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Abstract: Network controllability and its robustness have been widely studied. However, analytical
methods to calculate network controllability with respect to node in- and out-degree targeted removals
are currently lacking. This paper develops methods, based on generating functions for the in- and
out-degree distributions, to approximate the minimum number of driver nodes needed to control
directed networks, during node in- and out-degree targeted removals. By validating the proposed
methods on synthetic and real-world networks, we show that our methods work reasonably well.
Moreover, when the fraction of the removed nodes is below 10% the analytical results of random
removals can also be used to predict the results of targeted node removals.

Keywords: controllability; complex networks; node removals

1. Introduction

Network controllability is a crucial area of research that has been explored in various
types of networks, including biological networks [1], transportation networks [2], and
corruption networks [3]. The controllability of a network refers to the ability to steer the
states of its nodes to any desired state in a finite time by manipulating the input to a
subset of its nodes. Nodes whose inputs are imposed are named driver nodes. In linear
time-invariant systems, Kalman’s controllability rank condition [4] is the classic method
of assessing controllability. However, the method has limitations such as computation
complexity and the lack of information about the system’s interaction matrix and input
matrix. To overcome these limitations, the concept of structural controllability was pro-
posed [5]. Structural controllability is a property of structural linear time-invariant systems
with independently free parameters or fixed zero elements in their interaction and input
matrices that satisfy the controllability rank condition. Directed networks are structural
systems. Liu et al. [6] developed the algorithm and analytical methods to obtain the mini-
mum number of driver nodes in directed networks with the assumption that the directed
network has no self-links and a node’s internal state can only be modified upon interaction
with neighboring nodes [7]. Throughout this paper, we will adhere to this assumption.
Besides structural controllability, Yuan et al. introduced an exact controllability paradigm
to determine the minimum number of driver nodes for undirected networks with arbitrary
weights by using the maximum multiplicity [8].

In recent years, network structural controllability has gained increasing attention as
a tool to measure and enhance network robustness. Robustness is commonly assessed
by measuring network performance under various perturbations [9]. One approach is
to randomly remove nodes or links and observe the resulting changes in network per-
formance, while another approach involves targeted attack strategies exploiting specific
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features of network topology such as betweenness, degree, and closeness. Several stud-
ies have investigated the effectiveness of different targeted attack strategies on network
controllability. For example, degree-based attacks have been found to be more harmful
to network controllability than random attacks [10], while betweenness-based attacks are
more damaging in most real-world networks [11]. Additionally, attacking bridge links,
which results in a disconnected network, has been shown to be an effective way to destroy
network controllability [12]. Another approach to targeted attack strategies involves iden-
tifying critical nodes and links whose removal increases the number of driver nodes [6].
Protecting critical links can make random link attacks less efficient [13]. Some studies
have found that hierarchical attack strategies targeting critical nodes and links first are
more efficient than metric-based attack strategies, such as betweenness- or degree-based
strategies in interdependent networks [14]. In addition to assessing the robustness of
network controllability under perturbations, some studies have focused on enhancing it.
For example, increasing the density of nodes with an in-degree and out-degree equal to one
or two has been shown to improve network controllability [15]. Adding links to low-degree
nodes and creating multi-loop structures have also been found to increase the robustness
of network controllability [16]. Furthermore, different redundant design strategies of in-
terdependent networks, such as betweenness-based and degree-based strategies for node
backup and high degree first strategy for edge backup, have been investigated to optimize
the robustness of network controllability [17].

In addition to qualitative research, quantitative studies have been carried out to ex-
plore the robustness of network controllability under different types of perturbations.
Lu et al. [11] developed numerical approximations of random and targeted node attacks
based on the degree on Erdös-Rényi (ER) networks, which fit well when the fraction of
nodes is below 20%. Sun et al. [13] derived closed-form approximations of the minimum
number of driver nodes under various types of attacks, including random link attacks,
targeted attacks, and random attacks with protection. Chen et al. [18] developed analytical
approximations for the minimum number of driver nodes during random link removal
using generating functions. Wang et al. [19] later conducted analytical methods based on
generating functions to approximate the network controllability during random and tar-
geted node removal based on the total degree of different kinds of networks. In addition to
analytical methods, machine learning has been employed to predict network controllability
robustness. Dhiman et al. [20] used machine-learning-based approximations to quantify
the minimum fraction of driver nodes under random and targeted link attacks, which per-
formed better than the closed-form approximation proposed by Sun et al. [13]. Meanwhile,
by utilizing deep learning techniques, Lou et al. have developed a series of works that
employ different convolutional neural network (CNN) frameworks, treating the adjacency
matrix as a visual representation, to predict network controllability under random node or
link attacks, degree-based targeted node or link attacks, and betweenness-based targeted
node and link attacks [21–23]. Through the use of these models, they have achieved in-
creasingly precise controllability predictions and demonstrated improved scalability. The
quantitative studies provide valuable insights into the robustness of network controllability.

