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Abstract: With the remarkable development of deep learning in the field of science, deep neural
networks provide a new way to solve the Stefan problem. In this paper, deep neural networks
combined with small sample learning and a general deep learning framework are proposed to
solve the two-dimensional Stefan problem. In the case of adding less sample data, the model can
be modified and the prediction accuracy can be improved. In addition, by solving the forward
and inverse problems of the two-dimensional single-phase Stefan problem, it is verified that the
improved method can accurately predict the solutions of the partial differential equations of the
moving boundary and the dynamic interface.

Keywords: Stefan problem; deep neural networks; small sample learning; efficient calculation
method

1. Introduction

For a fixed solution of a partial differential equation, it is usually restricted to a certain
region. If this region varies with time, we call it the moving boundary problem. If part of
the boundary of the fixed region is to be determined simultaneously with the solution of the
fixed problem, we call it the free boundary problem, and the unknown boundary is called
the free boundary. For free boundary problems, in addition to the usual fixed solution
conditions, boundary conditions (Stefan conditions) must be added to the free boundary.

The Stefan problem is a class of heat conduction problems. It was first formulated
by the Austrian physicist Joseph Stefan in the late 19th Century. The background of this
problem is closely related to the industrial production during the industrial revolution
of that time. In industrial production, many substances needed to be heat-treated, so the
laws and methods of heat conduction needed to be studied to better control and utilize
heat energy.

The difficulty of the Stefan problem is tracing the location of the interface, for example
to model the process of change at the intersection of ice and water. Since the interface
changes with time, these problems are also called free boundary problems. The study of free
boundary problems has a wide practical background, such as plasma physics, percolation
mechanics, and plasticity mechanics [1–6], which have presented various forms of constant
and indeterminate free boundary problems. Furthermore, chemical vapor deposition [7],
the vapor permeation of thermally cracked carbon in chemistry [8], tumor growth in
medicine [9–13], the expansion propagation problem of biological populations [14–17],
and the U.S. option pricing problem [18,19] also have free boundary problems. In fact, all
free boundary problems are nonlinear problems, and it is important to solve them with
the solution of the free boundary, which will be determined together with the solution of
the fixed problem. Since these problems are closely related to practical applications, the
efficient algorithmic implementation of free boundary problems is of great importance for
scientific research and production practice.
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Currently, a variety of numerical methods to the Stefan problems have emerged.
The boundary integral method numerically solves the integral equation at a moving
interface [20]. The interface tracing method explicitly represents the free boundary by
using a fixed grid of points [1]. The immersion interface method [21] uses a fixed spa-
tial grid for some physical quantities and a moving grid for the free boundary, and the
information between the free boundary and the fixed grid is obtained by the immersion in-
terface method. Segal [22] proposed an adaptive grid method for solving the free boundary
problem, where the movement of the grid is determined by the control equations. Murray
and Landis [23] compared the fixed-grid method with the adaptive-grid method. The
adaptive-grid method can obtain the free boundary location more accurately, while the
fixed-grid method can obtain certain physical quantities (temperature distribution over the
whole solution area). More accurately, the enthalpy difference method [24] is an implicit
method that represents the heat of the whole system by introducing an enthalpy function
with a jump discontinuity at the free boundary, and this discontinuity helps to determine
the location of the interface. The moving grid method [25] is a common method for solving
free boundary problems, where the free boundary position is always fixed at the nth grid
point, and the grid needs to be updated at each time step due to the movement of the free
boundary. In recent years, the phase field method [26] has became a popular method based
on the phase field function, which corresponds to a fixed constant in each phase and the
interface region between the two values. This method considers a fuzzy boundary between
the two phases, which is different from the classical Stefan problem, where the phase
transition occurs in this interface region, where the thickness of the region is an artificially
given parameter. The level-set approach [27] has also received increasing attention in
recent years, by introducing a level-set function, which defines the interface position as
a zero level set, obtained from the advection equation related to the velocity field, which
varies considerably in different applications of the level-set approach. Sussman used the
velocity of the fluid to model compressible two-phase flow [28], and Chen extended the
interface moving velocity to the whole region by the advection equation in the solidification
problem [27]. In contrast to the moving grid method, the level set method uses a fixed grid
and avoids updating the grid at each time step. In contrast to the fixed-gridmethod, which
finds the interface position at a fixed grid point, the phase-field method does not track the
interface position precisely, and therefore, the discretization at the interface position is not
as accurate as the fixed-grid method.

All the above methods have proven their high accuracy for some specific Stefan
problems, and each has its own advantages and disadvantages. However, a general
framework for solving the Stefan forward and inverse problems is still missing in all the
methods at this stage.

