
mechanism and the high complexity of the ORR mechanism. In the watchdog mechanism,
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X-invariant randomisation perturbs all high-risk symbols together and deteriorates data
resolution and utility. On the other hand, ORR suffers from high complexity, which is
exponential in the size of datasets. To overcome these problems, we propose subset merging
and subset random response (SRR) perturbation methods that make finer subsets of high-
risk symbols and privatise each subset separately. Subset merging enhances utility in
the watchdog mechanism by applying X-invariant randomisation to disjoint subsets of
high-risk symbols. In addition, SRR relaxes the complexity of ORR for large datasets by
applying random response solutions on disjoint subsets of high-risk symbols, which results
in near-optimal utility.

Besides LIP, we also consider some recently proposed privacy measures, which we call
lift-based measures, including `1-norm [32], χ2-strong privacy [33], and α-lift [34]. They have
been proposed as the privacy notions stronger than their corresponding average leakages:
the total variation distance [35], χ2-divergence [36], and Sibson MI [16,34], respectively. We
clarify that they only bound max-lift leakage and can cause significant min-lift leakage.
Therefore, we propose a corresponding modified version of these measures to restrict
min-lift leakage, which we call lift-inverse measures. We apply lift-based and lift-inverse
measures in the watchdog mechanism with subset merging randomisation to investigate
their PUT. They result in higher utility than ALIP since they are functions of average lift
over sensitive features and, thus, can be considered as relaxations of the max- and min-lift.

2. Preliminaries
2.1. Notation

We use the following notation throughout the paper. Capital letters denote discrete
random variables, corresponding capital calligraphic letters denote their finite supports,
and lowercase letters denote any of their realisations. For example, a random variable X
has the support X , and its realisation is x ∈ X . For random variables S and X, we use
PSX to indicate their joint probability distribution, PS|X for the conditional distribution of S
given X, and PS and PX for the marginal distributions. Bold capital and lowercase letters
are used for matrices and vectors, respectively, and lowercase letters for the corresponding
elements of the vectors, e.g., v = [v1, v2, · · · , vn]T . We also use | · | for the cardinality of a
set, e.g., |X |. We denote the natural logarithm by log and the set of integers {1, 2, · · · , n} by
[n]. The indicator function is shown by 1{ f }, which is 1 when f is true and zero otherwise.

2.2. System Model and Privacy Measures

Consider some useful data intended for sharing and denoted by random variable X
with alphabet X . It is correlated with some sensitive features S with the alphabet S through
a discrete joint distribution PSX . To protect the sensitive features, a privacy mechanism is
applied to generate a sanitised version of X, denoted by Y with the alphabet Y . We assume
PS and PX have full support, and PY|X,S(y|x, s) = PY|X(y|x), which results in the Markov
chain S− X−Y.

The main privacy measure is lift (since we assume PS and PY have full supports, l(s, y)
is finite), given in (1). Lift and its logarithm, log-lift, quantify multiplicative information
gain on each sensitive feature s ∈ S via accessing y ∈ Y . There are two cases: l(s, y) >
1 ⇒ PS|Y(s|y) > PS(s) indicates the increment of the belief about s after releasing y;
l(s, y) ≤ 1⇒ PS|Y(s|y) ≤ PS(s) means that releasing y decreases the belief. The more the
posterior belief deviates from the prior belief, the more an adversary gains knowledge about
s. Thus, for each y ∈ Y , the maxs l(s, y) and mins l(s, y) determine the highest knowledge
gain of sensitive features, and they should be restricted to protect privacy. We use the
following notation for these quantities:

Ψ(y) , min
s∈S

l(s, y) and Λ(y) , max
s∈S

l(s, y). (2)

In Appendix A, we explain the operational meaning of Ψ(y) and Λ(y) in privacy breach
based on the work in [29].
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The lift has been applied in local information privacy [24,25,28] to provide protection
of sensitive features, and is defined as follows.

Definition 1. For ε ∈ R+, a privacy mechanismM : X → Y is ε-local information private or
ε-LIP, with respect to S, if for all y ∈ Y ,

e−ε ≤ Ψ(y) and Λ(y) ≤ eε. (3)

Another instance-wise measure is local differential privacy [5,6,28],

Definition 2. For ε ∈ R+, a privacy mechanismM : X → Y is ε-local differential private or
ε-LDP, with respect to S, if for all s, s′ ∈ S and all y ∈ Y ,

Γ(y) = sup
s,s′∈S

PY|S(y|s)
PY|S(y|s′)

=
Λ(y)
Ψ(y)

≤ eε. (4)

3. Asymmetric Local Information Privacy

According to (3), LIP restricts the decrement of log Ψ(y) and increment of log Λ(y) by
the symmetric bounds. However, we demonstrate that these metrics have a distinct range
of values and probabilities of appearance in the dataset, PSY(s, y). We plot the histogram of
log Ψ(y) and log Λ(y) for 103 randomly generated distributions in Figure 1, where |X | = 17
and |S| = 5. In this figure, the range of log Ψ(y) is [−12,−0.06], much larger than the range
of log Λ(y), [0.02, 1.64]. Moreover, the maximum probability of log Ψ(y) is much lower than
the maximum probability of log Λ(y). We refer to these properties as lift asymmetry. Since
high values of | log Ψ(y)| have a significantly lower probability (for example, in Figure 1,
the probability of | log Ψ(y)| ≥ 6 is near zero) than the log Λ(y), we can relax the min-lift
privacy by allocating a higher privacy budget to it while applying a stricter bound for
the max-lift. Thus, we propose asymmetric local information privacy (ALIP), where we
consider different privacy budgets ε l and εu for | log Ψ(y)| and log Λ(y), respectively.
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Figure 1. Histogram of log Ψ(y) = mins i(s, y) and log Λ(y) = maxs i(s, y) for 103 randomly gener-
ated distributions, where |X | = 17, |S| = 5.

This will result in the following notion of privacy, which is more compatible with the
lift asymmetry property.

Definition 3. For ε l , εu ∈ R+, a privacy mechanismM : X → Y is (ε l , εu)-asymmetric local
information private, or (ε l , εu)-ALIP, with respect to S, if for all y ∈ Y ,

e−ε l ≤ Ψ(y) and Λ(y) ≤ eεu . (5)
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The following proposition indicates how (ε l , εu)-ALIP restricts average privacy leak-
age measures and LDP.

Proposition 1. If (ε l , εu)-ALIP is satisfied, then

1. I(S; Y) ≤ εu;
2. T(S; Y) ≤ 1

2 (e
εu − 1) and χ2(S; Y) ≤ (eεu − 1)2;

3. IS
α (S; Y) ≤ α

α−1 εu and IA
α (S; Y) ≤ α

α−1 εu;
4. ε-LDP is satisfied where ε = ε l + εu;

where T(S; Y) is the total variation distance, χ2(S; Y) is χ2-divergence, IS
α (S; Y) is Sibson MI,

and IA
α (S; Y) is Arimoto MI.

Proof. The proof is given in Appendix B.

Proposition 1-1–3 demonstrate that average measures are bounded with the max-lift
privacy budget. In Section 3.1, we show that ALIP can enhance utility via relaxing min-lift
ε l > εu, where a smaller upper bound is allocated to the max-lift and average measures
in Proposition 1. Proposition 1–4 shows the relationship between (ε l , εu)-ALIP and ε-LDP.
We introduce a variable λ ∈ (0, 1) to have a convenient representation of this relationship
as follows: for an LDP privacy budget ε, if we set ε l = λε and εu = (1− λ)ε, we have
ε l + εu = ε. Thus, varying λ gives rise to different (ε l , εu)-ALIP scenarios within the same
budget for ε-LDP. If λ < 0.5, we have relaxation on the max-lift privacy; if λ > 0.5, it
implies relaxation on the min-lift privacy. When λ = 0.5, we have the symmetric case of
ε
2 -LIP, where ε l = εu = ε

2 .

3.1. ALIP Privacy–Utility Trade-Off

In this subsection, we propose a watchdog mechanism based on ALIP and LDP and
an asymmetric ORR (AORR) mechanism for ALIP to perturb data and achieve privacy
protection. We observe the PUT of ALIP and LDP, where the utility is measured by MI
between X and Y, I(X; Y).

3.1.1. Watchdog Mechanism

Watchdog privacy mechanism bipartitions X into low-risk and high-risk subsets
denoted by XL and XH , respectively, and only randomises high-risk symbols. In the
existing LIP, XL and XH are determined by symmetric bounds. We propose to use ALIP to
obtain XL and XH :

XL , {x ∈ X : e−ε l ≤ Ψ(x) and Λ(x) ≤ eεu} and XH = X \ XL. (6)

For LDP, XL and XH are given by

XL , {x ∈ X : Γ(x) ≤ eε} and XH = X \ XL. (7)

After obtaining XL and XH , the privacy mechanism will be

M =


1{x=y}, x, y ∈ XL = YL,
r(y|x), x ∈ XH , y ∈ YH ,
0, otherwise,

(8)

where 1{x=y} indicates the publication of low-risk symbols without alteration, and r(y|x)
is the randomisation on high-risk symbols, where ∑y∈YH

r(y|x) = 1.
An instance of r(y|x) is the X-invariant randomisation, if r(y|x) = R(y) for

x ∈ XH , y ∈ YH , and ∑y∈YH
R(y) = 1. An example of R(y) is the uniform randomi-

sation R(y) = 1
|YH |

with the special case of complete merging, where |YH | = 1, and all
x ∈ XH are mapped to one super symbol y∗ ∈ YH . It was proved in [25] for LIP that
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X-invariant randomisation minimises privacy leakage in XH . Accordingly, if we apply
ALIP in the watchdog mechanism, for XH 6= ∅, the minimum leakages over XH are

εu := max
s∈S

i(s,XH) = max
s∈S

log l(s,XH) = max
s∈S

log
P(XH |s)
P(XH)

, (9)

εl :=
∣∣∣∣min

s∈S
i(s,XH)

∣∣∣∣ = ∣∣∣∣min
s∈S

log l(s,XH)

∣∣∣∣ = ∣∣∣∣min
s∈S

log
P(XH |s)
P(XH)

∣∣∣∣, (10)

where P(XH |s) = ∑
x∈XH

PX|S(x|s) and P(XH) = ∑
x∈XH

PX(x).

X-invariant randomisation is also applicable for LDP, and the following theorem
shows that it minimises LDP privacy leakage in XH .

Theorem 1. In the LDP watchdog mechanism where XL and XH are determined according to (7),
X-invariant randomisation minimises privacy leakage in XH measured by Γ(y) in (4).

Proof. The proof is given in Appendix C.

In the watchdog mechanism with X-invariant randomisation, the resulting utility
measured by MI between X and Y is given by

I(X; Y) = H(X)− ∑
x∈XH

PX(x) log
P(XH)

PX(x)
. (11)

In [25], it was verified that I(X; Y) in (11) is monotonic in XH : if X ′H ⊂ XH then I(X; Y) <
I
′
(X; Y), where I

′
(X; Y) is the resulting utility of X ′H .

Proposition 2. In the watchdog mechanism with X-invariant randomisation, for a given LDP
privacy budget ε, λ ∈ (0, 1), and ALIP privacy budgets ε l = λε, εu = (1− λ)ε, LDP results in
higher utility and than ALIP.

Proof. Denote the high-risk subset for LDP by X ′H and for ALIP by XH . We have

X ′H = {x ∈ X :
Λ(x)
Ψ(x)

> eε} and XH = {x ∈ X : Λ(x) > e(1−λ)ε or Ψ(x) < e−λε}.

Based on the remark following (11), it is enough to prove that X ′H ⊆ XH . If x ∈ X ′H ,
for any given λ ∈ (0, 1), there are only two possible cases: either Λ(x) > e(1−λ)ε or
Λ(x) ≤ e(1−λ)ε. If Λ(x) > e(1−λ)ε, then x ∈ XH , and our claim is true. If Λ(x) ≤ e(1−λ)ε,
we have x ∈ X ′H ⇒

Λ(x)
Ψ(x) > eε ⇒ Ψ(x) < Λ(x)e−ε. We assumed that Λ(x) ≤ e(1−λ)ε;

therefore, Ψ(x) < Λ(x)e−ε ≤ e(1−λ)εe−ε = e−λε. Since Ψ(x) < e−λε, we have x ∈ XH .

This proposition shows the result of applying LDP and ALIP in the watchdog mecha-
nism in terms of the privacy–utility trade-off. While both ε-LDP and (λε, (1− λ)ε)-ALIP
imply the same LDP privacy budget, LDP results in fewer high-risk symbols compared to
ALIP. This needs to be considered when one applies the watchdog mechanism to achieve
LDP or ALIP privacy. Although having fewer high-risk symbols provides better utility, it
may compromise privacy. In other words, when X ′H ⊆ XH , then the privacy leakage of the
partition {X ′L,X ′H} is greater than or equal to the privacy leakage of the partition {XL,XH}.
As a result, it is possible that ε-LDP cannot achieve the desired (λε, (1− λ)ε)-ALIP privacy
level for a given λ.

Watchdog mechanism with X-invariant randomisation is a powerful method with low
complexity that can be easily applied to instance-wise measures. However, it significantly
degrades the utility [25] because X-invariant randomisation obfuscates all high-risk sym-
bols together to minimise privacy leakage, with the cost of deteriorating data resolution. In
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Section 4, we propose subset merging randomisation to enhance the utility of the watchdog
mechanism.

3.1.2. Asymmetric Optimal Random Response (AORR)

ORR was proposed in [28] as a localised instance-wise replacement of the privacy
funnel [12]. It is the solution to the optimal utility problem subject to ε-LIP or ε-LDP
constraints. For ALIP, we propose asymmetric optimal random response (AORR), which is
defined as

max
PX|Y ,PY

I(X; Y) (12)

s.t. S− X−Y

e−ε l ≤ Ψ(y) and Λ(y) ≤ eεu , ∀y ∈ Y .

Privacy constraints in this optimisation problem form a closed, bounded, convex poly-
tope [28]. It has been proved that vertices of this polytope are the feasible candidates that
maximise MI and satisfy privacy constraints [7,28,37]. However, the number of vertices
grows exponentially in the dimension of the polyhedron, which is |X |(|X | − 1) for LDP
and (|X | − 1) for LIP. This makes ORR computationally cumbersome for large |X |. Ac-
cordingly, [28] suggests some approaches with lower complexity than ORR to avoid vertex
enumeration for the larger sizes of X , but this comes at the cost of lower utility.

3.1.3. Numerical Results

Here, we demonstrate the privacy leakage and utility of AORR and the watchdog
mechanism under ALIP. For the utility, we use normalised MI (NMI)

NMI =
I(X; Y)
H(X)

∈ [0, 1].

It is clear that the maximum possible utility is obtained when X is published without
randomisation, where Y = X and I(X; Y) = H(X). Thus, I(X; Y) ≤ H(X) and NMI ≤ 1.

We present numerical results for both synthetic and real datasets using MATLAB. For
synthetic data, we randomly generated 103 distributions for the watchdog mechanism and
100 distributions for the AORR where |X | = 17 and |S| = 5. These distributions were
generated by normalising the output of the rand function in MATLAB. For real datasets,
we used the Adult dataset [38] and set S = {relationship} and X = {Occupation}, where
|S| = 5 and |X | = 15. In all scenarios, ε varies from 0.25 to 8, and we consider three
cases for (εu, ε l)-ALIP, where λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and εu = (1− λ)ε. The results
of the watchdog mechanism are shown in Figures 2 and 3 for synthetic and real data,
respectively; while the AORR results are presented in Figures 4 and 5. The figures display
NMI, log

(
maxy Λ(y)

)
(max-lift leakage), and

∣∣log
(
miny Ψ(y)

)∣∣ (min-lift leakage) versus
the LDP privacy budget ε for real data, and the mean values of the same quantities are
shown for synthetic data.

In Figures 2a and 3a, we observe that in the watchdog mechanism, LDP provides
higher utility and leakage than ALIP for all values of ε and λ, which confirms Proposition 2.
Figures 2a–5a demonstrate that the min-lift relaxation, λ = 0.65, enhances utility in the
watchdog and AORR mechanisms for ε > 1. Note that in all figures, λ = 0.5 refers to
ε
2 -LIP. On the other hand, λ = 0.35 results in lower utility. Generally, any value of λ < 0.5
reduces utility since it strictly bounds the min-lift while relaxing the max-lift. As the
min-lift has a wider range of values, achieving this strict bound enlarges the set XH and
requires randomising more symbols, which reduces utility. Another observation here is that
AORR incurs significantly higher utility than the watchdog mechanism. For instance, when
λ = 0.5 and ε = 2, the watchdog mechanism results in a utility of 0.52 for synthetic data
and 0.73 for the real data, while AORR has a utility of 0.94 and 0.96 for the synthetic and real
data, respectively. AORR finds the optimal utility, which, due to PUT, necessarily results in
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the highest leakage subject to privacy constraints. However, the watchdog mechanism is a
nonoptimal solution that minimises leakage of high-risk symbols to provide strong privacy
protection, which deteriorates utility. To solve this drawback of the watchdog mechanism,
we propose a subset randomisation method in the following section.

0 1 2 3 4 5 6 7 80
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ε

N
M

I

LDP
ALIP, λ=0.35
ALIP, λ=0.5
ALIP, λ=0.65

(a) Utility

0 1 2 3 4 5 6 7 80
0.5

1
1.5

2
2.5

3
3.5

4
4.5

ε

|l
og

(m
in

y
Ψ
(y
))
|

LDP
ALIP, λ=0.35
ALIP, λ=0.5
ALIP, λ=0.65

(b) Min-lift leakage

0 1 2 3 4 5 6 7 80
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ε

lo
g(

m
ax

y
Λ
(y
))
|

LDP
ALIP, λ=0.35
ALIP, λ=0.5
ALIP, λ=0.65

(c) Max-lift leakage
Figure 2. Privacy–utility trade-off of the watchdog mechanism with complete merging randomi-
sation for synthetic data under ε-LDP and (ε l , εu)-ALIP, where |X | = 17, |S| = 5, εLDP ∈
{0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and εu = (1− λ)ε.
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Figure 3. Privacy–utility trade-off of the watchdog mechanism with complete merging randomisation
for Adult dataset under ε-LDP and (ε l , εu)-ALIP, where S = {relationship}, X = {occupation},
|X | = 15, |S| = 5, εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and εu = (1− λ)ε.
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Figure 4. Privacy–utility trade-off of AORR for synthetic data where |X | = 17, |S| = 5, εLDP ∈
{0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and εu = (1− λ)ε.
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Figure 5. Privacy–utility trade-off of AORR for Adult dataset where S = {relationship}, X = {occupation},
|X | = 15, |S| = 5, εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and εu = (1− λ)ε.
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4. Subset Merging in Watchdog Mechanism

The watchdog mechanism with X-invariant randomisation is a low-complexity method
that can be easily applied when the privacy measures are symbol-wise. X-invariant ran-
domisation is the optimal privacy protection for the high-risk symbols that minimises
privacy leakage in XH and necessarily results in the worst data resolution. Thus, in this
section, we propose the subset merging algorithm to improve data resolution by randomising
disjoint subsets of high-risk symbols and enhancing utility in the watchdog mechanism. In
the following, we show that applying X-invariant randomisation to disjoint subsets of XH
increases the utility.

Let GXH = {X1,X2, · · · Xg} be a partition of XH , where for every i ∈ [g], Xi ⊆ XH :
Xi ∩ Xj = ∅, i 6= j, and XH = ∪g

i=1Xi. We randomise each subset Xi ∈ GXH by X-invariant
randomisation RYi (y) for x ∈ Xi and y ∈ Yi, where ∑y∈Yi

RYi (y) = 1. The resulting MI
between X and Y is

I(X; Y) = H(X)−
g

∑
i=1

∑
x∈Xi

PX(x) log
P(Xi)

PX(x)
. (13)

Definition 4. Assume two partitions, GXH = {X1, · · · ,Xg} and G ′XH
= {X ′1, · · · ,X ′g′}. We say

that G ′XH
is a refinement of GXH , or GXH is an aggregation of G ′XH

, if for every i ∈ [g], Xi = ∪j∈JiX
′
j

where Ji ⊆ [g′], and P(Xi) = ∑j∈Ji
P(X ′j ) (this definition is inspired from [39] (Definition 10)).

If G ′XH
is a refinement of GXH , then IGXH

(X; Y) ≤ IG ′XH
(X; Y).

Obtaining the optimal GXH that maximises utility and satisfies privacy constraints is a
combinatorial optimisation problem over all possible partitions of XH , which is cumber-
some to solve. Therefore, we propose a heuristic method in the following.

4.1. Greedy Algorithm to Make Refined Subsets of High-Risk Symbols

In Algorithm 1, we propose a bottom-up algorithm that constitutes a partition of
XH by merging high-risk symbols in disjoint subsets. It works based on a leakage risk
metric for each x ∈ XH : ω(x) = Λ(x) + Ψ(x) for ALIP and ω(x) = Γ(x) for LDP. For LIP,
ω(x) = max{log Λ(x), | log Ψ(x)|}. This metric is used to order the subsets by the privacy
risk level. Accordingly, to constitute a subset Xi ⊆ XH , Algorithm 1 bootstraps from the
highest risk symbol Xi = {argmaxx∈XH ω(x)} (line 5). Then, it merges a symbol x∗ with
Xi that minimises ω(Xi ∪ x∗) (line 7), as long as the privacy constraints are satisfied in Xi
(line 6). The ALIP privacy constraints for a subset Xi are given by

e−ε l ≤ Ψ(Xi) and Λ(Xi) ≤ eεu , (14)

where Ψ(Xi) = mins∈S
∑x∈Xi

PX|S(x|s)
∑x∈Xi

PX(x) and Λ(Xi) = maxs∈S
∑x∈Xi

PX|S(x|s)
∑x∈Xi

PX(x) . For LDP con-

straint, we have Γ(Xi) =
Λ(Xi)
Ψ(Xi)

≤ eε. In Algorithm 1, we used ALIP privacy constraints for
the while loops condition in lines 4, 6, and 12. For LDP, the privacy constraint is changed
to Γ(XQ) > ε, and ω(x) for LDP is applied. After the constitution of the partition GXH ,
the last subset Xg may not meet privacy constraints. Therefore, the leakage of Xg is checked
(line 12), and if there is a privacy breach, an agglomerate Xg is made by merging other sub-
sets to it that minimises subset risk, ω(Xg) = Λ(Xg) + Ψ(Xg) (lines 13–14), until privacy
constraints are satisfied.
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Algorithm 1: Subset merging in the watchdog mechanism.

1 Input: X , ε l , εu, PSX .
2 Output: GXH = {X1,X2, · · · Xg}.
3 Initialize: Obtain {XL,XH} in (6), XQ ← XH , and g = 1.
4 while

(
Ψ(XQ) < e−ε l or Λ(XQ) > eεu

)
and |XQ| > 0 do

5 Xg = argmax
x∈XQ

ω(x), and XQ ← XQ \ Xg;

6 while
(
Ψ(Xg) < e−ε l or Λ(Xg) > eεu

)
and |XQ| > 0 do

7 x∗ = arg min
x∈XQ

ω(Xg ∪ {x});

8 Xg ← Xg ∪ {x∗}, and XQ ← XQ \ {x∗};
9 end

10 GXQ = {X1,X2, · · · ,Xg}, and g← g + 1;
11 end
12 while

(
Ψ(Xg) < e−ε l or Λ(Xg) > eεu

)
and |GXQ | > 1 do

13 i∗ = arg min
1≤i<g

ω(Xg ∪ Xi), and Xg ← Xg ∪ Xi∗ ;

14 For i∗ + 1 ≤ j ≤ g update the indices of Xj’s to Xj−1 and g← g− 1;
15 GXQ = {X1,X2, · · · ,Xg};
16 end

4.2. Numerical Results

We show PUT for ALIP and LDP under subset merging randomisation in Figures 6 and 7
for synthetic and real data, respectively, with the same setup for the watchdog mechanism
in Section 3.1.3. Compared with the complete merging (Figures 2 and 3), the utility was
enhanced significantly for both LDP and ALIP in all scenarios under the same privacy
constraint. For instance, consider the symmetric case λ = 0.5 when ε = 1, and compare
PUT between the subset and complete merging. Figures 6a and 7a demonstrate a utility
value of around 0.73 for the subset merging compared to the utilities of 0.17 and 0.28
for the complete merging in Figures 2a and 3a, which are almost 320% and 160% utility
enhancement. Moreover, as Figures 6b,c and 7b,c illustrate, privacy constraints are satisfied
in all cases.
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Figure 6. Privacy–utility trade-off of subset merging randomisation under ε-LDP and (ε l , εu)-
ALIP, where |X | = 17, |S| = 5, εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and
εu = (1− λ)ε.
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Figure 7. Privacy–utility trade-off of subset merging randomisation for Adult dataset under
ε-LDP and (ε l , εu)-ALIP, where S = {relationship}, X = {occupation}, |X | = 15, |S| = 5,
εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.35, 0.5, 0.65}, ε l = λε, and εu = (1− λ)ε.

5. Subset Random Response

In the previous section, we showed that subset merging enhances utility in the watch-
dog mechanism significantly. In this section, we propose a method to decrease the com-
plexity of AORR for large datasets. We adopt AORR for subsets of XH to decrease the
complexity of AORR for large sets such that random response becomes applicable for
typically an order of magnitude larger X .

The AORR optimisation problem in (12) is equivalent to the following problem:

H(x)− min
PX|Y ,PY

H(X|Y) (15)

s.t. S− X−Y

e−ε l ≤ Ψ(y) and Λ(y) ≤ eεu , ∀y ∈ Y .

To reduce the complexity of (15), we divide X into XL and XH , similar to the watchdog
mechanism, and make a partition GXH = {X1,X2, · · · Xg} from XH . We randomise each
subset Xi ∈ GXH , i ∈ [g], separately by a randomisation pair (Qi, qi), where Qi is a matrix
in R|Xi |×|Yi | and qi is a vector in R|Yi |.

The elements of Qi and qi are given by

Qi(x|y) = Pr[X = x|Y = y], x ∈ Xi, y ∈ Yi, (16)

qi(y) = Pr[Y = y], y ∈ Yi. (17)

For each y ∈ Yi, we have ∑x∈Xi
Qi(x|y) = 1. Consequently, H(X|Y) = ∑i∈[g] Hi(X|Y),

where
Hi(X|Y) = − ∑

y∈Yi

qi(y) ∑
x∈Xi

Qi(x|y) log Qi(x|y), i ∈ [g]. (18)

This setting turns (15) into g optimisation problems for each subset Xi ∈ GXH , i ∈ [g] as
follows:

min
Qi ,qi

Hi(X|Y) (19)

s.t. 0 ≤ qi(y), ∀y ∈ Yi, (20)

0 ≤ Qi(x|y), ∀x ∈ Xi, ∀y ∈ Yi, (21)

∑
x∈Xi

Qi(x|y) = 1, ∀y ∈ Yi, (22)

∑
y∈Yi

Qi(x|y)qi(y) = PX(x), x ∈ Xi, (23)

e−ε l PS(s) ≤ ∑
x∈Xi

PS|X(s|x)Qi(x|y) ≤ eεu PS(s), ∀s ∈ S , y ∈ Yi. (24)
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The columns of the randomisation matrix Qi, i ∈ [g] can be expressed as the members
of a convex and bounded polytope Πi, which is given by the following constraints:

Πi =


v ∈ R|Xi | :
0 ≤ vk, ∀k ∈ [|Xi|],
∑
|Xi |
k=1 vk = 1,

e−ε l PS(s) ≤ ∑x∈Xi
PS|X(s|x)vk ≤ eεu PS(s), ∀s ∈ S , k ∈ [|Xi|]

. (25)

For each Xi ∈ GXH , i ∈ [g], let Vi = {vi
1 · · · , vi

M} be the vertices of Πi in (25), H
(
vi

k
)

be
the entropy of each vi

k for k ∈ [M], Pi
X be the probability vector of x ∈ Xi, and βi be the

solution to the following optimisation:

min
βi∈RM

M

∑
k=1

H
(

vi
k

)
βi

k,

s.t. βi
k ≥ 0, ∀k ∈ [M],
M

∑
k=1

vi
kβi

k = Pi
X .

(26)

Then, Yi and (Qi, qi) are given by

Yi = {y : βi
y 6= 0}; (27)

qi(y) = βi
y and Qi(.|y) = vi

y, y ∈ Yi. (28)

The (ε l , εu)-ALIP protocol,M : X → Y , is given by the pair of (PX|Y, PY) as follows:

PX|Y =


1{x=y}, x, y ∈ XL = YL,
Qi(x|y), x ∈ Xi, y ∈ Yi, i ∈ [g],
0, otherwise;

(29)

PY =

{
PX(y), y ∈ YL,
qi(y), y ∈ Yi, i ∈ [g].

(30)

5.1. Algorithm for Subset Random Response

We propose Algorithm 2 to implement AORR for subsets of XH , which we call subset
random response (SRR). In this algorithm, first, we obtain a partition GXH = {X1,X2, · · · Xg}
of XH via Algorithm 1. Then, based on GXH , we make another partition OXH and find the
optimal random response for each subset X ′i ∈ OXH (line 5) . By obtaining the optimal
random responses for all subsets, we obtain a pair (Qi, qi) for each subset X ′i , and conse-
quently PX|Y and PY, by (29) and (30) (lines 20–23). The while loop in lines 7–14 is for the
particular cases when the polytope in (25) is empty for a subset X ′i . It may occur for strict
privacy conditions where the privacy budget is very small. Since we reduce the dimension
of the original polytope in (15), it increases the possibility that no feasible random response
exists in some cases. Therefore, in such cases, we make a union with other subsets until
we have a nonempty polytope. If |GXH | > 0, then we make a union with another subset in
GXH (line 9) . If |GXH | = 0, it means that X ′g′ is the last subset in OXH ; therefore, we make a
union with previously made subsets in OXH and update the index g′ (line 12). Then, if the
condition in lines 17–18 is for the cases where there is no feasible polytope after making a
union of all subsets, this means that the problem in (15) cannot be solved. Whenever this
occurs, we apply the subset merging mechanism.

The number of polytope vertices in AORR is n ∼ O(exp (|X | − 1)), and the time
complexity is O(n). As |X | increases, the complexity of AORR increases exponentially in the
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|X | − 1. In SRR, for each Xi ∈ GXH , i ∈ [g], the number of vertices is ni ∼ O(exp (|Xi| − 1)),
and the complexity of SRR is O(maxi ni).

Algorithm 2: Subset random response.

1 Input: X , ε l , εu, PSX .
2 Output: OXH = {X ′1,X ′2, · · · X ′g′}, PX|Y, and PY.

3 Initialize: Obtain GXH = {X1,X2, · · · Xg} by Algorithm 1 and g′ = 1.
4 while |GXH | > 0 do
5 X ′g′ = X1, find Πg′ in (25), and GXH ← GXH \ X1;

6 Update subset indices in GXH , such that Xi−1 ← Xi for 2 ≤ i ≤ g and
g← g− 1;

7 while Πg′ = ∅ and
(
|GXH | > 0 or |OXH | > 0

)
do

8 if |GXH | > 0 then
9 X ′g′ = X

′
g′ ∪ X1, find Πg′ in (25), and GXH ← GXH \ X1;

10 Update subset indices in GXH , such that Xi−1 ← Xi for 2 ≤ i ≤ g and
g← g− 1;

11 else
12 X ′g′ = X

′
g′ ∪ X

′
g′−1, g′ ← g′ − 1, and find Πg′ in (25);

13 end
14 end
15 Set OXH = {X ′1,X ′2, · · · X ′g′} and g′ ← g′ + 1;

16 end
17 if |OXH | = 1 and Π1 = ∅ then
18 Apply subset merging mechanism for GXH in Algorithm 1.
19 else
20 for i← 1 to g′ do
21 Solve optimisation in (26) for X ′i and obtain βi, Qi, and qi;
22 end
23 Obtain PX|Y in (29) and PY in (30).
24 end

5.2. Numerical Results

Here, we compare the PUT of AORR with SRR in Algorithm 2 and subset merging
in Algorithm 1. Figure 8 depicts mean values of utility, leakage, and time complexity for
100 randomly generated distributions where λ = 0.65 and simulation setup is the same as
that in Section 3.1.3. The result of the Adult dataset is also shown in Figure 9.

Figures 8a–c and 9 demonstrate that SRR results in better utility and higher leakage
than subset merging, and its PUT is very close to AORR. Figure 8d illustrates the processing
time of each mechanism for synthetic data from which we observe that the complexity of
AORR and SRR is much higher than the subset merging. Running SRR is less complex
than AORR for strict privacy constraints (ε < 1) and for ε > 2.5. While SRR shows higher
complexity for some privacy budgets, 1 ≤ ε ≤ 2.5, it has the advantage in high-dimension
systems. Figure 10 shows a PUT comparison between SRR and subset merging for synthetic
data where |X | = 200, |S| = 15, ε ∈ {1, 1.25, · · · , 8}, and λ = 0.5. This experiment shows
that both SRR and subset merging are applicable to large datasets. Obviously, SRR provides
better utility (Figure 10a) and higher leakage (Figure 10b,c), which is still below the given
budgets ε l and εu.
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Figure 8. Comparison of privacy–utility trade-off and time complexity between AORR, SRR
(Algorithm 2), and subset merging (Algorithm 1) for synthetic data, where |X | = 17, |S| = 5,
εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ = 0.65, ε l = λεLDP, and εu = (1− λ)εLDP.
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Figure 9. Comparison of privacy–utility trade-off between AORR, SRR (Algorithm 2), and subset
merging (Algorithm 1) for Adult dataset, where S = {relationship}, X = {occupation}, |X | = 15,
|S| = 5, εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ = 0.65, ε l = λεLDP, and εu = (1− λ)εLDP.
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Figure 10. Comparison of privacy–utility trade-off and time complexity between SRR (Algorithm 2)
and subset merging (Algorithm 1) for synthetic data, where |X | = 200, |S| = 15, εLDP ∈
{1, 1.25, 1.5, 1.75, · · · , 8}, and ε l = εu = εLDP

2 .
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6. Lift-Based and Lift-Inverse Measures

In this section, we consider some recently proposed privacy measures that quantify
the divergence between the posterior and prior belief on sensitive features, including `1-
norm [32], strong χ2-privacy criterion [33], and α-lift [34]. They have been proposed as a
stronger version of their corresponding average measures, which are the total variation
distance [35], χ2-divergence [40], and Sibson MI [16], respectively. We call them lift-based
measures and define them in the following.

Definition 5. For each y ∈ Y , lift-based privacy measures are defined as follows:

• The `1-lift is given by
Λ`1(y) , ∑

s∈S
PS(s)|l(s, y)− 1|, (31)

then the total variation distance will be

T(S; Y) =
1
2
EY[Λ`1(Y)].

• The χ2-lift is given by

Λχ2(y) , ∑
s∈S

PS(s)
(
l(s, y)− 1

)2, (32)

then χ2-divergence will be
χ2(S; Y) = EY[Λχ2(Y)].

• The α-lift is given by

ΛS
α(y) ,

(
∑
s∈S

PS(s)l(s, y)α

)1/α

, (33)

then Sibson MI will be
IS
α (S; Y) =

α

α− 1
logEY[ΛS

α(Y)].

Here, we reveal their relationship with ALIP.

Proposition 3. If (ε l , εu)-ALIP is satisfied, then

1. max
y∈Y

Λ`1(y) ≤ eεu − 1;

2. max
y∈Y

Λχ2(y) ≤ (eεu − 1)2;

3. max
y∈Y

ΛS
α(y) ≤ eεu .

The proof is given in Appendix D.

Proposition 4. Let sy = argmax
s∈S

[l(s, y)] and ȳ = argmaxy∈Y Λ(y), then

1. If max
y∈Y

Λ`1(y) ≤ ε⇒ max
y∈Y

Λ(y) ≤ ε/PS(sȳ) + 1;

2. If max
y∈Y

Λχ2(y) ≤ ε⇒ max
y∈Y

Λ(y) ≤
√

ε/PS(sȳ) + 1;

3. If max
y∈Y

ΛS
α(y) ≤ ε⇒ max

y∈Y
Λ(y) ≤ ε/PS(sȳ)

1
α .

Proof. The proof is given in Appendix E.

Proposition 3 shows that lift-based measures, similar to their corresponding average
leakages, are upper-bounded by the max-lift bound. Proposition 4 indicates that if we
bound lift-based measures, they can only restrict the max-lift leakage. Accordingly, if one
only applies a lift-based measure to protect privacy, such as in previous works [32–34],
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it may cause significant leakage on the min-lift. Therefore, in the following, we propose
lift-inverse measures to bound the min-lift leakage.

6.1. Lift-Inverse Measures

In Propositions 3 and 4, we showed that lift-based measures only bound the max-
lift. In this subsection, we present lift-inverse measures to restrict the min-lift leakage,
miny∈Y Ψ(y) = miny∈Y [mins∈S l(s, y)].

Definition 6. For lift-based measures in (31) to (33), we replace l(s, y) with 1
l(s,y) and call the

resulting quantities lift-inverse measures.

• The `1-lift-inverse is given by

Ψ`1(y) = ∑
s∈S

PS(s)
∣∣∣∣ 1
`(s, y)

− 1
∣∣∣∣. (34)

• The χ2-lift-inverse is given by

Ψχ2(y) , ∑
s∈S

PS(s)
(

1
`(s, y)

− 1
)2

. (35)

• The α-lift-inverse is given by

ΨS
α(y) ,

(
∑
s∈S

PS(s)
(

1
`(s, y)

)α
)1/α

. (36)

In the following propositions, we show the relationship between (ε l , εu)-ALIP.

Proposition 5. If (ε l , εu)-ALIP is achieved, we have

1. max
y∈Y

Ψ`1(y) ≤ eε l − 1;

2. max
y∈Y

Ψχ2(y) ≤ (eε l − 1)2;

3. max
y∈Y

ΨS
α(y) ≤ eε l .

Proof. The proof is provided in Appendix F.

Proposition 6. Let sy = argmin
s

l(s, y) and y = argmin
y

[Ψ(y)], then

1. If max
y∈Y

Ψ`1(y) ≤ ε⇒ min
y∈Y

Ψ(y) ≥
PS(sy)

ε + PS(sy)
;

2. If max
y∈Y

Ψχ2(y) ≤ ε⇒ min
y∈Y

Ψ(y) ≥

√
PS(sy)

√
ε +

√
PS(sy)

;

3. If max
y∈Y

ΨS
α(y) ≤ ε⇒ min

y∈Y
Ψ(y) ≥ ε−1PS(sy)

1
α .

Proof. The proof is provided in Appendix G.

Propositions 5 and 6 demonstrate that the aforementioned lift-inverse measures are
associated with the min-lift, and bounding them can restrict the min-lift leakage. Since
lift-based and lift-inverse measures quantify privacy leakage by a function of lift averaged
over sensitive features, they can be regarded as more relaxed measures than the min- and
max-lifts.
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6.2. PUT and Numerical Results

Optimal randomisations for `1-lift and χ2-lift privacy, which maximise MI as the
utility measure, were proposed in [32,33], respectively. Note that ORR is not applicable to
these measures since their privacy constraints are not convex. However, here, we apply
the watchdog mechanism with subset merging randomisation to investigate the PUT for
lift-based and lift-inverse measures. This application shows that the watchdog mechanism
with X-invariant randomisation is a low-complexity method that can be applied to all the
aforementioned measures. Moreover, our subset merging algorithm significantly enhances
the utility, which is comparable to the optimal solutions.

To apply lift-based and lift-inverse measures to the subset merging algorithm, we
replace Λ(y) and Ψ(y) in (6) and Algorithm 1, with the corresponding lift-based and lift-
inverse measures in Definitions 5 and 6, respectively. For example, XL and XH for the α-lift
are obtained as

XL , {x ∈ X : ΨS
α(x) ≤ eε l and ΛS

α(x) ≤ eεu} and XH = X \ XL. (37)

The privacy risk measure in Algorithm 1 is also given by ω(x) = ΨS
α(x) + ΛS

α(x). We
compare the PUT of lift-based and lift-inverse privacy with (ε l , εu)-ALIP, where lift-based
and lift-inverse measures are bounded as follows:

• `1-privacy: Λ`1(y) ≤ eεu − 1 and Ψ`1(y) ≤ eε l − 1, ∀y ∈ Y .
• χ2-privacy: Λχ2(y) ≤ (eεu − 1)2 and Ψχ2(y)≤ (eε l − 1)2, ∀y ∈ Y .
• α-lift-privacy: ΛS

α(y) ≤ eεu and ΨS
α(y) ≤ eε l , ∀y ∈ Y .

We apply the subset merging mechanism with the simulation setup in Section 3.1.3.
Figures 11 and 12 demonstrate the PUT of ALIP for λ = 0.5 and `1 and χ2 privacy for
λ = {0.5, 0.65} for synthetic and Adult dataset, respectively. When λ = 0.5, `1 and χ2

privacy result in higher utility compared to ALIP for all values of ε since lift-based and
lift-inverse measures are relaxations of max- and min-lift. To observe the effect of the
asymmetric scenario, we depict `1 and χ2 privacy for λ = 0.65. From Figures 11a and 12a,
we observe that lift-inverse relaxation (λ = 0.65) enhances utility significantly for ε > 1,
but worsens utility for ε < 1. The reason is that when ε < 1, lift-inverse privacy constraint
in the asymmetric scenario is strict, which requires more symbols to be merged in each
subset and causes larger subsets and utility degradation.

A comparison between α-lift privacy and ALIP for synthetic data is shown in Figure 13
for α ∈ {2, 10, 100}. α-lift privacy is tunable such that when α = ∞, it is equivalent to
ALIP, and when α < ∞, it results in a relaxation scenario. We observe tunable property in
Figure 13 where α = 2 has the highest utility. Moreover, when α increases, the PUT of α-lift
privacy becomes closer to ALIP.
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Figure 11. Comparison of privacy–utility trade-off between ALIP, `1-privacy, and χ2-privacy for
synthetic data, where |X | = 17, |S| = 5, εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.5, 0.65}, ε l = λε, and
εu = (1− λ)ε.
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(c) Max-lift leakage
Figure 12. Comparison of privacy–utility trade-off between ALIP, `1-privacy, and χ2-privacy
for Adult dataset where, S = {relationship}, X = {occupation}, |X | = 15, |S| = 5, εLDP ∈
{0.25, 0.5, 0.75, · · · , 8}, λ ∈ {0.5, 0.65}, ε l = λε, and εu = (1− λ)ε.
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Figure 13. Comparison of privacy–utility trade-off between ALIP and α-lift-privacy, where |X | = 17,
|S| = 5, εLDP ∈ {0.25, 0.5, 0.75, · · · , 8}, ε l = εu = εLDP

2 , and α ∈ {2, 10, 100}.

7. Conclusions

In this paper, we studied lift, the likelihood ratio between posterior and prior belief
about sensitive features in a dataset. We demonstrated the distinction between the min-
and max-lifts in terms of data privacy concerns. We proposed ALIP as a generalised version
of LIP to have a more compatible notion of privacy with lift asymmetry. ALIP can enhance
utility in the watchdog and ORR mechanisms, two main approaches to achieve lift-based
privacy. We proposed two subset randomisation methods to enhance the utility of the
watchdog mechanism and reduce ORR complexity for large datasets. We also investigated
the existing lift-based measures, showing that they could incur significant leakage on the
min-lift. Thus, we proposed lift-inverse measures to restrict the min-lift leakage. Finally, we
applied the watchdog mechanism to study the PUT of lift-based and lift-inverse measures.
For future work, one can consider the applicable operational meaning of the min-lift and
max-lift. Subset randomisation can be applied to decrease the complexity and enhance
the utility of other privacy mechanisms. Moreover, optimal randomisation for α-lift is also
unknown and could be considered.
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Appendix A

In this appendix, we represent the privacy breach in terms of min-lift and max-lift
based on the work of Evfimievsk et al. [29]. In this work, they proposed the following
definition for privacy breach and provided a detailed example [29] (Example 1).

Definition A1. For ρ1, ρ2 ∈ R+ : 0 < ρ1 < ρ2 < 1, we say that there is a straight or upward
ρ1-to-ρ2 privacy breach with respect to a property Q(S) if for some y ∈ Y

Pr[Q(S)] ≤ ρ1, Pr[Q(S)|Y = y] > ρ2.

We say that there is a downward ρ2-to-ρ1 privacy breach with respect to Q(S) if for some y ∈ Y

Pr[Q(S)] ≥ ρ2, Pr[Q(S)|Y = y] < ρ1.

Using the property Q′(S) = ¬Q(S), we have

Pr[Q′(S)] ≤ 1− ρ2, Pr[Q′(S)|Y = y] ≥ 1− ρ1.

Therefore, a downward ρ2-to-ρ1 privacy breach implies an upward (1− ρ2)-to-(1− ρ1)
for the complement event Q′(S). In the original definition, the constraint for Pr[Q(S)|Y = y]
includes equality. Here, we remove the equality constraint for consistency with the context.
They proved that in the ε-LDP scenario, the sufficient condition to prevent both upward
ρ1-to-ρ2 and downward ρ2-to-ρ1 privacy breach is

eε ≤ ρ2

ρ1
· 1− ρ1

1− ρ2
. (A1)

Here, we provide sufficient conditions to prevent upward ρ1-to-ρ2 and downward ρ2-to-ρ1
in terms of min- and max-lift as follows:

Proposition A1. To prevent upward and downward privacy breaches it is sufficient to have:

1− ρ2

1− ρ1
≤ Ψ(y), Λ(y) ≤ ρ2

ρ1
, ∀y ∈ Y .

Proof. We prove this for an upward privacy breach on a property Q(S) and a downward
privacy breach on its complement ¬Q(S). For any property Q(S) with Pr[Q(S)] ≤ ρ1
we have

Pr[Q(S)|Y = y] = ∑
s∈Q(S)

PS|Y(s|y) = ∑
s∈Q(S)

PS(s).PY|S(y|s)
PY(y)

≤ ∑
s∈Q(S)

PS(s)max
s

PY|S(y|s)
PY(y)

= Λ(y)Pr[Q(S)].

Since Pr[Q(S)] ≤ ρ1, if Λ(y) ≤ ρ2
ρ1

, then Pr[Q(S)|Y = y] ≤ ρ2 and there is no upward
privacy breach for Q(S). Similarly, for downward privacy breach on ¬Q(S), we have

Pr[¬Q(S)|Y = y] = ∑
s∈¬Q(S)

PS|Y(s|y) = ∑
s∈¬Q(S)

PS(s).PY|S(y|s)
PY(y)

≥ ∑
s∈¬Q(S)

PS(S)min
s

PY|S(y|s)
PY(y)

= Ψ(y)Pr[¬Q(S)].
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Since Pr[¬Q(S)] ≥ 1− ρ1, if Ψ(y) ≥ 1−ρ2
1−ρ1

, then Pr[¬Q(S)|Y = y] ≥ 1− ρ2 and there is no
downward privacy breach for ¬Q(S).

Appendix B

1. For MI, we have
I(S; Y) = EPSY [i(S, Y)] ≤ EPSY [εu] = εu.

2. • For the total variation distance, we have

T(S; Y) =
1
2 ∑

y∈Y
PY(y) ∑

s∈S
PS(s)|l(s, y)− 1| ≤ 1

2 ∑
y∈Y

PY(y) ∑
s∈S

PS(s)|Λ(y)− 1|

=
1
2 ∑

y∈Y
PY(y)|Λ(y)− 1| ≤ 1

2 ∑
y∈Y

PY(y)|eεu − 1| = 1
2
(eεu − 1).

• For χ2-divergence, we have

χ2(S; Y) = ∑
y∈Y

PY(y) ∑
s∈S

PS(s)
(
l(s, y)− 1

)2 ≤ ∑
y∈Y

PY(y) ∑
s∈S

PS(s)
(
Λ(y)− 1

)2

= ∑
y∈Y

PY(y)
(
Λ(y)− 1

)2 ≤ ∑
y∈Y

PY(y)
(
eεu − 1

)2
= (eεu − 1)2.

3. • For Sibson MI, we have

IS
α (S; Y) =

α

α− 1
log ∑

y∈Y
PY(y)

(
∑
s∈S

PS(s)l(s, y)α

)1/α

≤ α

α− 1
log ∑

y∈Y
PY(y)

(
∑
s∈S

PS(s)Λ(y)α

)1/α

≤ α

α− 1
log ∑

y∈Y
PY(y)

(
∑
s∈S

PS(s)eεuα

)1/α

=
εuα

α− 1
.

• For Arimoto MI, we have

IA
α (S; Y) =

α

α− 1
log ∑

y∈Y
PY(y)

(
∑
s∈S

PSα
(s)l(s, y)α

)1/α

≤ α

α− 1
log ∑

y∈Y
PY(y)

(
∑
s∈S

PSα
(s)Λ(y)α

)1/α

≤ α

α− 1
log ∑

y∈Y
PY(y)

(
∑
s∈S

PSα
(s)eεuα

)1/α

=
εuα

α− 1
,

where PSα
(s) = PS(s)α

∑s∈S PS(s)α .

4. In LDP, for all y ∈ Y , we have

Γ(y) = sup
s,s′∈S

PY|S(y|s)
PY|S(y|s′)

=
maxs∈S PY|S(y|s)
mins∈S PY|S(y|s)

=
maxs∈S PY|S(y|s)/PY(y)
mins∈S PY|S(y|s)/PY(y)

=
Λ(y)
Ψ(y)

≤ eεu

e−ε l
= eε l+εu .

Appendix C

Here, we prove that X-invariant randomisation minimises privacy leakage in XH
for LDP.
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Proposition A2. A randomisation r(y|x), x, y,∈ XH can attain (ε,XH)-LDP if and only if:

ΓLDP(XH) =
maxs∈S P(XH |s)
mins∈S P(XH |s)

≤ eε. (A2)

Proof. Sufficient condition: Consider an X-invariant randomization where r(y|x) = R(y),
∀x ∈ XH , and y ∈ YH . If (A2) holds, then for all s, s′ ∈ S , we have

P(XH |s)
P(XH |s′)

≤ maxs∈S P(XH |s)
mins∈S P(XH |s)

≤ eε ⇒

P(XH |s) ≤ P(XH |s′)eε ⇒
R(y)P(XH |s) ≤ R(y)P(XH |s′)eε ⇒

∑
x∈XH

r(y|x)PX|S(x|s) ≤ ∑
x∈XH

r(y|x)PX|S(x|s′)eε ⇒

PY|S(y|s) ≤ PY|S(y|s′)eε.

For the necessary condition, note that for all s, s′ ∈ S and y ∈ YH , we have

PY|S(y|s) ≤ eεPY|S(y|s′)⇒ ∑
x∈XH

r(y|x)PX|S(x|s) ≤ eε ∑
x∈XH

r(y|x)PX|S(x|s′),

then by a summation over all y ∈ YH on both sides, we obtain

∑
x∈XH

PX|S(x|s) ∑
y∈YH

r(y|x)︸ ︷︷ ︸
=1

≤ eε ∑
x∈XH

PX|S(x|s′) ∑
y∈YH

r(y|x)︸ ︷︷ ︸
=1

⇒ P(XH |s) ≤ P(XH |s′)eε ⇒ P(XH |s)
P(XH |s′)

≤ eε. (A3)

Because (A3) holds for all s, s′ ∈ S , we have

max
s,s′∈S

P(XH |s)
P(XH |s′)

=
maxs∈S P(XH |s)
mins∈S P(XH |s)

≤ eε.

Appendix D

1. For `1-lift, we have

Λ`1(y) = ∑
s∈S

PS(s)|l(s, y)− 1| ≤ ∑
s∈S

PS(s)|Λ(y)− 1| = Λ(y)− 1 ≤ eεu − 1.

2. For χ2-lift, we have

Λχ2(y) = ∑
s∈S

PS(s)
(
l(s, y)− 1

)2 ≤ ∑
s∈S

PS(s)(Λ(y)− 1)2 = (Λ(y)− 1)2 ≤ (eεu − 1)2.

3. For the α-lift, we have

ΛS
α(y) =

(
∑
s∈S

PS(s)l(s, y)α

)1/α

≤
(

∑
s∈S

PS(s)Λ(y)α

)1/α

= Λ(y) ≤ eεu .

Appendix E

If sy = argmax
s∈S

l(s, y), then we have Λ(y) = l(sy, y). Recall that ȳ = argmax
y∈Y

[Λ(y)].
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1. When max
y∈Y

Λ`1(y) ≤ ε, for all y ∈ Y , we have

Λ`1(y) = ∑
s∈S

PS(s)|l(s, y)− 1| ≤ ε⇒ PS(sy)|l(sy, y)− 1| = PS(sy)(Λ(y)− 1) ≤ ε,

which results in
max
y∈Y

Λ(y) ≤ ε

PS(sȳ)
+ 1.

2. When max
y∈Y

Λχ2(y) ≤ ε, for all y ∈ Y , we have

Λχ2(y) = ∑
s∈S

PS(s)(l(s, y)− 1)2 ≤ ε⇒ PS(sy)
(
l(sy, y)− 1

)2
= PS(sy)(Λ(y)− 1)2 ≤ ε,

which results in
max
y∈Y

Λ(y) ≤
√

ε

PS(sȳ)
+ 1.

3. When max
y∈Y

ΛS
α(y) ≤ ε, for all y ∈ Y , we have

ΛS
α(y) =

(
∑
s∈S

PS(s)l(s, y)α

)1/α

≤ ε⇒ PS(sy)l(sy, y)α = PS(sy)Λ(y)α ≤ εα,

which results in
max
y∈Y

Λ(y) ≤ ε

PS(sȳ)
1
α

.

Appendix F

Since (ε l , εu)-ALIP is satisfied, for all y ∈ Y , we have e−εu ≤ 1
l(s,y) ≤ eε l and

max
s

(
1

l(s, y)

)
=

1
Ψ(y)

.

1. For `1-lift-inverse, we have

Ψ`1(y) = ∑
s∈S

PS(s)
∣∣∣∣ 1
l(s, y)

− 1
∣∣∣∣ ≤ ∑

s∈S
PS(s)

∣∣∣∣ 1
Ψ(y)

− 1
∣∣∣∣ = 1

Ψ(y)
− 1 ≤ eε l − 1.

2. For χ2-lift-inverse, we have

Ψχ2(y) = ∑
s∈S

PS(s)
(

1
l(s, y)

− 1
)2
≤ ∑

s∈S
PS(s)

(
1

Ψ(y)
− 1
)2

=

(
1

Ψ(y)
− 1
)2
≤ (eε l − 1)2.

3. For α-lift-inverse, we have

ΨS
α(y) =

(
∑
s∈S

PS(s)
(

1
l(s, y)

)α
) 1

α

≤
(

∑
s∈S

PS(s)
(

1
Ψ(y)

)α
) 1

α

=
1

Ψ(y)
≤ eε l .

Appendix G

If sy = argmin
s

l(s, y), then we have Ψ(y) = l(sy, y). Recall that y = argmin
y

[Ψ(y)].

1. When max
y∈Y

Ψ`1(y) ≤ ε, for all y ∈ Y , we have

Ψ`1(y) = ∑
s∈S

PS(s)
∣∣∣∣ 1
l(s, y)

− 1
∣∣∣∣ ≤ ε⇒ PS(sy)

∣∣∣∣ 1
l(sy, y)

− 1
∣∣∣∣ = PS(sy)

(
1

Ψ(y)
− 1
)
≤ ε,
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which results in

min
y∈Y

Ψ(y) ≥
PS(sy)

ε + PS(sy)
.

2. When max
y∈Y

Ψχ2(y) ≤ ε, for all y ∈ Y , we have

Ψχ2(y) = ∑
s∈S

PS(s)
(

1
l(s, y)

− 1
)2
≤ ε⇒ PS(sy)

(
1

l(sy, y)
− 1
)2

= PS(sy)

(
1

Ψ(y)
− 1
)2
≤ ε,

which results in

min
y∈Y

Ψ(y) ≥

√
PS(sy)

√
ε +

√
PS(sy)

.

3. When max
y∈Y

ΨS
α(y) ≤ ε, for all y ∈ Y , we have

ΨS
α(y) =

(
∑
s∈S

PS(s)
(

1
l(s, y)

)α
)1/α

≤ ε⇒ PS(sy)

(
1

l(sy, y)

)α

= PS(sy)

(
1

Ψ(y)

)α

≤ εα,

which results in
min
y∈Y

Ψ(y) ≥ ε−1PS(sy)
1
α .
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