As the analytical approximations for targeted node removals based on node in-degree
and out-degree are still lacking, in this paper, we aim to utilize the structural controllability
framework for directed networks proposed by Liu et al. [6] to make the analytical approxi-
mation for those two kinds of targeted node removals. We validate our proposed methods
by applying them to three types of synthetic networks and four real-world communica-
tion networks.

The remainder of the paper is structured as follows. In Section 2, we introduce
the networks used in our study. Section 3 presents the analytical results of network
controllability under the two classes of targeted attacks. Finally, we conclude and discuss
the implications of our findings in Section 4.
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2. Network Data

To validate the theoretical results presented in the following sections, we will utilize
three categories of synthetic networks as well as several real-world networks. In this section,
we provide specific information regarding the utilized networks.

2.1. Directed Synthetic Networks

We choose three types of synthetic networks: Erdös-Rényi (ER) networks, Swarm
Signaling networks (SSNs) and Scale-free networks (SFs).

We generate a directed ER network with N nodes, whereby a directed link is placed
between every pair of nodes with a given probability of pER. The average number of links
is governed by the equation, L = N(N − 1)pER. This study has employed two kinds of ER
networks with N = 50 and N = 100, and pER = 0.07 and pER = 0.04, respectively.

The topology of Swarm Signaling Networks (SSNs), proposed in [24], is characterized
by a regular out-degree and an in-degree distribution that follows a Poisson distribution.
Two parameters must be specified to generate SSNs: the number of nodes, N, and the
out-degree value, k. Each node in the network randomly creates k outgoing links to other
nodes. Two kinds of SSNs are chosen, with N = 104 and average out-degree values of
k = 2 and k = 5, respectively.

Scale-free networks (SFs) are a class of complex networks whose both in-degree and
out-degree distributions exhibit a power-law distribution. In this paper, we generate two
SFs using the Barabási–Albert model, which is a preferential attachment mechanism that
generates networks with a power-law degree distribution with an exponent γ = 3 [25].
Specifically, we generate SFs in two stages. In the first stage, we generate a Barabási–Albert
graph with N nodes, where the initial state is a star with m + 1 nodes. At each step, a node
with m edges is preferentially attached to existing nodes with high degrees until the total
number of nodes reaches N. In the second stage, we randomly assign directions to each
link in the generated graph. The resulting SFs have in-degree and out-degree distributions
that follow a power-law distribution with an exponent γ = 3. We set m = 5 and m = 10 for
both SFs with N = 105 nodes, resulting in minimum in-degree and out-degree values a of
5 and 10, respectively, which are approximated by the integers that make the ceiling of the
average value of the power-law distribution equal to m.

2.2. Real-World Networks

In this study, we employed real-world communication networks obtained from the
Topology Zoo dataset [26]. To convert these networks from undirected to directed, we
utilized the source and targeted node attributes [13]. Table 1 demonstrates the basic
properties of the networks used in this study, including the number of nodes N, the number
of links L, and the average total degree < k >. The total degree of a node is the sum of its
in-degree and out-degree. Since the average in-degree equals the average out-degree, the
average total degree is twice the average in-degree (and out-degree).

Table 1. Properties of four real-world communication networks.

Name N L < k >

HinerniaGlobal 55 81 2.95

Syringa 74 74 2.00

Interoute 110 146 2.65

Cogentco 197 243 2.47

3. Network Controllability

Consider a linear, time-invariant networked system of N nodes, where each node’s
state is governed by ẋ(t) = Ax(t) + Bu(t), with x(t) = (x1(t), x2(t), . . . , xn(t))T being the
N × 1 state vector. The N × N matrix A represents the interactions among the network



Entropy 2023, 25, 656 4 of 20

components, and the N ×M matrix B specifies which nodes are under the direct control of
the M× 1 control input vector u(t) = (u1(t), u2(t), . . . , um(t))T .

A linear, time-invariant networked system is controllable if it can reach any desired
state within a finite time by applying external inputs. The Kalman rank criterion requires
that the rank of the controllability matrix [B, AB, A2B, . . . , An−1B] equals N for the system
to be fully controllable. Liu et al. introduced the maximum matching method and the
minimum inputs theorem to determine the minimum number of driver nodes required
to ensure network structural controllability [6]. The number of driver nodes, ND, can
be obtained by mapping a directed network into a bipartite network [13], obtaining a
maximum matching edge set using the maximum matching algorithm [27], and then
calculating ND = min{1, N − Nm}, where Nm is the number of directed edges in the
maximum matching set without sharing the same source or end nodes.

