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Abstract: Physics-informed neural networks (PINNs) are effective for solving partial differential
equations (PDEs). This method of embedding partial differential equations and their initial boundary
conditions into the loss functions of neural networks has successfully solved forward and inverse
PDE problems. In this study, we considered a parametric light wave equation, discretized it using the
central difference, and, through this difference scheme, constructed a new neural network structure
named the second-order neural network structure. Additionally, we used the adaptive activation
function strategy and gradient-enhanced strategy to improve the performance of the neural network
and used the deep mixed residual method (MIM) to reduce the high computational cost caused by
the enhanced gradient. At the end of this paper, we give some numerical examples of nonlinear
parabolic partial differential equations to verify the effectiveness of the method.

Keywords: physics-informed neural networks; second-order neural network; deep mixed residual
method; parabolic partial differential equations

1. Introduction

With the development of computational technology, neural network theory, and data
science, deep learning algorithms have been remarkably successful in various application
areas [1–3]. In physics and engineering, many important physical models are described
as partial differential equations (PDEs), such as Navier–Stokes equations [4] for fluid
mechanics and Maxwell equations [5] for electromagnetic field theory. When solving partial
differential equations using traditional numerical methods, such as the Finite Difference
Method (FDM) [6], Finite Element Method (FEM) [7], Finite Volume Method (FVM) [8],
Radial Basis Function Method (RBF) [9], etc., problems such as high computational costs
and the curse of dimensionality are often encountered. Over the last few years, the use of
machine learning to solve partial differential equations has also rapidly expanded [10–13].
In 2018, Karniadakis and his research team were the first to put forward the concept of
physics-informed neural networks (PINNs) [14,15], which solve PDEs by embedding them
and their initial boundary value conditions in the loss function of the neural network thanks
to automatic differentiation [16], following the physical laws described by nonlinear partial
differential equations. Compared to traditional methods, PINNs are independent of the
grid’s quality, can avoid the curse of dimensionality [17], and offer significant advantages
in solving forward and inverse problems for partial differential equations. They also have
great advantages in high-dimensional problems and complex geometric region problems.
They have been extensively applied in various domains involving partial differential
equations [18–22].

Although PINNs have achieved good results in solving partial differential equations,
there are still some aspects that need improvement, such as their accuracy and efficiency
when used to solve complex problems. Several approaches have been proposed to im-
prove PINNs’ performance, for example, residual-based adaptive refinement (RAR) [23],

Entropy 2023, 25, 674. https://doi.org/10.3390/e25040674 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040674
https://doi.org/10.3390/e25040674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6618-3570
https://doi.org/10.3390/e25040674
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040674?type=check_update&version=1


Entropy 2023, 25, 674 2 of 22

importance sampling [24], adaptive activation function [25–27], adaptive weight [28–30],
etc. These strategies can go a long way toward improving the neural network’s perfor-
mance. Meng et al. proposed the parareal physics-informed neural network (PPINN) [31],
which decomposes a long-time problem into multiple short-time problems for parallel
iterative solutions, which can accelerate the training speed of PINNs. Additionally, a PINN
algorithm based on domain decomposition was also proposed [32–35], as well as other ex-
tension algorithms [36–38]. Likewise, the theoretical analysis of PINNs presents numerous
difficulties. Nevertheless, Mishra et al. derived a generalization error estimate according to
the training error and the number of training samples by taking advantage of the stability
characteristics of partial differential equations [39]. During this time, in [40], for a particular
type of inverse problem, it was also proven that PINNs produce a strict estimation of the
generalization error when approximating these inverse problems. Ryck et al. [41] placed a
strict upper bound on the errors produced by PINNs and extended physics-informed neural
networks (xPINNs) when solving Navier–Stokes equations under certain preconditions.

It is well known that increasing the width and depth of a network can improve
network performance, and deep networks are generally better than shallow ones, but they
are harder to train. A residual neural network [42,43] with a jump connection structure
can be very effective in avoiding gradient vanishing [44] and can train deeper networks.
Based on a residual network, Ruthotto et al. [45] established a connection between a deep
residual convolutional neural network and a partial differential equation and constructed a
second-order convolutional neural network for image recognition through a second-order
hyperbolic equation. With this idea in mind, here, we constructed a second-order network
structure based on a parametric light wave equation. In order to improve the performance
of the neural network, we also used an adaptive activation function strategy and a gradient-
enhanced strategy [46] and combined the deep mixed residual method (MIM) [47] to reduce
the calculation cost of high-order derivatives. We applied this method to solve forward and
inverse problems for partial differential equations. The heat conduction and diffusion of a
substance appear to be processes of entropy change, which can be described by parabolic
partial differential equations [48,49]. This is also a motivation for this paper to explore the
deep learning algorithm for solving parabolic partial differential equations.

The rest of this document is arranged in the following manner: In Section 2, we take
a brief look at solving differential equations through physics-informed neural networks.
In Section 3, the methodology proposed in this paper is presented in detail. In Section 4,
several numerical examples are given to test the efficiency of the proposed method in the
resolution of differential equations, including forward and inverse problems. Finally, in
Section 5, we summarize this work.

2. PINNs for Solving PDEs

This section introduces physics-informed neural networks (PINNs) for solving par-
tial differential equations. Mathematically, a deep neural network can be regarded as a
composite function of the input variable x, with a very high capacity for approximation. A
neural network with a depth of L has only 1 input layer, L− 1 hidden layers, and 1 output
layer. Simultaneously, we assume that there are Nk neurons in the k layer, so the corre-
sponding weight matrix and bias vectors are Wk ∈ RNk×Nk−1 and bk ∈ RNk , respectively.
Then, we take into account a nonlinear activation function fact, including logistic sigmoid
(1/(1 + e−x)), hyperbolic tangent (tanh) ((ex − e−x)/(ex + e−x)), the rectified linear unit
(ReLU) (max{0, x}), etc. Finally, the neural network can be recursively expressed in the
following way [25]:

y(x, Θ) = WL( fact(WL−1(· · · fact(W2( fact(W1x + b1)) + b2) · · · ) + bL−1)) + bL, (1)
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where Θ =
{

Wi, bi}L
i=1 denotes the trainable parameters in the neural network. Addition-

ally, we consider the following spatiotemporal PDEs for the solution u(x, t) parameterized
by the parameter λ defined on the domain Ω× (0, T) [46]:

F (x, t, u, ut,∇u, ∆u, λ) = 0, (x, t) ∈ Ω× (0, T),

Bu = g, (x, t) ∈ ∂Ω× (0, T),

u = h, (x, t) ∈ Ω× {0},
(2)

where (x) = (x1, x2, · · · , xd) ∈ Rd, λ is a constant or can be a function of x and t, Ω ⊂
Rd(d ∈ N+) is the d-dimensional physical domain, T is the upper limit of the time interval,
and B is a representation of the boundary conditions, including the Dirichlet boundary
condition, Robin boundary condition, etc.

Physics-informed neural networks are a method in which a partial differential equation
and its initial boundary value conditions are added to the loss function using automatic
differentiation (AD) [16]. Our objective is to find the optimal weights for which the correctly
defined loss function is minimized. For Equation (2), we typically use the Mean Square
Error (MSE) to construct the loss function, which is formed as follows [50]:

Loss = L f + Lb + Li, (3)

where
L f =

1∣∣∣T f

∣∣∣ ∑
(x,t)∈T f

|F (x, t, y, yt,∇y, ∆y, λ)|2,

Lb =
1
|Tb| ∑

(x,t)∈Tb

|By− g|2,

Li =
1
|Ti| ∑

(x,t)∈Ti

|y− h|2,

where T f , Tb, and Ti represent the set of PDE residual training points, the set of boundary
training points, and the set of initial training points, respectively. The PINN framework [23]
can be found in Figure 1. In some PDEs, boundary conditions can be enforced accurately
and automatically by modifying the network architecture [51–54], eliminating the term
associated with the boundary conditions from the loss function (3).

Figure 1. Schematic of PINNs for Equation (2).

3. Methodology

When PINNs are used to solve differential equations, sigmoid and tanh are typically
used as nonlinear activation functions that take part in neural network training. If the input
dataset is very small or very large, the sigmoid and tanh derivatives will be around 0, and
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the gradient update will slow down during backpropagation [55]; the vanishing gradient
problem [44] will inevitably occur. He et al. present a residual learning framework [42,43]
to train deeper networks and avoid gradient vanishing. This neural network framework
adopts residual machine learning every few hidden layers, and a building block is shown
in Figure 2a [42]. The building block is defined as [42]:

Sl+1 = F
(

Sl , W
)
+ Sl . (4)

Here, Sl and Sl+1 are the input and output vectors of the l-layers considered, and the
functionF

(
Sl , W

)
represents the residual mapping to be learned. The example in Figure 2a

has one layer and F
(

Sl , W
)
= fact(W l+1Sl + bl+1).

(a) A building block of the residual network.

(b) A building block of the second-order network.

Figure 2. A building block.

The residual network in Equation (4) can be seen as the forward Euler formula [45,56]:

∂S
∂t

∣∣∣∣
[l, l+1]

≈ Sl+1 − Sl

δt
= F

(
Sl , W

)
. (5)

Therefore, the residual network can be represented by a first-order differential equation.
Similarly, different network structures can be constructed by considering different

numerical schemes for hyperbolic PDEs. For a second-order dynamical system of the
form [45]:

∂2S
∂t2 = F (S, W), (6)

Ruthotto et al. established the relationship between a deep residual network and partial
differential equations. They obtained a second-order convolutional neural network in the
following form by discretizing the above second-order equation [45]:

Sl+1 = 2Sl − Sl−1 + δ2
tF
(

Sl , W
)

. (7)

The building block of the second-order network is shown in Figure 2b. In this study, the
structure of the proposed second-order neural network was constructed using a parametric
light wave equation in the following form [57]:

∂S
∂t

+ ε
∂2S
∂t2 = F (S, W). (8)
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We can obtain this by discretizing Equation (8) using the central difference:

(
1

2δt
+

ε

δ2
t
)Sl+1 = F

(
Sl , W

)
+

2ε

δ2
t

Sl + (
1

2δt
− ε

δ2
t
)Sl−1. (9)

It can be seen that Formulas (7) and (9) have the same form, except that the coefficients
of each term are different. Therefore, the network represented by Formula (9) is still a
second-order network.

We used a network structure like that in Formula (9) for PINNs. For this network
structure, we used a simple linear combination and nonlinear mapping of the activation
function for the first hidden layer, the residual connection shown in Figure 2a for the
second hidden layer, and the connection mode given by Equation (9) and Figure 2b for
other hidden layers. Finally, we added a linear output layer. The feedforward neural
network can be recursively expressed as follows:

input : S0 = x;

hidden layer 1 : S1 = fact(W1S0 + b1);

hidden layer 2 : S2 = δt fact(W2S1 + b2) + S1;

hidden layer l : Sl =
2δ2

t
δt + 2ε

fact(W lSl−1 + bl) +
4ε

δt + 2ε
Sl−1 +

δt − 2ε

δt + 2ε
Sl−2, for 3 ≤ l ≤ L− 1;

output : SL = WLSL−1 + bL.

(10)

Here, SL = y(x, Θ) is the neural network’s output. It can be seen from the above expression
that, compared with Equation (1), when the neural network has the same depth and width,
the neural network expressed in Equation (10) has a stronger degree of nonlinearity, which
can be said to be more expressive. This is a kind of neural network structure based on
the difference scheme, and this is also a feasible scheme if pursuing structural diversity in
neural networks. Ruthotto et al. [45] proved that the forward propagation of a second-order
network is stable under certain conditions, which provides a foundation for our subsequent
theoretical research. We hope that the continuous deep neural network (DNN) model
can lead to some new breakthroughs in theory and algorithms, help simplify network
architecture design, reduce trial and error, and improve training accuracy.

The adaptive activation function strategy [25–27] accelerates convergence and improves
accuracy. We utilized Neuron-wise locally adaptive activation functions (N-LAAFs) [26] to
enhance the performance of the neural network. It is assumed that xij is the input of the j-th
neuron of the i-th hidden layer, yij is the output of this neuron, and aij is a hyperparameter
that is added to this neuron in the following format [26]:

yij = fact(naijxij), i = 1, 2, · · · , L− 1, j = 1, 2, · · · , Nj. (11)

In this case, n ∈ N+ is a predetermined scale factor.
When the PDE residual equals zero, the corresponding gradient must equal zero. The

gradient-enhanced PINNs (gPINNs) proposed in [46] force the derivatives of the PDE
residual to be zero as well, i.e.,

∇F (x, t) = (
∂F
∂x1

, · · · ,
∂F
∂xd

,
∂F
∂t

) = 0, (x, t) ∈ Ω× (0, T). (12)

This will add an additional loss term [46] to the loss function (3):

Lg =
d+1

∑
k=1

(
1∣∣Tgk

∣∣ ∑
(x,t)∈Tgk

|∇kF|2). (13)
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Here, ∇kF is the k-th element of ∇F (x, t), and Tgk is the set of residual points for the
derivative ∇kF . In this paper, let us set Tg1 = · · · = Tgd+1 = Tg, Tg, and T f as the
same dataset.

In order to reduce the high computational cost caused by gPINNs, we used the deep
mixed residual method (MIM) [47]. We illustrate this with the heat equation, where F in
Equation (2) is F := ut − ux1x1 − ux2x2 − f = 0. Then, we introduce the auxiliary variables
p and q, and let p := ux1 and q := ux2 ; then, the PDEs’ governing equations are rewritten
as follows: {

p = ux1 , q = ux2

ut − px1 − qx2 = f
. (14)

Here, the auxiliary variables p and q are the outputs of the feedforward neural network. In
this paper, we use MIM and make v = F (x, t, y, yt,∇y, ∆y, λ), and then the loss term Lg is
rewritten as:

Lg =
1∣∣Tg
∣∣ ∑
(x,t)∈Tg

|F − v|2 + 1∣∣Tg
∣∣ d+1

∑
k=1

( ∑
(x,t)∈Tg

|∇kv|2). (15)

Finally, we rewrite Formula (3) as follows:

Loss = L f + Lb + Li + Lg. (16)

The algorithm framework can be found in Figure 3 and Algorithm 1. In this study,
for neural networks y(x, Θ1) and v(x, Θ2), the same structural parameters are used unless
otherwise specified. We used L-BFGS [58] as the optimization algorithm of the neural
network to minimize the loss function (16) in the neural network training process. The
initialization method for trainable parameters’ weights is the Xavier method [59], and the
biases are initialized to zero. All randomly sampled point locations were generated using a
Latin Hypercube Sampling strategy [60]. Meanwhile, the initial parameter selection for the
hyperparameters n and aij are chosen such that naij = 1 [25–27].

Figure 3. Schematic of gPINNs based on MIM for the Equation (2).

Algorithm 1 shows the specific steps of the presented method compared with the
existing PINN algorithm [14,26,46,47]. The main difference is that in the second and third
steps, using two neural networks, a neural network is used to approximate the solutions of
differential equations, and another is used to approximate the PDEs’ governing equations.
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Algorithm 1 gPINN algorithm based on MIM.

1. Construct the training dataset T f , Tb, Ti, and Tg for the PDE residual, boundary
conditions, initial conditions, and PDE residual gradient.

2. Construct two neural networks y(x, Θ1) and v(x, Θ2) with the parameter Θ =

{Θ1, Θ2} using (10), where Θk =
{

Wi
k, bi

k
}L

i=1 ∪
{

aij
k

}j=1:Nj

i=1:L−1
, (k = 1, 2) .

3. Construct the PDE residual F and the PDE residual gradient ∇̃F using neural net-
works y(x, Θ1) and v(x, Θ2) in the governing equations using automatic differentia-
tion.

4. Construct the loss function using the Mean Square Error.
5. Train the neural networks to find the best parameters Θ∗ to minimize the loss function.

4. Numerical Examples

In this section, we give several examples to check the efficiency of the above method
in the resolution of partial differential equations. On the test set, we used the Rel.L2 error
to evaluate the performance of neural network training [61]:

Rel.L2error =

√
∑N

i=1
∣∣y∗(xi, ti

)
− u

(
xi, ti

)∣∣2√
∑N

i=1
∣∣u(xi, ti

)∣∣2 , (17)

where y∗ represents an optimal approximative solution derived from neural network
training, i represents the test point number, and N represents the number of test points. In
this part of the forward and inverse problem examples, the default values of ε and δt in
Equation (10) are both set to 1.

4.1. Forward Problem
4.1.1. Burgers’ Equation

Burgers’ equation is a nonlinear partial differential equation that simulates the propa-
gation and reflection of a shock wave. It is used in fluid mechanics, nonlinear acoustics,
gas dynamics, etc. First, we chose the 2D viscous Burgers’ equation as the first example in
this document, which takes the following form [62]:

ut + uux1 + uux2 = ν(ux1x1 + ux2x2), (x1, x2, t) ∈ (−10, 10)2 × (0, 10),

u = g, (x1, x2, t) ∈ ∂(−10, 10)2 × (0, 10),

u = h, (x1, x2, t) ∈ (−10, 10)2 × {0},
(18)

where the parameter ν is the diffusion coefficient, the viscosity of the material, and we set
the parameter ν = 0.1. The initial and boundary conditions are derived from the exact
solution: u(x1, x2, t) = 1

1+exp((x1+x2−t)/2ν)
. Here, we aim to infer the entire spatiotemporal

solution of the above Equation (18) for this example. For the neural network structure, we
used five hidden layers, each with 50 neurons; the scale factor n is 50, and the tanh function
is the activation function for this example. Meanwhile, for training, we constructed a
training set of 3, 000 boundary training points, 500 initial training points, and 10, 000 PDE
residual training points. We used the above configuration to form a neural network to
obtain an approximate solution that satisfies Equation (18).

Next, we show the results of training. The Rel.L2 error curve of Equation (18) on the
test set over time is shown in Figure 4. It can be seen that the accuracy of the proposed
method is about 7 ∼ 8 times higher than that of PINNs. Meanwhile, the exact solution,
predicted solution, and error distributions at four time points, t = 2.5, t = 5.0, t = 7.5,
and t = 10.0, are plotted in Figure 5. It can be seen in the error distribution diagram that
the areas with large errors are mainly concentrated near the discontinuous point of the
function, which can be improved by using a residual-based adaptive refinement (RAR)
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method [23]. This will be a future research direction for discontinuous solutions and large
gradient changes. Clearly, the proposed method provides a good approximation of the
equation. We present a comparative analysis in the Appendix A, including the benchmark
PINNs method, adaptive activation function, gPINNs method, and the method mentioned
in section 3 of this paper.

0 2 4 6 8 10
Times

10−4

10−3

er
ro
r

Ours
PINNs

Figure 4. Burgers’ equation: Rel.L2 error over time.
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Figure 5. Burgers’ equation: exact solution, predicted solution, and absolute pointwise error at
different times.
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4.1.2. Taylor–Green Flow

When we consider incompressible Navier–Stokes equations (N-S equations), the
governing equations can be written in a dimensionless form as [4]:{

ut + (u · ∇)u = −∇p + ν∆u + f ,

∇ · u = 0,
(19)

where u = (u1, u2) is a velocity vector field, p denotes the fluid pressure, f is a given source
term, ν = 1/Re denotes the kinematic viscosity of the fluid, and Re is the Reynolds number.

We proceeded to model a time-dependent flow problem, i.e., the Taylor–Green flow, using
the proposed method. The computational domain is defined as (x1, x2, t) ∈ (−π, π)2 × (0, 10).
The exact solution is set as follows [21]:

u1 = − cos(x1) sin(x2)e−2tν,

u2 = sin(x1) cos(x2)e−2tν,

p = −1
4
[cos(2x1) + cos(2x2)]e−4tν.

(20)

The second equation in Equation (19) is the continuity equation for an incompressible
fluid and describes the mass conservation of the fluid. From the stream function expression
of the two-dimensional incompressible Navier–Stokes equations, one can use a neural
network to represent a scalar stream function ψ(x1, x2, t) and assume u1 = ∂ψ/∂x2 and
u2 = −∂ψ/∂x1. In this way, we can only consider the residuals of the momentum equation
since the continuity of the equation is already fully satisfied.

In simulations, we set Re = 100, and the initial and boundary conditions were obtained
using Equation (20). In this example, the swish function is used as the activation function
of the neural network, where the value of the scale factor n is 20. The training set of the
neural network is composed of 10, 000 residual training points, 4, 000 boundary training
points, and 1000 initial training points. We used a neural network with five hidden layers of
50 neurons each to simulate the dynamic behavior described by Equation (19). In Figure 6,
we show the Rel.L2 error curves of the velocity component compared to those of the PINNs

in the left and right panels, respectively. Additionally, the exact solution U =
√

u2
1 + u2

2, the

predicted solution U∗ =
√
(u∗1)

2 + (u∗2)
2, and the error distributions |U −U∗| at four time

points are shown in Figure 7. It can be seen that the area with large errors is concentrated
in the center, which is caused by the relative error used in the test set in this work, and
the value of the denominator at the origin is 0. It can be seen that the proposed method
achieves better accuracy than the PINNs in this example.

0 2 4 6 8 10
Times

10−3

u1Rel. L2error 
Ours
PINNs

0 2 4 6 8 10
Times

10−3

u2Rel. L2error 

Figure 6. Taylor–Green flow: Rel.L2 error over time.
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Figure 7. Taylor–Green flow: exact solution, predicted solution, and absolute pointwise error at
different times.

4.1.3. Cylinder Wake

For the third example of the forward problem, we simulated a 2D cylinder wake [63]
using the method proposed in this paper. The PDEs’ governing equations are given by
Equation (19), and the Reynolds number is Re = 3900. High-fidelity data ( the high-fidelity
data are from https://github.com/Shengfeng233/PINN-for-turbulence, accessed on 25
September 2022) were used as a reference and provided the boundary and initial data. In
this example, the training dataset contains 40, 000 residual training points, 10, 000 boundary
training points, and 5000 initial training points. The structure of the neural network used
has 6 hidden layers and 100 neurons in each layer. The tanh function is used as the
activation function of the neural network, where the value of the scale factor n is 1. In
Figure 8, we compare the Rel.L2 error of the two velocity components in the left and right
graphs, respectively, and in Figure 9, we show the predicted solution obtained by neural
network training using the above setup and the corresponding error distribution. It can
be seen that the proposed method improves the accuracy by 10% ∼ 30% compared with

https://github.com/Shengfeng233/PINN-for-turbulence
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PINNs. In this example, we found an interesting phenomenon: the error decreases with
time on the whole, which seems counterintuitive. The exploration of this problem will help
us design better algorithms to further improve the performance of the neural network.

0 10 20 30 40
Times

10−1

u Rel.L2 error
Ours
PINNs

0 10 20 30 40
Times

2 × 10−1

3 × 10−1

4 × 10−1

v Rel.L2 error

Figure 8. Cylinder wake: Rel.L2 error over time.
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Figure 9. Cylinder wake: reference solution, predicted solution, and absolute pointwise error at
different times.
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4.1.4. Allen–Cahn Equation

The Allen–Cahn equation is a second-order nonlinear parabolic partial differential
equation used to describe the phase separation process in binary alloys and anti-phase
boundary movement in crystals [64]. It has been used extensively in different models. We
consider an unsteady 3D Allen–Cahn equation as follows:

ut − (ux1x1 + ux2x2 + ux3x3) + u3 − u = f , (x1, x2, x3, t) ∈ (−1, 1)3 × (0, 1),

u = g, (x1, x2, x3, t) ∈ ∂(−1, 1)3 × (0, 1),

u = h, (x1, x2, x3, t) ∈ (−1, 1)3 × {0}.

(21)

The source term f and the initial boundary value conditions g and h can be simply
obtained from the exact solution: u(x1, x2, x3, t) = e−t sin(x1 + x2 + x3). We used a neural
network with five hidden layers of 50 neurons each. In general, the neural network should
have sufficient approximation capacity to consider the predicted complexity of u. We
obtained the training data points of the neural network by random sampling. In particular,
there are 500 initial training points, 2000 boundary training points, and 5000 PDE residual
training points in the neural network training set. The value of the hyperparameter aij is set
to 0.1, and the swish function is used as the activation function. The Rel.L2 error curves of
Equation (21) on the test set are plotted in Figure 10. Compared with PINNs, the accuracy is
greatly improved, and the generalization is better. Meanwhile, the exact solution, predicted
solution, and error distribution at four time points and x3 = 0 are plotted in Figure 11.
Using just a handful of initial data, the method is able to accurately capture the complex
nonlinear behavior of the Allen–Cahn equation. Based on the results, it can be seen that the
proposed method can accurately produce the solution.
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Figure 10. Allen–Cahn equation: Rel.L2 error over time.
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Figure 11. Allen–Cahn equation: exact solution, predicted solution, and absolute pointwise error at
different times when x3 = 0.

4.1.5. Convection–Diffusion–Reaction Equation

Convection–diffusion–reaction (CDR) equations are basic partial differential equations
for the simulation of heat and mass transfer. Their numerical solutions are critical research
directions for numerical partial differential equations and computational fluid mechanics,
with a broad range of applications [65,66]. For instance, we take the 3D unsteady nonlinear
CDR equation as follows:

ut + β · ∇u− ν∆u + γu2 = f , (x1, x2, x3, t) ∈ (−1, 1)3 × (0, 1),

u = g, (x1, x2, x3, t) ∈ ∂(−1, 1)3 × (0, 1),

u = h, (x1, x2, x3, t) ∈ (−1, 1)3 × {0},

(22)

where the unknown function u usually represents the temperature or concentration of
the substance being transferred, ν ≥ ν0 > 0 is the diffusion coefficient, β is the convective
coefficient, and γ is the reaction coefficient. When ν � max |β|, Equation (22) is called
the convection-dominated diffusion problem. In this example, we consider a convection-
dominated diffusion problem and use the coefficients ν = 10−4, β = (1, 1, 1), and γ = 1,
and the exact solution is given as u(x1, x2, x3, t) = e−t arctan(x1) arctan(x2) arctan(x3). All
the right-hand terms can be obtained from the exact solution.

We used a training set in which the number of residual points is 5000, 500 data points
on u|t=0 are randomly parsed from the exact solution, and 1000 boundary training points
are also given for the boundary conditions of PDEs. We used a four-layer feedforward
neural network with 50 neurons in each hidden layer; the value of the scale factor n is 100,
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and the activation function is swish. The Rel.L2 error curve on the test set can be seen in
Figure 12. Meanwhile, the exact solution, predicted solution, and error distribution at four
time points and x3 = 1.00 are plotted in Figure 13. It is clearly observed that solutions with
good precision are obtained for this equation.
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Figure 12. CDR equation: Rel.L2 error over time.

−1 0 1
x1

−1

0

1

x 2

Exact solution

−2

0

2

1e−1

−1 0 1
x1

−1

0

1

x 2

Predicted solution

−2

0

2

1e−1

−1 0 1
x1

−1

0

1

x 2

Absolute error

0.5

1.0

1.5

1e−3

(a) t = 0.25 (Rel.L2 error: 1.5414× 10−3)

−1 0 1
x1

−1

0

1

x 2

Exact solution

−2

−1

0

1

2

1e−1

−1 0 1
x1

−1

0

1

x 2

Predicted solution

−2

−1

0

1

2

1e−1

−1 0 1
x1

−1

0

1

x 2

Absolute error

0.25

0.50

0.75

1.00

1.25
1e−3

(b) t = 0.50 (Rel.L2 error: 1.8505× 10−3)

−1 0 1
x1

−1

0

1

x 2

Exact solution

−2

−1

0

1

2
1e−1

−1 0 1
x1

−1

0

1

x 2

Predicted solution

−2

−1

0

1

2
1e−1

−1 0 1
x1

−1

0

1

x 2

Absolute error

2

4

6

8

1e−4

(c) t = 0.75 (Rel.L2 error: 2.6092× 10−3)

Figure 13. Cont.



Entropy 2023, 25, 674 15 of 22

−1 0 1
x1

−1

0

1

x 2

Exact solution

−1

0

1

1e−1

−1 0 1
x1

−1

0

1

x 2

Predicted solution

−1

0

1

1e−1

−1 0 1
x1

−1

0

1

x 2

Absolute error

0.5

1.0

1.5
1e−3

(d) t = 1.00 (Rel.L2 error: 4.9542× 10−3)

Figure 13. CDR equation: exact solution, predicted solution, and absolute pointwise error at different
times when x3 = 1.

4.2. Inverse Problem

For the inverse problem, the parameter λ in Equation (2) is often unknown. With
only a small set of observed data Tu, the parameter λ can be determined while predicting
the entire flow field. To achieve this, we simply add additional terms [23,46] to the loss
function (16):

Lu =
1
|Tu| ∑

(x,t)∈Tu

|u− y|2. (23)

4.2.1. Kolmogorov–Petrovskii–Piskunov-Equation

The Kolmogorov–Petrovskii–Piskunov equation (KPP equation) [67] is a kind of
nonlinear reaction–diffusion equation commonly used in heat conduction, combustion
theory, biology, ecology and other fields. The basic form of the KPP equation is:

ut − Dux1x1 − au− bum = 0, (x, t) ∈ (−π, π)× (0, 1), (24)

where a, b, D, and m are arbitrary constants, and m is not equal to 1. The KPP equation has
an exact solution as follows [67]:

u(x1, t) = [β + exp(λt +
αx1√

D
)]

2
1−m ,

where the parameters are given by:

β =

√
− b

a
,

α =

√
a(1−m)2

2(m + 1)
,

λ =
a(1−m)(m + 3)

2(m + 1)
.

In this example, we set m = 3 and the parameters D, a, and b as unknown parameters
in Equation (24). Given scattered and potentially noisy data, our goal is to identify the
unknown parameters D, a, and b, as well as to obtain a qualitatively accurate reconstruction
of the entire flow field u(x1, t). To illustrate the effectiveness of our approach and to
highlight the ability of our method to learn from scattered and scarce training data, we
created a training dataset by randomly generating Ntrain = 2000 points across the entire
spatiotemporal domain from the exact solution corresponding to D = 1, a = 1, and b = −1.
The neural network architecture used here consists of four hidden layers with 50 neurons
in each layer; we set the value of the scale factor n to be equal to 50 in Equation (11), and
we chose the sigmoid function as the activation function for this example. Upon training,
the network was calibrated to predict the entire solution u(x1, t), as well as the unknown
parameters D, a, and b that define the underlying dynamics. The network can identify
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the underlying partial differential equations with remarkable accuracy, even when the
scattered training data are corrupted by 1% and 5% uncorrelated noise. The results are
summarized in Table 1 and in Figure 14, which shows the parameters D, a, and b with the
iteration number. It is observed that results with good precision are obtained.

Table 1. KPP equation: Correct values obtained by learning D, a, and b and percentage errors in the
identified parameters D, a, and b when the training data are corrupted by different noise levels.

Clear Data 1% Noise 5% Noise

Exact (D, a, b) = (1.000, 1.000,−1.000)
Identified (0.977, 1.001,−1.003) (0.972, 1.002,−1.003) (0.819, 1.010,−1.024)

Error (2.26× 10−2, 1.10× 10−3, 3.41× 10−3) (2.81× 10−2, 1.52× 10−3, 3.89× 10−3) (1.81× 10−1, 9.82× 10−3, 2.38× 10−2)

0 500 1000 1500
nIter

0.0

0.5

1.0

D

clear data

0 500 1000
nIter

0.0

0.5

1.0
1% noise

0 500 1000 1500
nIter

0.0

0.5

1.0 5% noise

0 500 1000 1500
nIter

0.0

0.5

1.0

a

clear data

0 500 1000
nIter

0.0

0.5

1.0
1% noise

0 500 1000 1500
nIter

0.0

0.5

1.0
5% noise

0 500 1000 1500
nIter

0.0

−0.5

−1.0

b

clear data

0 500 1000
nIter

0.0

−0.5

−1.0

1% noise

0 500 1000 1500
nIter

0.0

−0.5

−1.0

5% noise

Figure 14. KPP equation: change curves of the parameters D, a, and b with the iteration number.

4.2.2. Burgers’ Equation

Then, we take Equation (18) as an example and rewrite it in the following form:

ut + λ1(uux1 + uux2) = λ2(ux1x1 + ux2x2), (x1, x2, t) ∈ (−1, 1)2 × (0, 1). (25)

We set the parameters λ1 and λ2 as unknown parameters; we still used the same
exact solution. To demonstrate how effective the approach is, we created a training dataset
by randomly generating Ntrain = 2000 points on the whole space–time domain from the
exact solution with λ1 = 1 and λ2 = 0.1. We used a neural network with four hidden
layers, each with 50 neurons, to predict u in the entire computational domain with only a
small number of high-fidelity datasets and, at the same time, to determine the unknown
parameters λ1 and λ2 in Equation (25). The tanh function is set as the activation function,
and the value of the scale factor n is 20. It is seen in Table 2 that, in this case, the method can
correctly identify the unknown parameters λ1 and λ2 with very high accuracy, even when
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the training data are corrupted by noise. The predictions remain robust even when the
training data are corrupted by 1% and 5% uncorrelated Gaussian noise. Finally, Figure 15
shows the parameters λ1 and λ2 with the iteration number; the results show that the neural
network can effectively find the unknown parameters in the equation. The results show
that the proposed method makes it possible to obtain great accuracy.

Table 2. Burgers’ equation: correct values obtained by learning λ1 and λ2 and percentage errors in
the identified parameters λ1 and λ2 when the training data are corrupted by different noise levels.

Clear Data 1% Noise 5% Noise

Exact (λ1, λ2) = (1.000, 0.100)
Identified (1.0001, 0.0999) (0.9991, 0.1001) (1.0020, 0.1022)

Error (1.81× 10−4, 3.21× 10−4) (5.95× 10−4, 7.39× 10−3) (2.02× 10−3, 2.16× 10−2)
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Figure 15. Burgers’ equation: change curves of the parameters λ1 and λ2 with the iteration number.

4.2.3. Diffusion–Reaction Equation

Finally, we consider a 3D unsteady nonlinear diffusion–reaction equation [68] given by:

ut − λ1(ux1x1 + ux2x2 + ux3x3) + λ2u2 = f , (x1, x2, x3, t) ∈ (−1, 1)3 × (0, 1), (26)

where u is the concentration of the substance, and λ1 > 0 and λ2 > 0 are the diffusion
coefficient and reaction coefficient, respectively. The source term f can be obtained from the
exact solution: u = e−t sin(πx1) sin(πx2) sin(πx3). We randomly selected 5000 training
data points from the whole space–time region as the training data for the neural network
and constructed a neural network with five hidden layers and 50 neurons in each layer.
With only a small amount of data, we simulated the whole flow field and determined
the unknown parameters λ1 and λ2 in the equation. We used the swish function as the
activation function, where the scale factor n takes the value 20. Table 3 shows the values of
λ1 and λ2 ‘discovered’ through neural network training. Additionally, Figure 16 shows the
change curves of parameter values in the process of neural network training. It can be seen
that neural networks can effectively discover the unknown parameters in Equation (26).
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Table 3. Diffusion–reaction equation: correct values obtained by learning λ1 and λ2 and percentage
errors in the identified parameters λ1 and λ2 when the training data are corrupted by different
noise levels.

Clear Data 1% Noise 5% Noise

Exact (λ1, λ2) = (0.0100, 1.0000)
Identified (0.0099, 0.9924) (0.0098, 0.9914) (0.0099, 0.9878)

Error (1.31× 10−2, 7.60× 10−3) (1.53× 10−2, 8.58× 10−3) (1.36× 10−2, 1.22× 10−2)

， ， ， ， ， ， ， ，

，，，，，，，，

Figure 16. Diffusion–reaction equation: change curves of the parameters λ1 and λ2 with the iteration
number.

5. Conclusions

This paper presents the structure of a second-order neural network constructed
through second-order parametric light wave equations. During this work, an adaptive
activation function strategy was used to enhance the performance of the neural network,
and gPINNs were used to enhance the generalization ability of the neural network. We
found that using automatic differentiation techniques to obtain the higher-order derivatives
of PDEs’ control equations can cause high computational costs. Therefore, we introduced
auxiliary variables to reduce computational costs. Finally, we give some numerical exam-
ples. Specifically, for forward problems, we simulated Burgers’ equation, the Allen–Cahn
equation, the CDR equation, and the Navier–Stokes equation. Additionally, for inverse
problems, our method can effectively determine the unknown parameters of the equation
and estimate and reconstruct the unknown parameters with high accuracy.

In this study, we did not consider the balance between the various parts of the loss
function in the neural network. The weight setting of different parts has a great impact
on the performance of the neural network, but this is beyond the scope of this paper. In
the future, we will explore the use of adaptive weight strategy or grid search methods to
determine the optimal weight of each term and further study the dependence of neural
networks on hyperparameters. The proposed method is combined with other extended
PINN algorithms, such as extended physics-informed neural networks (XPINNs), parallel
physics-informed neural networks (PPINNs), and so on. In this paper, only the central
difference of second-order differential equations is considered for constructing neural
networks. We believe that the construction of neural networks using third-order differential
equations or higher is also a feasible solution, which will be an upcoming research project.
Additionally, we also hope to develop some innovations in theoretical analysis so as to
provide a foundation for subsequent research. Similarly, we also found the computational
cost caused by using automatic differentiation to calculate derivatives. It will also be useful
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to study the use of numerical differentiation or Taylor-mode AD to calculate derivatives to
prevent the excessive consumption of computing resources.
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Appendix A. Computational Cost Calculation

In this part, we use Burgers’ Equation (18) as an example to calculate the computational
cost of the method used. We used a neural network with only three hidden layers, each
with only 50 neurons. The training dataset used included 500 initial training data points,
1000 boundary training points, and 5000 residual training points for the PDEs’ governing
equations. We used the Adam algorithm to train 50 k times. The training results are shown
in Table A1. We compared the reference PINN equation, the adaptive PINN equation
based on Neuron-wise locally adaptive activation functions (N-LAAF-PINNs), gPINNs,
and the methods mentioned in Section 3. It can be seen from the results that both the
adaptive activation function strategy and the gradient enhancement strategy can improve
the prediction accuracy of the neural network, but the gradient enhancement strategy is
time-consuming. We also performed the test without the MIM strategy, which doubled
the prediction accuracy but also doubled the training time. This is only a preliminary
comparison. As part of future work, we will summarize the existing algorithms and
provide a large number of numerical examples for comparative analysis. Although this is
a time-consuming process, it is also very important. This research content will help us to
design appropriate algorithms for specific problems.

Table A1. Burgers’ equation: Computational accuracy and computational cost calculations.

t 2.0 4.0 6.0 8.0 10.0 Training Times

PINNs 1.48× 10−3 1.32× 10−3 1.26× 10−3 1.31× 10−3 1.52× 10−3 456.46
gPINNs 4.26× 10−4 4.84× 10−4 4.26× 10−4 3.49× 10−4 3.85× 10−4 3042.68

N-LAAF-PINNs 1.78× 10−4 1.56× 10−4 1.41× 10−4 1.34× 10−4 1.41× 10−4 1228.73
Ours 7.52× 10−5 7.16× 10−5 7.43× 10−5 8.26× 10−5 9.64× 10−5 1804.28

Ours (Without MIM) 3.28× 10−5 3.58× 10−5 3.74× 10−5 5.00× 10−5 6.94× 10−5 3918.47
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