In recent years, with the continuous development of neural networks, the use of neu-
ral networks to solve partial differential equations has gradually become popular [29–32].
Raissi et al. [33] proposed physics-informed neural networks for solving forward and in-
verse problems of partial differential equations, and deep-learning-based physics-informed
neural networks have also been proposed for solving free boundary problems [34], as well
as neural networks to solve the Stefan problems using a lattice-free grid-free automatic
differentiation technique, which breaks the limitations of the above methods.

Deep learning models have achieved advanced results in solving various types of
partial differential equations. However, the success of deep learning models relies heavily
on a large amount of training data. In some specialized fields, the cost of data acquisition
is very large. In addition, labeling samples requires much effort. Therefore, in recent
years, a new learning approach, small sample learning, has gained popularity [35]. Small
sample learning has been successfully applied to many new fields, such as: neural networks
translation, target detection, etc. By using small sample learning, the accuracy of the model
can be improved with few labeled data.

In this paper, we extended the recently emerging physics-informed neural networks
framework [33] to solve the general Stefan problems. As we know, the original framework
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of physics-informed neural networks does not deal well with free boundary problems
with time variation. To achieve this goal, we propose and modified the neural network
framework proposed by Wang [34]. The specific contributions of this paper can be sum-
marized as follows: Firstly, we incorporated the idea of small sample learning into neural
network training, i.e., a small sample loss is added to the loss function optimization in
order to improve the training accuracy and correct the model. Secondly, we changed the
loss function to cope with the outliers that may arise from free boundary shifts. Finally, we
applied the proposed framework to irregular regions and irregular free boundaries to test
its performance. In summary, the proposed method provides a new general framework for
solving the Stefan problems.

This paper is structured as follows: Section 2 introduces the Stefan problem and its
mathematical model. Section 3 introduces the knowledge of neural networks and the
PINNs’ improvement strategy. Section 4 verifies the accuracy and applicability of the
proposed framework with numerical arithmetic examples. The conclusions and outlook
are given in Section 5.

2. Model Issues

In this section, we introduce the mathematical model of the Stefan problem and the
corresponding boundary conditions using a one-dimensional single-phase Stefan problem
in the solidification or melting process as an example.

As shown in Figure 1, assume that a semi-infinite solid occupying 0 6 x < ∞ is in the
process of solidification or melting. For any moment t > 0, the 0 6 x < ∞ region consists
of a solid and a liquid. The liquid is located in the 0 6 x < α(t) region, and the solid is
located in the α(t) < x < ∞ region.

Figure 1. One-dimensional single-phase Stefan problem solidification or melting model.

If the volume change due to solidification or melting is not considered and the region
0 6 x < α(t) is considered, the temperature u(x, t) satisfies the classical diffusion equation
over the region:

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 , x ∈ (0, α(t)), t ∈ (0, T), (1)

and for the initial and boundary conditions:

u(x, 0) = u0(x), x ∈ [0, α(0)], (2)

u(0, t) = h(t), t ∈ [0, T]. (3)

at the interface α(t), the following Stefan conditions need to be met:

α(0) = α0, (4)

u(α(t), t) = 0, t ∈ [0, T], (5)
∂u
∂x

(α(t), t) = g(t), t ∈ [0, T], (6)

where α(t) denotes the free boundary, (4) denotes the initial position of the free boundary,
and (5) denotes the temperature at the time of freezing. For the forward problem, in
thermal physics, it is the simultaneous solution of the temperature distribution and the free
boundary for which various parameters are known. Each Stefan problem corresponds to a
class of inverse problems, and similar to other mathematical physics inverse problems, the
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inverse Stefan problem is not definite, while the uniqueness and stability of the solution
are not always guaranteed.

3. Numerical Methods

In this section, the main methods and ideas of feedforward neural networks and
physics-informed neural networks for solving partial differential equations are reviewed,
and a general model of improved physics-informed neural networks combined with small
sample learning for solving the Stefan problem is proposed.

3.1. Feedforward Neural Networks

Mathematically, a neural network is a specific class of complex functions, the sim-
plest of which is a feedforward neural network (FNN), which is also called a multilayer
perceptron (MLP). Let F P(x) : Rdin → Rdout be a P-layer feedforward neural networks
with P−1 hidden layers; the number of neurons in the input layer is N0 = din, and the
number of neurons in the output layer is NP = dout. The network weight of the pth layer is
Wp ∈ RNp×Np−1, and the network bias is bp ∈ RNp . If given the activation function σ, the
feedforward neural network (FNN) can be expressed as

F 0x = x ∈ Rdin ,

F px = σ(WpF p−1(x) + bp) ∈ RNp , (7)

FPx = WPF P−1(x) + bP ∈ Rdout .