4. In-Degree and Out-Degree Node Attacks

Centrality analysis is an essential research area in studying network robustness [28].
Nodes with a high degree are known to have a substantial impact on network functioning
and are more susceptible to targeted attacks. In this study, our objective is to investigate an
analytical approximation of network controllability during targeted node removal based
on two types of degrees: in-degree and out-degree.

Assuming that the probability of node attack is proportional to some power of its
in-degree and out-degree, we can express the probability of removing node i based on
its in-degree kin_i as pin_i and based on its out-degree kout_i as pout_i. The formula for
calculating these probabilities is given as follows:

pin_i =
kα

in_i

∑j∈N kα
in_j

,

pout_i =
kα

out_i

∑j∈N kα
out_j

.
(1)

In the node removal process, after some nodes are removed, we recalculate the removal
probabilities for the remaining nodes using Equation (1). We then select nodes to remove
based on the recalculated probabilities until all nodes are removed.

When α = 0, the aforementioned equations become

pin_i =
1
N

,

pout_i =
1
N

,
(2)

which indicates that each node has an equal probability of being removed, resulting in a
random removal strategy. On the other hand, for α > 0, nodes with higher degrees have a
greater likelihood of being removed, while for α < 0, nodes with lower degrees are more
likely to be removed.

In this study, we investigate the impact of degree-based node removal strategies on
network robustness. To this end, we focus on α > 0, as higher-degree nodes are commonly
targeted for attack in real-world scenarios. Specifically, we consider two values of α, namely
α = 1 and α = 10, to evaluate the impact of removing nodes proportional to their degree
and removing high-degree nodes more aggressively, respectively. By using Equation (1),
we obtain the probabilities of the node being removed based on in-degree and out-degree
when α = 1 as follows:

pin_i =
kin_i

∑j∈N kin_j
,

pout_i =
kout_i

∑j∈N kout_j
.

(3)
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Analogously, the node removal probabilities based on in-degree or out-degree with α = 10
can be calculated by

pin_i =
k10

in_i

∑j∈N k10
in_j

,

pout_i =
k10

out_i

∑j∈N k10
out_j

.

(4)

Our results show that, for α = 10, the removal of high-degree nodes does not lead to a
significant reduction in network robustness in the beginning stage. For several networks,
there are no significant differences between the results with α = 1 and α = 100. Interestingly,
we observe that increasing the value of α to 100 does not result in further performance
gains, as the performance of attacks with α = 100 is similar to that of attacks with α = 10.
Additional details on these findings can be found in Appendix A. Furthermore, we find
that when α = 1, the removal strategies based on in-degree or out-degree can be more
detrimental to certain networks than node removal based on the total degree. However, for
some other networks, the harmful effects of these strategies are comparable. The results are
presented in Appendix B.

5. Minimum Fraction of the Number of Driver Nodes under Targeted Node Attacks
5.1. Analytical Approximation

The analytical approximation for targeted node removal based on in- and out-degrees
with different α is derived from the analytical approximation of random node removal. As
such, we begin by introducing the methodology for approximating the minimum fraction
of driver nodes under random removal, and then introduce the analytical methods of the
cases: α = 1 and α = 10.

5.1.1. Case: α = 0

To predict the minimum fraction of driver nodes under random removal, α = 0, by
using the analytical method based on generating function of degrees, we first employ
the framework proposed by Liu et al. [6]. Given a directed network G(N, L) with N
nodes and L links, we can determine the minimum fraction of driver nodes using the
generating function of the in- and out-degree distributions, denoted by Gin(x) and Gout(x),
respectively, as well as the excess in- and out-degree distributions, denoted by Hin(x) and
Hout(x), respectively. These generating functions can be defined as follows:

Gin(x) =
∞

∑
k=0

Pin(kin)xkin ,

Gout(x) =
∞

∑
k=0

Pout(kout)xkout ,

Hin(x) =
∑∞

k=1 kinPin(kin)xkin−1

< kin >
=

G′in(x)
G′in(1)

,

Hout(x) =
∑∞

k=1 koutPout(kout)xkout−1

< kout >
=

G′out(x)
G′out(1)

,

(5)

where kin and kout represent in-degree and out-degree, respectively, while Pin(.) and Pout(.)
are in- and out-degree probability distributions, respectively. Then, the minimum fraction
of driver nodes can be obtained by

nd =
1
2
{Gin(ω2) + Gin(1−ω1)− 2 + Gout(ω̂2) + Gout(1− ω̂1)

+ k[ω̂1(1−ω2) + ω1(1− ω̂2)]},
(6)
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where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = Hout(ω̂2),

ω2 = 1− Hout(1− ω̂1),

ω̂1 = Hin(ω2),

ω̂2 = 1− Hin(1−ω1),

(7)

and k denotes half of the average degree equal to the average in-degree and the average
out-degree, k = 1

2 < k >=< kin >=< kout >. We aim to determine the minimum fraction
of driver nodes nD needed to control the remaining part of the network after removing a
fraction p of nodes. To this end, we partition the network into two sets: a set containing ND
driver nodes that can control the rest of the network and a set of Nr removed nodes. We
assume that each removed node requires the control of an individual driver node. Then,
we define the fraction of driver nodes nD as nD = ND+Nr

N . After removing a fraction p of
nodes from the network, we can obtain the following expression for the minimum fraction
of driver nodes nD,

nD =
nd(1− p)N + pN

N
= nd(1− p) + p. (8)

We adopt the method proposed by Shao et al. [29] to adjust the generating functions of
in- and out-degree and the excess in- and out-degree after randomly removing a fraction p
of nodes from the network. According to this method, the generating function after random
removal can be obtained by applying an adjusted augmentation x̄ = p + (1− p)x to the
original generating functions. Hence, the generating functions of the in- and out-degree
and the excess the in- and out-degree after removing a fraction p of nodes can be expressed
as follows:

Ḡin(x) = Gin(p + (1− p)x),

Ḡout(x) = Gout(p + (1− p)x),

H̄in(x) =
Ḡ′in(x)
Ḡ′in(1)

,

H̄out(x) =
Ḡ′out(x)
Ḡ′out(1)

.

(9)

Next, we use Equations (6) and (8) to obtain the fraction of the minimum number of nodes
nD after removing a fraction p of nodes,

nD =
1
2
(1− p){Ḡin(ω2) + Ḡin(1−ω1)− 2 + Ḡout(ω̂2) + Ḡout(1− ω̂1)

+ k(1− p)[ω̂1(1−ω2) + ω1(1− ω̂2)]}+ p,
(10)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = H̄out(ω̂2),

ω2 = 1− H̄out(1− ω̂1),

ω̂1 = H̄in(ω2),

ω̂2 = 1− H̄in(1−ω1).

(11)

5.1.2. Case: α = 1

In-degree: In undirected networks, after a fraction p of nodes have been removed based
on their degree; specifically, the probability of a node removal is proportional to
some power of its degree, see Equation (1); the generating function of the degree
distribution, G(x), transforms into function Ḡ(x), which is as follows [28]:
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Ḡ(x) =
1

1− p

∞

∑
k=0

pk f kα
(1 +

f G′α( f )
< k >

(x− 1))k, (12)

where f ≡ G−1
α (1− p), Gα(x) ≡ ∑k pkxkα

and < k > is the average degree of the
initial network.

We investigate the extension of prior conclusions to directed networks while removing
nodes based on their in-degree. We assume that a node’s in-degree and out-degree
are independent and uncorrelated, such that removing a fraction p of nodes based
on their in-degree results in the generating function of the in-degree distribution
described by Equation (12). Furthermore, the generating function of the out-degree
distribution is given by Ḡout(x) = Gout(p + (1 − p)x) following the equation of
random node removals. So, if we remove nodes based on in-degree, function Ḡin(x)
and function Ḡin(x) satisfy

Ḡin(x) =
1

1− p

∞

∑
kin=0

pkin
f kin(1 +

f G′1( f )
< kin >

(x− 1))kin ,

Ḡout(x) = Gout(p + (1− p)x).

(13)

Then, we can obtain the analytical approximation of the minimum fraction of driver
nodes under node removals based on in-degree using Equation (10).

Out-degree: Analogously, if we remove a fraction p of nodes based on their out-degree, we
maintain the assumption that the generating function of the out-degree distribution
is described by Equation (12). Additionally, the generating function of the in-degree
distribution can be expressed as Ḡin(x) = Gin(p + (1− p)x). Therefore, we have
function Ḡin(x) and function Ḡin(x) as follows:

Ḡin(x) = Gin(p + (1− p)x),

Ḡout(x) =
1

1− p

∞

∑
kout=0

pkout f kout(1 +
f G′1( f )
< kout >

(x− 1))kout .
(14)

Furthermore, utilizing Equation (10), we can derive an analytical approximation of
the minimum fraction of driver nodes when nodes are removed based on out-degree.

5.1.3. Case: α = 10

When α = 10, we encounter difficulties in obtaining a numerical solution for
f ≡ G−1

α (1− p), where Gα(x) ