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Abstract: Musculoskeletal ultrasound imaging is an important basis for the early screening and
accurate treatment of muscle disorders. It allows the observation of muscle status to screen for
underlying neuromuscular diseases including myasthenia gravis, myotonic dystrophy, and anky-
losing muscular dystrophy. Due to the complexity of skeletal muscle ultrasound image noise, it is a
tedious and time-consuming process to analyze. Therefore, we proposed a multi-task learning-based
approach to automatically segment and initially diagnose transverse musculoskeletal ultrasound
images. The method implements muscle cross-sectional area (CSA) segmentation and abnormal
muscle classification by constructing a multi-task model based on multi-scale fusion and attention
mechanisms (MMA-Net). The model exploits the correlation between tasks by sharing a part of
the shallow network and adding connections to exchange information in the deep network. The
multi-scale feature fusion module and attention mechanism were added to MMA-Net to increase
the receptive field and enhance the feature extraction ability. Experiments were conducted using
a total of 1827 medial gastrocnemius ultrasound images from multiple subjects. Ten percent of the
samples were randomly selected for testing, 10% as the validation set, and the remaining 80% as
the training set. The results show that the proposed network structure and the added modules are
effective. Compared with advanced single-task models and existing analysis methods, our method
has a better performance at classification and segmentation. The mean Dice coefficients and IoU of
muscle cross-sectional area segmentation were 96.74% and 94.10%, respectively. The accuracy and
recall of abnormal muscle classification were 95.60% and 94.96%. The proposed method achieves
convenient and accurate analysis of transverse musculoskeletal ultrasound images, which can assist
physicians in the diagnosis and treatment of muscle diseases from multiple perspectives.

Keywords: artificial intelligence; computer aided analysis; deep learning; ultrasound; convolutional
neural network; multi-task learning

1. Introduction

As an adjunct to clinical medicine, medical imaging is the basis for physicians to
analyze pathological structures and plays a critical role in the diagnosis and treatment of
disease. The types of medical imaging that are widely used in clinical practice include
ultrasound imaging (ultrasound), Magnetic Resonance Imaging (MRI), Computed Tomog-
raphy (CT), and X-ray imaging (X-ray). Ultrasound imaging is suitable for the structural
assessment of most soft tissue organs in the body because it is painless, non-invasive,
real-time, inexpensive, and free of ionizing radiation [1]. The results of imaging contain rich
information on tissue structure and are a reliable indicator for the evaluation of pathological
changes. Musculoskeletal ultrasound (MSUS) [2] is a new ultrasound technique for ob-
taining skeletal muscle imaging using high-frequency ultrasound to show the hierarchical
relationships of soft tissues such as muscles and their internal structures. Skeletal muscle ul-
trasound images can demonstrate features such as muscle texture and muscle echogenicity.
It can screen for potential neuromuscular diseases including myasthenia gravis, myotonic
dystrophy, and ankylosing muscular dystrophy by looking at muscle status.
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The quantitative analysis of longitudinal musculoskeletal ultrasound images enables
us to obtain important parameters that reflect the state of the muscle, including pennation
angle, muscle thickness, and fiber length. These morphological characteristics are directly
related to the mechanical properties of muscle tissue and can guide rehabilitation science
treatments such as muscle rehabilitation training and prosthetic control [3]. The analysis
of transverse musculoskeletal ultrasound images enables the acquisition of muscle cross-
sectional area (CSA) between deep and superficial aponeurosis and the early abnormal
diagnosis of neuromuscular diseases. The correct segmentation of the muscle CSA is
a key step in the assessment of the muscle condition. It reveals the strength level of
muscles [4] and reflects the health level of sports and the severity of disease. In transverse
musculoskeletal ultrasound images, normal muscles have moderate echogenicity, with
reticular and banded separation visible in the middle of the deep tendon membrane, as
well as speckled moderate to high echogenicity [5]. In contrast, pathologic muscles are
affected by increased fat replacement and the presence of connective tissue, which can
result in increased echogenic reflections that appear faintly textured, cloudy, or hairy and
glassy [6]. This phenomenon has been found to correlate with the staging of neurological
disease [7].

Since skeletal muscle ultrasound images contain complex noise, their analysis is a
time-consuming and tedious process. The annotation of the muscle cross-sectional area
requires the clinician to manually select the region of interest, and this manual operation
is prone to errors [8]. In addition, pathological changes in the muscle result in a difficult
distinction between the texture of muscle and the noise of ultrasound equipment, which
adds to the difficulty of the physician’s diagnosis [9]. It requires a physician with extensive
experience to perform early diagnosis accurately. Therefore, a computer-assisted method is
needed to reduce the time and effort of clinicians in processing image information.

In this paper, we propose a method for transverse musculoskeletal ultrasound images
based on multi-task learning. The method automatically segments muscle cross-sectional
area from ultrasound images and provides a preliminary diagnosis of abnormal muscles.
This automated analysis method can reduce the diagnostic burden of physicians and also
provide an effective basis for subsequent related treatment. The method constructs a
multi-task model based on multi-scale feature fusion and attention mechanism (MMA-Net).
The network consists of a combination of U-Net and VGG, sharing a part of the layers in
the shallow layer of the network and adding connection fusion information in the deep
layer. The Atrous Spatial Pyramid Pooling (ASPP) module and coordinated attention (CA)
module were added to the backbone network. The ASPP module can effectively increase
the perceptual field of the shared network and segmentation branches for better integration
of global features. The CA module adaptively calibrates attention for different axes of each
branch, allowing the network to further focus on the features of each task. Compared with
other single-task models, the method is more capable of extracting details and edge pixels
and has better segmentation results. The classification results for abnormal muscles are
more accurate and have good robustness.

The main contributions of this study are as follows.

• We analyzed the existing methods for the analysis of longitudinal and transverse mus-
culoskeletal ultrasound images, summarizing their advantages and limitations. We
also discussed the clinical value provided by transverse musculoskeletal ultrasound
images, as well as the difficulties of manual analysis.

• We proposed a multi-task learning-based analysis method for transverse muscu-
loskeletal ultrasound images. The method achieves both the segmentation of muscle
cross-section areas and the classification of abnormal muscles by training a multi-task
learning model. For diseased and healthy muscle ultrasound images with complex
noise, the addition of an attention module and a multi-scale fusion module effectively
increase the accuracy of the results. Compared with the single-task learning approach,
the proposed method can fully exploit the potential connection between two tasks
and share additional information to enhance the ability of image analysis.
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• We proposed a novel multi-task learning model, MMA-Net, which outperforms some
single-task models on skeletal muscle ultrasound images and is stable and robust. In
the future, it has the potential to be applied to the analysis of other ultrasound images
of other organs.

The rest of this study is presented below. The second section describes the existing
available methods for skeletal muscle ultrasound image analysis and summarizes their
advantages and disadvantages. The proposed method and the structure of the MMA-
Net are described in detail in Section 3. The fourth section describes the environment
and parameter settings for conducting the experiments on the transverse musculoskeletal
ultrasound image dataset. The fifth section presents and discusses the experimental results.
The fifth section includes a summary of this work.

2. Literature Work

For the automatic analysis of skeletal muscle ultrasound images, many researchers
have invested a lot of effort in the measurement of muscle structural parameters, and
many classical methods have been proposed. Researchers first apply image processing
techniques to transform the images, and then obtain quantitative or qualitative evaluation
results using the proposed methods such as re-voting strategies, heuristic searches, and
coordinate calculations. Zhou and Zheng [10] proposed a modified Hough transform
method to identify the major muscle bundle directions in musculoskeletal ultrasound
images, using a re-voting strategy to solve the blending problem in ultrasound image
line detection with good results. Zhao et al. [11] investigated an automatic linear ex-
traction method based on local Radon transform and a rotation strategy to detect param-
eters such as the angle of the muscle bundle in ultrasound images on this basis. This
method achieves automatic measurement of the pennation angle, but it relies heavily on
the selection of the edge detector in the image processing stage, the measurement of the
image is often semi-automatic, and it is not applicable to ultrasound images with complex
noise. Then, a method combining Gabor wavelet and Hough transform was proposed by
Zhou et al. [12]. This is a method for the automatic identification of fibular muscle fin
angle and muscle bundle length based on multi-resolution analysis and line feature ex-
tracting. This method performed well on simulated and real images with high scattered
noise, but it relies on the setting of some parameters whose selection is empirical. As
a fully-automated method for muscle thickness measurement, MUSA was proposed by
Caresio and Salvi et al. [13]. The method detects the muscle bundles in the middle of the
fascia using the Hough transform and performs an iterative heuristic search for the muscle
bundles in the region of interest, from which the fascia contour is determined and the
muscle thickness is calculated. Based on this approach, they proposed the first automatic
algorithm for analyzing and segmenting muscle ultrasound images in the cross-sectional
plane, TRAMA [14]. This method uses the Sobel operator and Gaussian filter to extract
the fascia, then the image is further thresholded and a fast heuristic search is used to to
reduce the number of aponeurosis candidates. Finally, the deep and superficial aponeurosis
were filtered out and the cross-sectional area between them was calculated. These two
methods achieve accurate measurements of important muscle parameters, but their pro-
cessing is complicated, and the transformed or filtered images also need to set thresholds to
filter noise, and they have weak generalization ability to ultrasound images with different
echogenicity levels.

Recently, deep learning, a new research direction in the field of machine learning, has
brought a new approach to learn the intrinsic laws and representation hierarchy of data [15].
Convolutional neural networks are one of the representative algorithms of deep learning.
In the field of medical images, convolutional neural networks play an important role in
disease prediction [16], organ segmentation [17,18], and lesion region identification [19]
through effective learning of image information. Cunningham et al. [20] used convolutional
neural networks for the first time to analyze muscle structure and proposed a model based
on depth residuals and convolutional neural networks to measure the orientation and
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curvature of human muscle bundles. This was a novel attempt to use convolutional neural
networks for ultrasound image analysis of skeletal muscle. After this, this method was
further improved [21]. The deconvolution and maximum deconvolution DCNNs were
used to quantify muscle parameters, achieving relatively robust parameter estimation.
However, the error of the pennation angle of this method is as high as 6°, and there are
still some deficiencies in the measurement accuracy. Kompella et al. [22] used R-CNN for
segmentation of knee cartilage, using 256 images acquired from only one volunteer on
two different angles of the right knee sequence. On 55 test images, the final DSC was 80%.
After this, an automatic method for measuring the pennation angle based on convolutional
neural networks and active contours was proposed by Zheng et al. [23]. This method first
uses a local Radon transform to detect the fascicle, then introduces a reference line to help
detect the direction of the muscle bundle. Finally, the pennation angle is calculated. In
2022, Zheng et al. [24] proposed a fully automated method for muscle parameter analysis,
which is based on the accurate segmentation of ultrasound images by the depth residual
contraction U-Net (RS-Unet). Then, processing and calculation are performed to obtain
three muscle parameters. Compared with existing methods for longitudinal ultrasound
image analysis of skeletal muscle, the effect of complex noise on image segmentation
accuracy is effectively eliminated, and the measurement of muscle parameters is very
comprehensive and accurate.

Regarding the specific task of skeletal muscle ultrasound image analysis, most anal-
yses have focused on the measurement of parameters in longitudinal muscle ultrasound
images. In recent years, several analysis methods based on transverse muscle ultrasound
images and diagnostic discrimination of inflammatory abnormal muscle pathology by
convolutional neural networks have emerged. Burlina et al. [8] explored a method to
automatically diagnose myositis using deep convolutional neural networks (DL-DCNNs)
with an accuracy of about 79.2% in the classification of myositis in different regions of
muscles. This method demonstrated the excellent performance of convolutional neural
networks in automatic medical image classification and laid the foundation for subsequent
studies on the classification of abnormal muscles. Marzola et al. [1] developed a method to
segment the cross-sectional area (CSA) of transverse skeletal muscle ultrasound images
using a convolutional neural network (CNN). The CNN was used to segment the image
and post-processing of the output was used to obtain a finer segmentation. Since the
cross-sectional area boundaries of abnormal muscles are more blurred and their segmen-
tation is more difficult, the accuracy of the segmentation results reached 93% on normal
muscle height but only 80% on abnormal muscles. Based on this, Marzola et al. [25]
further investigated a method to diagnose abnormal muscles based on the gray level of
the cross-sectional area. The method firstly segments the cross-sectional area (CSA) using
a combination of multiple convolutional neural networks. Next, the average gray level
z-score of the segmented portion is calculated, and the z-score that evaluates the muscle
health level is used to determine whether the muscle is diseased or abnormal. This research
method has made some progress compared with previous studies, and the accuracy of
the classification result of abnormal muscle is about 91.5%, but the segmentation result of
muscle cross-sectional area is still only 90%, which needs to be optimized.

With the development of deep learning, the emergence of multi-task learning has en-
abled sufficient information sharing among related tasks to enhance the learning efficiency
of the network [26]. In the field of medical image processing, due to the rich information
contained in images, multiple analysis tasks are intrinsically connected with each other.
Single-task learning cannot tap the relationship between tasks and obtain additional useful
information. Moreover, when facing more complex problems, the task can only be de-
composed into multiple subtasks for training, which is tedious and wasteful of resources.
Therefore, researchers have tried to apply a multi-task learning framework to solve clini-
cal medical problems. These network models can implement multiple image processing
tasks simultaneously and provide new ideas for the intelligent analysis of medical im-
ages. Zhao et al. [27] proposed a multi-task collaborative model, MCL-Net, for multi-metric
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quantification of the optic nerve head. The method is capable of simultaneously segmenting
and classifying the optic nerve in fundus images. The representations of the two branches
are exchanged and aggregated between the two tasks via a functional interaction module,
FIM, for mutual collaboration. Chen et al. [28] proposed a multi-task U-Net model for
skin melanoma detection, which improved on the U-Net model by adding two branching
structures for classification at the bottom of the U-shaped structure and in front of the
output layer. This classification structure can help determine whether melanoma is present
in the skin, and thus decide whether segmentation is needed. Segmentation can assist in
determining the lesion area and improve the accuracy of the classification results. Hugo
Michard et al. [29] estimated muscle bundle angles and bundle lengths from ultrasound
images using a new vector field model of bundle structure and a new multi-tasking neural
network architecture, AW-Net. This approach uses a modified U-Net with attention gates
to accurately estimate muscle structure and properties in a fully automated manner. There
have been attempts by researchers to apply multi-task learning methods to analyze skeletal
muscle ultrasound images. However, existing multi-task learning methods do not involve
the analysis of transverse ultrasound images of skeletal muscle.

In summary, the existing analysis methods based on image processing and single-task
learning suffer from insufficient accuracy and single analysis parameters. Therefore, in or-
der to overcome the shortcomings of existing methods and explore more advanced analysis
methods applicable to skeletal muscle ultrasound images, we proposed a novel multi-task
learning method to solve the problem of automatic analysis of transverse ultrasound im-
ages of skeletal muscle. The proposed method concisely obtains accurate muscle pathology
information which can assist physicians in further analysis and diagnosis.

3. Methods

In this paper, our proposed method for the analysis of transverse ultrasound images
of skeletal muscle was implemented by a multi-task learning algorithm. The framework
diagram is shown in Figure 1. First, the dataset containing segmentation labels and classifi-
cation labels was fed into the MMA-Net for training. Second, the validation results were
used during the training process to adjust the network hyperparameters and construct the
optimal model. Finally, a trained neural network model was used to obtain segmentation
maps of muscle cross-sections and classification results of abnormal muscles. This analysis
method based on multi-task learning can obtain both pathological information for a com-
prehensive analysis of skeletal muscle transverse ultrasound images. The specific structure
of the MMA-Net in the proposed analysis method is described below.

Figure 1. Framework diagram of the proposed method.

3.1. Network Architecture

MMA-Net is a multi-task learning based network model for the analysis of two
pathological information in transverse musculoskeletal ultrasound images. The model
extracts shared features in the shallow layer and constructs two branches in the deep layer
to learn task-specific features separately. Information transfer is performed between the
deep layers to supplement feature information. Figure 2 illustrates the specific structure of
the proposed multi-task learning model.
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Figure 2. The structure of MMA-Net.

The backbone structure of the model is composed of a combination of U-Net [30] and
VGG [31] network models. The network takes a 512 × 512 size image as input and uses
the structure of U-Net in the encoder part of the network. Meanwhile, jump connections
are made between shrinking and expanding paths to propagate contextual information
to higher resolution layers. The shallow network of the model fully shares parameters to
extract global features for segmentation and classification. After the encoder goes through
three layers of feature extraction, a classification branch is added to extract high-level
semantic features for the classification task. The classification branch was designed to
be similar to the VGG network, with alternating convolutional and pooling layers to
continuously extract features and reduce image size, and finally outputs two neurons
through the fully connected layer, representing muscle normal and abnormal, respectively.
After continuing the downsampling in two layers, the split branch uses the same decoder
as U-Net to recover the image details and complete the upsampling of the image. The final
output is a feature map of size 512 × 512, which is used as the segmentation result after the
sigmoid [32] function.

Between the segmentation and classification branches, feature fusion is performed by
replication and splicing operations to supplement the spatial information for the classifica-
tion task. This feature fusion can help the classification task to better abstract the semantic
information of the region and effectively improve the accuracy of the classification task.
Finally, a residual block [33] was used to replace the normal convolutional block in the
backbone network. This improvement enhances the feature extraction capability of the
network and avoids the degradation problem caused by the network being too deep.

3.2. The Atrous Spatial Pyramid Pooling (ASPP) Module

In order to increase the network’s ability to obtain global information and maximize
the receptive field, after the residual blocks of the second, third and fourth levels of the
encoder, an atrous spatial pyramid pooling (ASPP) module [34] was added. The structure
of the module is shown in Figure 3.
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Figure 3. The structure of ASPP module.

The multi-scale feature information was extracted by combining the feature maps of
different receptive fields using atrous convolution and pooling in parallel with atrous rates
of 1, 6, 12, and 18, respectively. For the different sizes and locations of the cross-sectional
region of skeletal muscle transverse ultrasound image and the complex texture information
in this region, the atrous convolution in the ASPP module expands the receptive field
and the multiscale fusion enhances the breadth of feature extraction. In the shared layer
part, such a module serves to enhance the global information acquisition and ensures
the extraction of low-level shared features for both tasks. In the segmentation branch,
the fusion of different scale feature maps plays an important role in the integrity of the
segmented region due to the large noise in the image and unclear segmentation edges.

3.3. The Coordinate Attention (CA) Module

After the global feature extraction in the shared layers, we added a coordinated
attention (CA) module [35] in the segmentation and classification branches. This module
is used to extract key features for each branch for a specific task. The structure of the CA
module is shown in Figure 4.

It has a similar structure to the Squeeze and Excitation (SE) Attention module, which
is divided into two parts, squeezing and attention generation. They are used for coordinate
information embedding and adaptive recalibration of coordinate attention. The squeezing
part stimulates the attention block to capture long-range interactions spatially using posi-
tional information by the average pooling over the X and Y coordinate axes, respectively.
Specifically, given input X, the output of the c-th channel at height h and width w, obtained
by encoding each channel along the horizontal and vertical coordinates using two spatially
scoped pooling kernels (H, 1) and (1, W), can be expressed as [35]:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (1)

zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w). (2)
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Figure 4. The structure of the CA module.

These two transformations allow the attention block to capture long-range depen-
dencies along one spatial direction and retain precise location information along the other
spatial location direction, helping the network to locate objects of interest more accurately.
The pooling tensor is stitched for both directions and shrunk by a nonlinear transformation.
Finally, it is split into two feature maps according to the spatial dimension, and the weights
are learned through the convolutional layer. The output is extended by a sigmoid function
and used as attention weights. The addition of CA attention module not only makes the
network focus on the attention of the channel domain, but also considers the encoding of
spatial information. It can effectively focus attention on the abstraction of texture features
in the classification branch and enable the network to focus more on the segmentation of
target regions and the extraction of edge space information in the segmentation branch.
This module helps the network to better extract features specific to segmentation and clas-
sification after shared feature learning, while improving the network’s prediction accuracy
for two tasks.

3.4. Combined Loss Function

The MMA-Net needs to learn both unique and shared features of two tasks, so we
proposed a combined loss function. The weighted sum of the loss functions of the two
tasks was used as the combined loss function, which is formulated as follows:

Lossmulti = λLseg + Lcla, (3)

where Lseg is the loss function for the segmentation task and Lcla is the loss function
for the classification task. λ is the balance factor in the combination function. Since the
complexity of the two tasks is different and there are differences in the rate of gradient
descent and the order of magnitude between the loss functions, the weight factor λ was
introduced to balance the weights and orders of magnitude of the loss functions for the
different tasks. Adjusting the weight factor prevents the situation in which the network
is significantly more biased for one task than the other, allowing both tasks to be trained
better. In the combined loss function, Diceloss [36] , which is commonly used for medical
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image segmentation, was used as the loss function for the segmentation task. The formula
is as follows:

Lseg = Diceloss = 1−
2∑N

i=1 yijŷij

∑N
i=1 yij + ∑N

i=1 ŷij
, (4)

where yij is the true probability value for each pixel, ŷij represents the predicted probability
value, N is the total number of pixels.The loss for the classification task used a cross-entropy
function [37] , which is calculated as follows:

Lcla = CEloss = − 1
N

N

∑
i=1

ti log pi + (1− ti)log(1− pi), (5)

where t and p represent the true category and the corresponding predicted output, respectively.
The hyperparameter λ in the combined loss function was continuously adjusted

during the model training process to observe the changes in the performance metrics of the
segmentation and classification task. It was finally found that both tasks were well trained
when λ = 20 and the performance of the proposed model was optimal.

4. Experiments
4.1. Datasets

The samples used in experiments were from the public datasets of transverse muscu-
loskeletal ultrasound images in the paper by Marzola et al. [25]. The datasets were acquired
during routine clinical practice, at the Radboud University Medical center. Images were
scanned transversely by experienced muscle neurodiagnostic technicians using ultrasound
equipment on muscle tissue. Data were analyzed from multiple subjects with images of
different parts of the muscle and, for each subject, three or four transverse ultrasound
images of skeletal muscle were acquired as required by the clinical protocol. The medial
gastrocnemius muscle ultrasound images, which are of more clinically generalizable value
in this dataset, were selected for our experiments. Of these samples, 349 images were from
diseased subjects and another 1478 were from healthy subjects, for a total of 1827 images.
Healthy muscles show moderate echogenicity in transverse ultrasound images of muscle,
with reticular and band-like separations and speckled echogenicity in the middle of deep
and superficial tendon membranes, which are myofascicular and intramuscular structures.
In contrast, the diseased muscles showed blurred texture and echogenic enhancement
between the deep and superficial tendon membranes, with a cloudy or hairy glass-like
morphology. Figure 5 shows the transverse muscle ultrasound images of healthy and
diseased subjects, respectively.

(a) (b)

Figure 5. Samples of transverse ultrasound muscle images in healthy (a) and diseased (b) subjects.

Labels of the datasets consisted of two parts, one part was the muscle classification
label for whether the muscle is abnormal or not, and the other part was the annotated
muscle cross-sectional segmentation map. Since the segmentation of the muscle cross-
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sectional area in the paper by Marzola et al. [25] is mainly used to calculate the average gray
value of the region, to eliminate the influence of edge regions on the grayscale calculation,
they cropped and shrank the annotated regions, as in Figure 6b. This annotation does not
accurately represent the muscle cross-sectional area. Therefore, based on the definition
of muscle cross-sectional area, edge expansion and regional extension in the aponeuroses
direction were performed with FIJI software [38] based on the original labeling. The
labeling results are shown in Figure 6c. The annotated data after regional expansion have
been reviewed by a medical professional. The data containing the classified and re-labeled
segmentation labels were used as the dataset for the training and testing of the model.

(a) (b) (c)

Figure 6. Comparison of the original segmentation label and the re-labeled label. The sample of
ultrasound images (a), the original segmentation label (b), and relabeled segmentation label (c).

4.2. Implementation Details

All experiments were conducted on the server. The hardware platform and operating
environment of the experiment are shown in Table 1. During the experiments, a total of
1827 images were used, of which 10% were randomly selected as the test set, 10% as the
validation set, and the remaining 80% as the training set. The input image size of the
model was 512 × 512 pixels and the batch size was set to 2. As an optimization strategy, we
used the SGD [39] optimizer with decay and a momentum of 0.9. The initial learning rate
was 1 × 10−4. The learning rate was adaptively adjusted using the ReduceLROnPlateau
function, which reduces the learning rate according to the change in accuracy, with patience
set to 10. The model was trained for a total of 50 epochs. When the Dice coefficients and
accuracy rates tended to be stable, the model terminated the training.

Table 1. Environment of experiments.

Name Versions

CPU Intel(R) Xeon(TM) Silver 4210R CPU@2.40GHz
GPU NVIDIA GeForce RTX 3090

Operating System Ubuntu 22.04 LTS
Framework PyTorch 1.11.0
Language Python 3.8.8

4.3. Evaluation Metrics

In order to objectively reflect the performance of the method, we evaluated the pro-
posed model using various evaluation metrics. The evaluation metrics for segmentation
results are Dice Similarity Coefficient (DSC) , Intersection over Union (IoU) and Pixel
Accuracy (PA) [40]. From the perspective of calculating the region similarity, DSC and
IoU were used to evaluate the distance difference between the segmentation result and the
ground truth. The following are their formulas.

DSC =
2|X ∩Y|
|X|+ |Y| (6)
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IoU =
|X ∩Y|

|X|+ |Y| − |X ∩Y| , (7)

where X is the ground truth and Y is the area output predicted by the model. The com-
parison of multiple metrics can evaluate the segmentation performance of the model in
many aspects and prove the effectiveness of the model to the maximum extent. PA is
the percentage of correctly classified pixels in the image, which allows a more detailed
evaluation of the segmentation results. Its calculation is as follows:

PA =
∑n

i=0 pij

∑n
i=0∑n

j=0 pij
, (8)

where n represents the total number of categories, pii and pij are the total number of pixels
whose real pixel category is i, which are predicted as category i, and the total number of
pixels whose real pixel category is i, which are predicted as j.

The Accuracy, Precision, Recall, and F-Score were used to evaluate the classification
results [41]. The calculation formulas of the four evaluation indicators are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Fscore =
2× Precision× Recall

Precision + Recall
, (12)

where TP represents the number of negative samples classified as positive samples, FN rep-
resents the number of classification errors in negative samples, TN represents the number
of correct classification in positive samples, and FP represents the number of classification
errors in negative samples. The experiment also introduced AUC to comprehensively
evaluate the classification performance of the model. The AUC is obtained by summing
the area under the ROC curve. The ROC curve mainly focuses on two indicators: true
positive rate (TPR) and false positive rate (FPR) [42]. These two indicators are the vertical
and horizontal coordinates of the curve, the formulas are:

TPR =
TP

TP + FN
(13)

FPR =
FP

FP + TN
. (14)

5. Results and Discussion
5.1. Ablation Study

To investigate the effectiveness of multi-task learning in skeletal muscle ultrasound
image analysis, experiments were conducted to compare the performance differences
between single-task and multi-task backbone models under the same dataset conditions.
Table 2 shows the segmentation and classification performance. In the experiments of the
single-task model, the network structure used was identical to the structure of one of the
branches (classification or segmentation branch) of the multi-task backbone model, and
the parameters set for the experiments were the same. It is observed in Table 2 that, in
terms of segmentation, the DSC and IoU of the multi-task backbone model increased by
4.39% and 6.53%, respectively, compared with the single split task. In terms of classification,
the accuracy of the multi-task was improved by 6.59% over the single-task classification.



Entropy 2023, 25, 662 12 of 20

This demonstrates that the classification and segmentation tasks of transverse ultrasound
images of skeletal muscle play a positive role in training each other. Multi-task learning can
take advantage of the intrinsic connection that exists between the two tasks and enhances
the network’s ability to mine potential features, which has the effect of optimizing the
segmentation and classification performance of the model.

Table 2. Comparison of single-task and multi-task backbone models.

Task Metrics Single-Task Multi-Task
Backbone

Segmentation
DSC(%) 92.35 92.92
IoU(%) 87.57 87.84
PA(%) 95.45 95.61

Classification

Accuracy(%) 89.01 91.21
Recall(%) 79.98 90.24

F-Score(%) 84.61 87.91
AUC(%) 90.22 94.19

On the multi-tasking backbone, we also added modules to improve the network
performance. The ablation experiments were carried out on each module of the model,
and the effects of multi-scale feature fusion and attention module on the proposed model
were analyzed to demonstrate that each module is important for both segmentation and
classification results of MMA-Net. In the ablation experiments, we showed the results of
each model on the test set. Tables 3 and 4 show the impact of each module and connection
structure for the segmentation and classification tasks.

Table 3. Segmentation results of ablation experiments for each module.

Models DSC (%) IoU (%) PA (%)

Backbone 92.92 87.84 95.61
Backbone+ASPP 96.19 93.20 97.54

Backbone+ASPP+CA 96.13 93.34 97.60
Backbone+ASPP+CA+Connection (MMA-Net) 96.74 94.10 97.91

Table 4. Classification results of ablation experiments for each module.

Model Accuracy (%) Recall (%) F-Score (%) AUC (%)

Backbone 91.21 90.24 87.91 94.19
Backbone+ASPP 93.40 91.04 90.83 95.88

Backbone+ASPP+CA 95.60 91.04 93.77 96.57
Backbone+ASPP+CA+Connection

(MMA-Net) 95.60 94.96 93.95 97.62

As can be seen from the tables, the addition of the ASPP module enlarges the receptive
field of the network compared to the backbone and enhances the global feature extraction
ability at different scales. As a result, the DSC and IoU are improved by 3.27% and 5.36%,
respectively, in the segmentation task, and the accuracy is improved by 2.19% in the
classification task. The addition of the CA module to the network improved both network
segmentation and classification performance, with a 2.94% improvement in F-score for the
classification task. This is due to the ability of the CA module to focus attention on a specific
task in each branch, enhancing the ability of the task to learn key features. The connection
structure, as a soft parameter sharing mechanism, can transfer the spatial information of the
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segmentation network to the classification network, resulting in an enhanced performance
of the classification task. Based on the characteristics of skeletal muscle ultrasound images,
we finally constructed the structure of MMA-Net. It has a segmentation Pixel Accuracy
(PA) of 97.91%, and a classification F-score and AUC of 93.95% and 97.62%, respectively,
on the test set. The experiments demonstrate that adding multi-scale modules, attention
modules, and connection structures in branches to the backbone can effectively improve
the segmentation and classification capabilities of the network. The proposed model can
well analyze skeletal muscle transverse ultrasound images from multiple angles, providing
accurate regional information of CSA and classification results of abnormal muscles.

To analyze the generalization ability and the risk of overfitting of the MMA-Net, we
conducted a 10-fold cross validation on the dataset. Table 5 shows the mean and standard
deviation of the cross validation on each validation set. As seen in the table, the evaluation
scores of the MMA-Net for both segmentation and classification are similar to the results on
the test set. The standard deviations of the scores of the 10 results are also small, including
1.17% for DSC and 1.75% for Accuracy. The experiments demonstrate that the MMA-Net
has good generalization ability.

Table 5. The results of 10-fold cross validation on the MMA-Net.

Metrics Mean (%) SD (%)

DSC 96.57 1.17
IoU 94.84 2.03

Accuracy 96.29 1.75
Recall 95.21 1.97

5.2. Shared Layer Study

Due to the correlation between two tasks, the proposed model applies a more concise
hard parameter sharing mechanism in the shallow network, which completely shares a
part of the network layer. The advantage of hard parameter sharing is that it can widely
obtain the common features between tasks, reduce the risk of overfitting the model, and is
less computationally intensive. However, there are certain requirements for the number
of shared layers, and the choice of the number of hard parameter sharing layers varies
according to different tasks. The appropriate number of shared layers maximizes the
acquisition of global features associated with multiple tasks and preserves the learning of
features unique to each task. To investigate the optimal number of shared layers, shared
layer experiments were conducted. As with U-Net, one pooling and one residual block
were considered as a layer, and we attempted to adjust the shared layers from 0 to 5,
respectively, to observe the performance changes of segmentation and classification.

Figure 7a shows the effect of the number of shared layers on the segmentation results.
The change of the three metrics shows that the segmentation performance tends to increase
with the number of shared layers. The best segmentation performance of the model is
achieved when the number of shared layers is three, and decreases slightly thereafter.
Figure 7b shows the results of the classification task. The classification effect is poor when
the shared layer is zero, and the classification performance is best when the number of
shared layers is three. The accuracy and other indicators decrease after the shared layers
continue to increase, and the recall rate remains stable. This indirectly indicates that there
is some correlation and difference between the two tasks. Sharing a portion of network
layers will improve the results of both tasks, but too many shared layers will affect the
extraction of unique features for each task. Therefore, we set the number of shared layers
of the model to three. This allows MMA-Net to fully utilize the shared features of both
tasks while balancing the learning of unique features for each task.
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(a)

(b)

Figure 7. Comparison of model performance results for different shared layers. The results of
segmentation (a) and the results of classification (b).

5.3. Comparison with Other Models

To evaluate the proposed methodology, the MMA-Net was compared with several
classical segmentation and classification models for experiments. Table 6 shows the results
of proposed model and other single-task models on the skeletal muscle ultrasound image
datasets. As can be seen from the table, the proposed model achieves both the segmentation
and the classification of skeletal muscle ultrasound images, reducing the cost of training
multiple models. Compared with several classical single-task models, the results of both
segmentation and classification were more accurate. In terms of classification, MMA-Net
improves the performance a lot over several single classification models. The F-score
and AUC were also improved by 6.04% and 3.91% compared to GoogleNet, the best
classification model among the comparison models. This is due to the fact that muscle
abnormalities are more difficult to distinguish in the representation of ultrasound images,
and usually single classification networks have limited ability to extract abnormal features.
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However, multi-task learning allows the classification task to tap more potential features.
In addition, the multi-scale feature fusion and attention mechanisms enable the model to
have enhanced extraction of global and key features, resulting in a significant improvement
in the classification ability for abnormal muscles. In terms of segmentation, the IoU and
PA of MMA-Net are improved by 1.67% and 2.46%, respectively, compared to U-Net. It
also improves compared to other advanced segmentation models. Because most of the
multi-tasking models are only applicable to solving specific problems, and the network
structure and functions of each model are very different, we did not compare the proposed
network with other multi-tasking networks.

Table 6. Comparison of other segmentation and classification models with the proposed model.

Models
Segmentation Results Classification Results

DSC (%) IoU (%) PA (%) Acc (%) F-Score (%) AUC (%)

U-Net 92.35 92.43 95.45 - - -
U-Net++ 92.43 87.06 94.79 - - -
LinkNet 94.73 91.47 96.72 - - -

DeeplabV3+ 94.67 90.92 96.46 - - -

VGG16 - - - 89.01 81.91 88.16
Resnet50 - - - 87.91 84.19 92.38

GoogleNet - - - 92.30 87.91 93.71
MMA-Net 96.74 94.10 97.91 95.60 93.95 97.62

In order to observe the effect of the proposed model in the segmentation task more
clearly , we visualized the segmentation results. The segmentation results of skeletal muscle
images of healthy and diseased subjects by U-Net, U-Net++, LinkNet, DeeplabV3+ and
the proposed model are shown in Figures 8 and 9. As can be seen in Figure 8, the healthy
skeletal muscle images have a clearer and easier structure for segmentation. The proposed
model is more accurate than the other models in segmenting the details and handles the
edges better. For diseased skeletal muscle ultrasound images, the CSA is more difficult to
distinguish from other parts with similar contrast. In Figure 9, the segmentation results of
some diseased images by other models are quite different from the ground truth. In contrast,
our model can also effectively extract key features in noisier and more complex images of
diseased skeletal muscle, achieving segmentation with high completeness and accuracy.
This is due to the multi-task learning mechanism in MMA-Net, which supplements the
model with association information between two tasks. Additionally, the multi-scale feature
fusion and attention mechanisms make the models much more capable of feature extraction.
The proposed model was experimentally shown to be robust with better segmentation
results on both healthy and diseased muscles.



Entropy 2023, 25, 662 16 of 20

(a)Original image (b)Ground truth (c)MMA-Net (d)U-Net (e)U-Net++ (f)LinkNet (g)DeeplabV3+

Figure 8. Segmentation results of healthy skeletal muscle transverse ultrasound images on
different models.

(a)Original image (b)Ground truth (c)MMA-Net (d)U-Net (e)U-Net++ (f)LinkNet (g)DeeplabV3+

Figure 9. Segmentation results of diseased skeletal muscle transverse ultrasound images on
different models.

To further analyze the statistical significance of the results, t-tests were performed
between MMA-Net and the other models. The t-test is used to analyze whether the
difference between the means of two samples and the totalities they each represent is
significant. When the p < 0.05, it indicates that there is a significant difference between the
two totalities. We performed four random divisions of the dataset to form four datasets for
training and testing each model, respectively. We first performed the Shapiro–Wilk test on
each group of test results. The results show that the p-values for each group of data are
greater than 0.05 and the assumption of normality is accepted. This indicates that the data
follow a normal distribution and a t-test can be performed. Tables 7 and 8 show the t-test
results of the Dice coefficients and the accuracy of MMA-Net compared to the other models
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on the four test sets. As shown in the table, the p-values between MMA-Net and the other
models are less than 0.05. This indicates that the performance improvements of MMA-Net
in both segmentation and classification are statistically significant.

Table 7. Statistical significance analysis between MMA-Net and other segmentation models by t-test.

Model
Mean Difference

±
Standard Error

95% CI p-Value

U-Net 3.83 ± 0.49 [2.62,5.03] p = 0.0002
U-Net++ 4.01 ± 0.77 [2.78,5.83] p < 0.0001
LinkNet 1.85 ± 0.43 [0.79,2.92] p = 0.0053

DeeplabV3+ 1.33 ± 0.32 [0.52,2.14] p = 0.0068

Table 8. Statistical significance analysis between MMA-Net and other classification models by t-test.

Model
Mean Difference

±
Standard Error

95% CI p-Value

VGG16 5.06 ± 1.85 [0.53,9.59] p = 0.0341
Resnet50 8.37 ± 1.12 [5.64,11.11] p = 0.0003

GoogleNet 2.90 ± 0.97 [0.52,5.27] p = 0.0243

5.4. Comparison with Existing Methods

To further validate the proposed method, we compared it with existing methods for
cross-sectional area segmentation and abnormality classification on transverse ultrasound
images of skeletal muscle. The method we compared was proposed by Marzola et al. [25]
in 2021. It first segmented the transverse ultrasound image of skeletal muscle using a
convolutional neural network to determine the muscle cross-sectional area (CSA), and
then further calculated the average gray value of this area as a criterion for determining
abnormal muscle. Table 9 shows the evaluation results of the two methods for muscle
cross-sectional area segmentation and abnormal muscle classification. As can be seen from
the table, our method shows a large improvement in both segmentation and classification
compared to the method of Marzola et al. [25]. The Intersection over Union between
our method and the real label is 0.94, and the recall of abnormal image is also as high as
0.95. Figure 10 shows the indicators of the segmentation and classification results clearly
in the form of bar graphs. In general, compared with the existing analysis methods, the
proposed method based on MMA-Net is not only more concise, but also greatly improves
the accuracy of the analysis results. It can achieve more accurate muscle cross section
segmentation and abnormal muscle detection.

Table 9. Comparison of the proposed method with existing analytical methods.

Analysis Content Metrics Our Marzola

Segmentation of CSA
DSC 0.96 0.90
IoU 0.94 0.82

Classification of abnormal muscles
Precision 0.94 0.88

Recall 0.95 0.92
F-score 0.94 0.90
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Figure 10. The bar plots of each evaluation index.

6. Conclusions

In this paper, a method based on MMA-Net for the analysis of transverse muscu-
loskeletal ultrasound images was proposed to solve the problem of abnormal classification
and cross-sectional area acquisition of transverse muscle ultrasound image. The approach
was implemented by a multi-task model and reduces the cost of training multiple neural
networks. The proposed model exploits the correlation between two tasks to mine potential
features and uses parameter sharing mechanisms to enhance the generalization ability of
the network. The multi-scale feature fusion and attention modules incorporated in the
model enhance the feature extraction capability of the network and expand the perceptual
field of the shared network layer. The proposed model exploits the correlation between
two tasks to mine potential features and uses parameter sharing mechanisms to enhance
the generalization ability of the network. We discussed the effectiveness of the MMA-Net
network structure, evaluated with experiments. Additionally, comparisons with other
single-task models and existing methods were made. Experimental results demonstrate
that the proposed model is more capable of extracting edge detail features in terms of
segmentation. It also has good robustness for diseased skeletal muscle images with blurred
tissues. In terms of classification, the proposed model can better learn key texture features
with higher accuracy and recall. In summary, the proposed method is robust and can
achieve accurate skeletal muscle cross-sectional area segmentation and abnormal muscle
classification. In the future, we will try to apply the proposed model to the analysis of other
organ tissues. We are also exploring its application in clinical medicine systems to assist
physicians in obtaining accurate and effective pathology information more concisely.
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