3.2. Physics-Informed Neural Networks

We considered the following parameterized partial differential equation:

F(x, t; ∂xu, ∂tu, . . . ; λ) = 0, (x, t) ∈ Ω× (0, T],

u(x, 0) = g(x), x ∈ Ω, (8)

Bu(x, t) = h(x, t), (x, t) ∈ ∂Ω× [0, T].

where x ∈ Ω ∈ Rn, F denotes the residuals of the partial differential equation, F in (∂xu, ∂tu, . . .)
denotes the space–time differential operator, λ = [λ1, λ2, λ3 . . .] represents the parameters
of the partial differential equation, u(x, t) is the solution of the partial differential equation,
Ω denotes the solution region of the partial differential equation, ∂Ω is the boundary of
Ω, and B represents any of the boundary operators, including Dirichlet, Neumann, Robin,
and periodic.

PINNs [33] use a fully connected feedforward neural networks consisting of multiple
hidden layers to approximate the solution of the partial differential equation with spatio-
temporal coordinates u(x, t) as the input. The neural network is displayed in Figure 2.

Figure 2. Physics-informed neural network structure diagram.
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First, we establish the loss function based on the form of the partial differential
equation and the initial margin value condition:

Ltotal = λfLf + λicLic + λbcLbc, (9)

where

Lf =
1

Nf

Nf

∑
i=1
‖F(x, t; ∂xu, ∂tu, . . . ; λ)‖2

2,

Lic =
1

Nic

Nic

∑
j=1

∥∥∥u
(

xj
ic, 0
)
− g
(

xj
ic

)∥∥∥2

2
, (10)

Lbc =
1

Nbc

Nbc

∑
k=1

∥∥∥B(u
(

xk
bc, tk

bc

))
− h
(

xk
bc, tk

bc

)∥∥∥2

2
,

where Lf, Lic, and Lbc denote the loss functions satisfying the control equations, initial
conditions, and boundary conditions and λf, λic, and λbc denote the weights of the loss
functions Lf, Lic, and Lbc, respectively, where the derivatives involved are automatically
differentiated by the neural networks.

After the loss function Ltotal is established, the optimal parameters θ∗ = (W∗, b∗) of
the neural networks are obtained by iterative updating with the objective of minimizing
the loss function, considering that the loss function is nonlinear and nonconvex for θ∗,
so a gradient-based optimizer is used to minimize the loss function, such as: Adagrad,
AdaDelta, Adam, momentum, and RMSProp.

3.3. Neural Network Improvement Strategies for Stefan Problem

PINNs have been applied in various scientific and engineering fields to solve various
complex physical problems. In the free boundary problem, the simple PINNs can no longer
meet the requirements of the Stefan problem, and certain structures need to be changed
accordingly. Therefore, we propose the following improvement strategies.

3.3.1. Neural Networks’ Basic Structure

Recall that, for the Stefan problem, we aim to find both the temperature solution u(x, t)
and the moving boundary α(t). To this end, we build two deep neural networks uθ(x, t)
and αδ(t) with θ and δ as independent parameter spaces to approximate the solutions
u(x, t) and α(t). Then, we approximate the area temperature solution and the moving
boundary by minimizing a composite loss function.

3.3.2. Adding Additional Terms to the Loss Function

The original PINN loss function is shown in (9), and in this paper, we considered
adding a loss function with small sample data, as follows:

Ltotal = λfLf + λicLic + λbcLbc + λsslLssl, (11)

where Lssl is the loss function for the small sample data, which is used to correct the model.
Adding small sample data can improve the prediction accuracy of the model, especially in
the case of fewer data. Meanwhile, it can improve the generalization ability and robustness
of the model to avoid the risk of overfitting.

3.3.3. Loss Function Improvement Strategy

The mean-squared error (MSE) is the most-commonly used regression loss function in
deep learning and is the sum of squares of the distance between the target variable and the
predicted value. Considering the specificity of Stefan problem, sharp or irregular regions
will appear during the melting or freezing process, which leads to outliers, and the mean-
squared error is very sensitive to outliers; thus, we introduce the log-cosh loss function, for
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a small error; log(cosh(x)) is similar to x2

2 , while for large errors, log(cosh(x)) is similar
to |x| − log 2, which means that the log-cosh loss function can have the advantage of the
mean-squared error while not being affected by too many outliers. It is also quadratically
derivable at every point. The introduction of the log-cosh loss function allows for better
model generality and model prediction accuracy. The log-cosh loss function is expressed
as follows:

L
(
Y, Ŷ

)
=

n

∑
i=1

log
(
cosh

(
Ŷi −Yi

))
, (12)

where the log-cosh loss function is smooth and has a continuous derivative property, which
allows the model to be trained using derivative-based optimization algorithms such as
gradient descent, and the log-cosh loss function is a symmetric loss function; it has equal
loss for positive and negative errors. This symmetry allows the model to better handle both
positive and negative errors, thus improving the model fitting ability.

To summarize, our proposed algorithm is displayed in Algorithm 1 and visualized in
the schematic diagram in Figure 3, where we explain each step in detail. First, we construct
two neural networks uθ(x, t) and αδ(t). θ =

{
Wk, bk

}
16k6K

is the set of weight matrices

and bias vectors in u; δ =
{

W j, bj}
16j6J is the set of weight matrices and bias vectors in α;

for the neural networks as a substitute for u and α, we can use auto-differentiation and the
chain rule to differentiate the functions, then we need to restrict the two neural networks to
satisfy the physical conditions imposed by the PDE and Stefan condition, while it is harder
to achieve if we constrain over the whole region, so we constrain u and α at scattered points
and various training sets and measure the difference between the two neural networks and
the constraint; we define the loss function as the sum of the hyperbolic cosine logarithms of
the equations and the residuals of the boundary conditions (where the derivatives involved
are handled automatically by AD), and in the last step, we minimize the total loss function
to obtain the optimal parameters and, thus, the optimal solution. Since the loss is nonlinear
and nonconvex, we usually use gradient-based optimizers to minimize the loss function,
such as gradient descent, Adam [36], and L-BFGS [37].

Figure 3. Stefan neural network structure diagram.
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Algorithm 1 Deep neural networks for solving the Stefan problem.

1: Two neural networks uθ(x, t) and αδ(t) with θ and δ as parameters and propagating
forward independently of each other are constructed.

2: The training setsKf for the temperature control equation, the training setsKu0 andKunc

for the initial margin condition, the training sets Kδ0 for the initial margin condition of
the moving interface, Kδnc , Kδic , Kδbc

, and the training set Kussl for the residuals of the
internal small sample data.

3: The total loss function is assigned by summing the hyperbolic cosine logarithms of the
control equation, the initial margin conditional residuals, the moving boundary initial
margin conditional residuals, and the interior point residuals.

4: The optimal parameters θ and δ are obtained by minimizing the loss function and
training the neural network to obtain the optimal solution.

4. Numerical Examples

In this section, we consider several two-dimensional classical forward and inverse
Stefan problems to demonstrate the robustness and power of the proposed model. We
validated the proposed model for different numbers of small sample data points (0, 50,
100, 200). The results showed that small sample data can effectively improve the detection
accuracy. In Section 4.1, one two-dimensional forward Stefan problem is given to test the
accuracy of the proposed model, and in Section 4.2, two two-dimensional inverse Stefan
problems are given to verify the generality of the model.

For error evaluation, we used the relative L2 norm:

Error =

√
∑M

j=1 |u
j
exact − uj

pred|2√
∑M

j=1 |ui
exact|2

. (13)

Here, M represents the number of all points in the training process of two mutually indepen-
dent neural networks, upred represents the predicted values of the corresponding coordinate
points, and uexact represents the exact values of the corresponding coordinate points.

4.1. Two-Dimensional Single-Phase Stefan Forward Problem

In this subsection, a classical two-dimensional solid melting problem model is used as
an example to illustrate the effectiveness of the method [38].

As depicted in Figure 4, let D ∈ R2, for any 0 < t < T, Ω(t), be the time-dependent
bounded subdomain in D, ∂Ω(t) be its boundary, and ∂Ω(t) = Γ(t) ∪ Σ(t), where
Γ = ∪0<t<TΓ(t) represents the fixed boundary and Σ = ∪0<t<TΣ(t) represents the mov-
ing boundary.

Figure 4. Stefan neural networks structure diagram.
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The above Stefan problem can be described in mathematics as

ut − ∆u = 0 inΩ, (14)

u|Γ = g, (15)

u|Ω(0) = u0, (16)

Σ(0) = Σ0, (17)

u|Σ = u∗, (18)
∂u
∂n
|Σ = h, (19)

where ∆ is the Laplace operator for spatial variables, n is the normal vector of the definition
field Ω with respect to the time variables, and the definition field Ω is

Ω(t) =
{
(x, y, t) ∈ R3 : 0 < x < α(y, t), 0 < y < 1

}
⊂ Ω∗. (20)

α(y, t) denotes the unknown free boundary; the artificial region is defined as:
Ω∗ = [0, 2.25]× [0, 1]× [0, 1], defining Σ(t) for

Σ(t) =
{
(x, y, t) ∈ R3 : Φ(x, y, t) = 0, 0 < y < 1, 0 6 t 6 1

}
, (21)

where Φ(x, y, t) = x− α(y, t). Define the following parameters:

u0(x, y) = exp
(
−x +

1
2

y +
1
2

)
, x, y ∈ Ω(0),

u(α(y, t), y, t) = u∗ = 0, (22)

h =
1
|∇Φ|

∂Φ

∂t
, α(y, 0) = α0(y) =

1
2

y +
1
2

.

The boundary conditions are defined as

u(x, 0, t) = g1(x, t) = exp
(

1.25t− x +
1
2

)
− 1, (x, 0, t) ∈ Ω,

u(0, y, t) = g2(x, t) =
(

1.25t + 0.5y +
1
2

)
− 1, (0, y, t) ∈ Ω, (23)

u(x, 1, t) = g3(x, t) = exp(1.25t− x + 1), (x, 1, t) ∈ Ω.

Construct the following true solution:

u(x, y, t) = exp
(

5
4

t− x +
1
2

y +
1
2

)
− 1,

α(y, t) =
1
2

y +
5
4

t +
1
2

. (24)

As shown in Algorithm 1, we built two fully connected neural networks uθ(x, y, t)
and αδ(y, t) that propagate independently of each other to approximate the solution of
the control equation u(x, y, t) and the moving boundary α(y, t), and we trained these two
neural networks by minimizing the loss function.

L(θ, δ) = Lf(θ) + Lu0(θ) + Lubc(θ) + Lα0(δ) + Lαbc(θ, δ) + Lαnc(θ, δ) + Lussl(θ), (25)

where

Lf(θ) =
N f

∑
i=1

log
(

cosh
(

uθ

(
xi

f, yi
f, ti

f

)
− u

(
xi

f, yi
f, ti

f

)))
,



Entropy 2023, 25, 675 9 of 21

Lu0 (θ) =

Nu0

∑
j=1

log
(

cosh
(

uθ

(
xj

u0 , yj
u0 , 0

)
− u0

(
xj

u0 , yj
u0 , 0

)))
,

Lubc (θ) =

Nubc

∑
k=1

log
(

cosh
(

uθ

(
xk

ubc
, 0, tk

ubc

)
− g1

(
xk

ubc
, tk

ubc

)))

+

Nubc

∑
k=1

log
(

cosh
(

uθ

(
0, yk

ubc
, tk

ubc

)
− g2

(
yk

ubc
, tk

ubc

)))

+

Nubc

∑
k=1

log
(

cosh
(

uθ

(
xk

ubc
, 1, tk

ubc

)
− g2

(
xk

ubc
, tk

ubc

)))
,

Lα0 (δ) =

Nα0

∑
j=1

log
(

cosh
(

αδ

(
yj

α0 , 0
)
− α0

(
yj

α0

)))
,

Lαbc (θ, δ) =

Nαbc

∑
k=1

log
(

cosh
(

uθ

(
αδ

(
yk

bc
, tk

bc

)
, yk

bc
, tk

bc

)))
,

Lαnc (θ, δ) =
Nαnc

∑
k=1

log
(

cosh
(

∂uθ

∂n

(
αδ

(
yk

nc
, tk

nc

)
, yk

nc
, tk

nc

)
− h
(

yk
nc

, tk
nc

)))
,

Lussl (θ) =

Nussl

∑
j=1

log
(

cosh
(

uθ

(
xj

ssl
, yj

ssl
, tj

ssl

)
− u

(
xj

ssl
, yj

ssl
, tj

ssl

)))
.

In particular, since the moving interface α(y, t) is unknown in advance, the residual point
region of the equation was set to the artificial region Ω∗, and the neural networks was
trained to restrict the neural network prediction solution to the defined domain Ω. Two
Stefan neural networks uθ(x, t) and αδ(t) were constructed with independent forward
propagation, and the neural network parameters were set as follows: uθ(x, t) has a network
structure of 3 + 100× 3 + 1; the input layer has three variables and three hidden layers;
each layer contains 100 neurons; the output layer outputs the neural networks prediction
solution. The network structure of αδ(t) is 2 + 100× 3 + 1; similarly, the input layer has
two variables, and the output layer has three hidden layers containing 100 neurons each,
while the moving boundary of the neural network prediction is the output. The training
set was selected as N f with 256 points, 256 points for each of the initial border conditions
(including the initial border conditions on the free boundary), and 0, 50, 100, and 200 for
the small sample data points in the region. The results are shown in Table 1. The same
initial learning rate of 10−3 was set for both neural networks, and the number of iterations
was 40,000 with Adam’s algorithm, using tanh as the activation function and using Xavier
to initialize both neural networks.

Table 1. Effect of different small sample data points on two-dimensional forward Stefan problem.

Small Sample Data 0 (Original [34]) 50 100 150 200

Solutions’ L2 error 8.12× 10−2 1.12× 10−2 8.57× 10−3 9.87× 10−3 3.32× 10−2

Boundary L2 error 4.32× 10−2 4.22× 10−2 3.25× 10−2 4.33× 10−2 4.45× 10−2

By training the neural networks with the above parameters, Figure 5 shows the L2

error plot of the predicted solution and the true solution, and Figure 6 shows the L2 error
plot of the predicted free interface α(y, t) and the true free boundary of the neural networks.
It is worth mentioning that the number of small samples ussl is set to 100 in Figures 5 and 6,
and we can see that the L2 errors reached 8.57× 10−3 and 3.25× 10−2, respectively, which
is a significant improvement in accuracy compared with the original neural networks [34].
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Figure 5. Improved physics-informed neural networks for solving the two-dimensional forward
Stefan problem solution error diagram.
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Figure 6. Improved physics-informed neural networks for solving the two-dimensional forward
Stefan problem to predict the free boundary error diagram.

4.2. Two-Dimensional Single-Phase Stefan Inverse Problem I

For the two-dimensional single-phase Stefan inverse problem, we assumed that
the boundary conditions are not known and provide additional information at the final
moment T:

u|Ω(T) = uT. (26)

Then, this class of inverse problems means that we know the data at the moment
T = 1 and need to find the temperature solution u(x, y, t) and the free boundary α(y, t) and
satisfy (14), (16), and (17)–(19).

u(x, y, T) = uT = exp(1.25− x + 0.5y + 0.5)− 1. (27)

As shown in Algorithm 1, we built two fully connected neural networks uθ(x, y, t)
and αδ(y, t) that propagate independently of each other to approximate the solution of
the control equation u(x, y, t) and the moving boundary α(y, t), and we trained these two
neural networks by minimizing the loss function.

L(θ, δ) = Lr(θ) + Lu0(θ) + LuT(θ) + Lαbc(θ, δ) + Lαnc(θ, δ) + Lα0(δ) + Lussl(θ), (28)

where the loss function definitions are all the same as in Section 4.1, except that LuT(θ):

LuT(θ) =
m

∑
j=1

log
(

cosh
(

uθ

(
xj, yj, 1

)
− u

(
xj, yj, 1

)))
. (29)

We trained the neural networks using exactly the same parameters as in Section 4.1,
as shown in Table 2, which visualizes the L2 error of the solution and moving boundaries
when the small sample data are 0, 50, 100, 150, and 200, respectively.

Table 2. Effect of different small sample data points on the two-dimensional inverse Stefan problem I.

Small Sample Data 0 (Original [34]) 50 100 150 200

Solutions’ L2 error 8.89× 10−2 3.82× 10−2 3.66× 10−2 4.49× 10−2 4.59× 10−2

Boundary L2 error 3.41× 10−2 3.35× 10−2 3.15× 10−2 3.32× 10−2 3.36× 10−2

Figure 7 gives the error plots of the predicted and exact temperature solutions at moments
t = 0.2, 0.4, 0.6, and 0.8, and Figure 8 shows the error plots of the predicted moving boundaries
and the true moving boundaries. In Figures 7 and 8, the number of small samples ussl was set
to 100, and we can see that the L2 error reached 3.66× 10−2 and 3.15× 10−2, which improved
the accuracy of the neural networks compared with the original neural networks.
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Figure 7. Improved physics-informed neural networks for solving the two-dimensional inverse
Stefan problem solution error diagram.
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Figure 8. Improved physics-informed neural networks for solving the two-dimensional inverse
Stefan problem I to predict the free boundary error diagram.

4.3. Two-Dimensional Single-Phase Stefan Inverse Problem II

This part mainly discusses the Stefan problem of inversion of the phase change bound-
ary in the case of known temperature and heat changes at the boundary of a homogeneous
medium, without considering any initial conditions or boundary conditions at the moving
interface; only some given temperature measurements in the definition domain were con-
sidered, and neural networks were used to approximate the temperature solution and the
unknown position of the moving boundary, then the above inverse problem is described
by the mathematical formula:

ut −∆u = 0, (x, y) ∈ Ω,

Σ(0) = Σ0, (30)

u|Σ = u∗,
∂u
∂n
|Σ = h.

Similarly, two fully connected neural networks uθ(x, y, t) and αδ(y, t) that propagate
independently of each other were constructed to approximate the solution of the equation
u(x, y, t) and the moving boundary α(y, t), and we trained these two neural networks by
minimizing the following loss functions:

L(θ, δ) = Ldata(θ) + Lf(θ) + Lαbc(θ, δ) + Lαnc(θ, δ) + Lussl(θ), (31)

where

Ldata(θ) =
Ndata

∑
i=1

log
(

cosh
(

uθ

(
xi

data, yi
data, ti

data

)
− ui

(
xi, yi, ti

)))
,

Lf(θ) =
Nf

∑
i=1

log
(

cosh
(

uθ

(
xi

f, yi
f, ti

f

)
− u

(
xi

f, yi
f, ti

f

)))
,

Lαbc(θ, δ) =

Nαbc

∑
k=1

log
(

cosh
(

uθ

(
αδ

(
yk

bc, tk
bc

)
, yk

bc, tk
bc

)))
,

Lαnc(θ, δ) =
Nαnc

∑
k=1

log
(

cosh
(

∂uθ

∂n

(
αδ

(
yk

nc, tk
nc

)
, yk

nc, tk
nc

)
− h
(

yk
nc, tk

nc

)))
,
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Lussl(θ) =

Nussl

∑
j=1

log
(

cosh
(

uθ

(
xj

ssl, yj
ssl, tj

ssl

)
− u

(
xj

ssl, yj
ssl, tj

ssl

)))
.

In particular, the first loss function was constructed from the residuals of the tempera-
ture observation points in the region, where

{
(xi, yi, ti), ui}N

i=1 is a randomly sampled data
point in the domain. The neural networks parameters were set as follows: the network
structures of the two neural networks uθ(x, t) and αδ(t) were the same as in the previous
example, and the training set was selected as follows: the residuals of the equations and
the initial margin conditions (including the initial margin conditions on the free boundary)
were each selected as 256 points. The results are shown in Table 3. The initial learning rate
was set to 10−3 for both neural networks, and the number of iterations was set to 40,000
and optimized by Adam optimizer. Xavier initialized both neural networks.

Table 3. Effect of different small sample data points on the two-dimensional inverse Stefan problem II.

Small Sample Data 0 (Original [34]) 50 100 150 200

Solutions’ L2 error 6.12× 10−2 5.12× 10−2 9.97× 10−3 4.32× 10−2 7.62× 10−2

Boundary L2 error 3.04× 10−2 2.13× 10−2 1.26× 10−2 2.56× 10−2 4.25× 10−2

From Figures 9 and 10, it can be seen that the L2 error of the solution of the inverse
problem and the moving interface can reach 9.97× 10−3 and 1.26× 10−2 for the improved
deep neural networks with small sample data of 100, which is a significant improvement
compared with the original neural network.

Figure 9. Cont.
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Figure 9. Improved physics-informed neural networks for solving the two-dimensional inverse
Stefan problem solution error diagram.

Figure 10. Improved physics-informed neural networks for solving the two-dimensional inverse
Stefan problem II to predict the free boundary error diagram.

The above two-dimensional single-phase Stefan inverse problem II is based on the
temperature measurement value M = 50, and then, we tested the performance of our
proposed neural network framework by adding white noise κ with magnitude equal
to 1%, 2%, 5%, and 10% of the L∞ norm of the solution function u(x, y, t), where the
small sample data points were 100. The relative L2 errors obtained for the prediction
solutions u(x, y, t) and α(y, t) are shown in Tables 4 and 5, respectively. We can observe
that the prediction accuracy of both u(x, y, t) and α(y, t) improved as the total number
of temperature measurement data M increased, but became lower as the noise level κ
increased. The latter case verified our conjecture that the dataset became increasingly
inaccurate due to higher levels of noise. Another important observation is that, given
a sufficient amount of temperature measurement data (e.g., M = 200), even with noise
corruption up to 10%, the relative L2 error between the predicted solutions u(x, y, t) and
α(y, t) can reach 6.78× 10−2 and 3.77× 10−2, and it can be seen that the improved physics-
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informed neural networks with small sample learning can accurately identify the moving
boundaries despite the presence of a large amount of noisy data.

Figure 11 shows the drop plots of the loss function for the three cases when the noise
level κ is 10%, and it can be seen that the loss function image became relatively stable with
the addition of the small sample loss function, which also validated the relevant narratives
in Sections 3.3.2 and 3.3.3.

Figure 11. The two-dimensional inverse Stefan problem II with a 10% noise level of the MSE, log-cosh
and log-cosh loss function with the addition of small sample loss decreases the plot.

Table 4. Inverse problem II relative L2 error of the prediction solution u(x, t) for different measure-
ment values M and different noise levels κ.

M
κ

κ = 0% κ = 1% κ = 2% κ = 5% κ = 10%

M = 50 9.97× 10−3 8.75× 10−2 9.87× 10−2 1.95× 10−1 5.23× 10−1

M = 100 2.64× 10−2 8.87× 10−2 9.98× 10−2 1.51× 10−1 8.36× 10−1

M = 200 1.85× 10−2 2.26× 10−2 4.21× 10−2 5.75× 10−2 6.78× 10−2

Table 5. Inverse problem II relative L2 error of the free boundary α(t) for different measurement
values M and different noise levels κ.

M
κ

κ = 0% κ = 1% κ = 2% κ = 5% κ = 10%

M = 50 1.26× 10−2 1.43× 10−2 4.28× 10−2 1.72× 10−1 1.9× 10−1

M = 100 1.48× 10−2 3.87× 10−2 5.11× 10−2 8.41× 10−2 1.21× 10−1

M = 200 1.23× 10−2 1.35× 10−2 2.72× 10−2 2.81× 10−2 3.77× 10−2

4.4. Irregular Area Stefan Problem

To make our proposed algorithmic framework more convincing, the main work of this
subsection is to consider numerical solutions and the free boundary of the two-dimensional
Stefan problem on an L-shaped complex computational domain that differs from the tradi-
tional [a, b]× [c, d] rectangular domain, which is more capable of testing the performance of
our algorithmic framework. It is worth mentioning that the equations and Stefan conditions
used in this section are the same as in Section 4.1, except that the boundary information is
different due to the complex computational domain.

Figure 12 represents the plan view of the selected training points on the L-shaped com-
plex computational domain. Unlike the above example, we randomly selected the training
points on the boundary, and after the complex computational domain was triangulated
and dissected, the internal points were selected at the nodes instead of selecting random
samples as internal information.
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Figure 12. Red circled points indicate boundary points and initial points. Blue star-shaped points
indicate internal points.

We used the same hyperparameters in the numerical example above and constructed
the same loss function in (15), minimizing the loss function by the Adam optimization
algorithm to obtain the optimal solution and the free boundary, as shown in Figure 13,
where we can see that our proposed method can also achieve good accuracy for complex
computational domains. The relative L2 error between the predicted solutions u(x, y, t) and
α(y, t) can reach 5.74× 10−3 and 1.56× 10−2. Snapshots of moments for t = 0.2 s, t = 0.4 s,
and t = 0.8 s are given. It can be seen that the model predicts the temperature solution and
moving boundary, in good agreement with the exact solution.

4.5. Irregular Free Boundary Stefan Problem

In this subsection, consider an irregular free boundary problem, the initial shape of
which is described by a unit circle of x2 + y2 = 1 with equations and boundary conditions
as described in Section 4.1, t ∈ [0, 1], and consider the following analytic solution:

u(x, y, t) = et
(
(t + 1)x2 + (5t + 1)y2 − t2 − 1

)
(32)

α(x, y, t) = (t + 1)x2 + (5t + 1)y2 − t2 − 1 (33)

Similar to the description in the previous section, we randomly selected training
points on the boundary, and after the complex computational domain was triangulated and
dissected, internal points were selected at the nodes. The distribution of training points is
shown in the Figure 14.

Next, we also used the same loss function construction as in (15) to predict u(x, y, t)
and α(x, y, t). We give snapshots of the predictions when t = 0.2 s, t = 0.4 s, and t = 0.8 s
in Figure 15. From that, we can see that our proposed neural network framework can also
have a good prediction for general irregular moving boundaries; meanwhile, the relative
L2 error between the predicted solutions u(x, y, t) and α(x, y, t) can reach 3.51× 10−2 and
2.47× 10−2.
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Figure 13. Exact solution, prediction solution, point-by-point error, and free boundary location for
different moments of the temperature in the irregular region of the Stefan problem.

Figure 14. Scatter plot of training points.
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Figure 15. Exact solution, prediction solution, point-by-point error, and free boundary location for
different moments of temperature in the irregular boundary of the Stefan problem.

5. Conclusions

In this paper, by improving the neural network structure of physics-informed neural
networks (PINNs) and combining the idea of small sample learning, a generalized neural
network framework for solving the Stefan problems was proposed, which can be directly
applied to various types of Stefan problems with only small changes. After several numeri-
cal experiments, it was proven that the improved deep neural networks based on small
sample learning improved the computational accuracy by 2–3-times compared with the
original neural network, and the model generalization ability was significantly improved.
Meanwhile, this paper demonstrated that the proposed method had a good prediction effect
and accuracy through the examples of the irregular region and irregular free boundary.
The study of Stefan problems with sharp, irregular geometries and topological variations,
as well as three-dimensional or even higher-dimensional Stefan problems is the focus of
the future work.
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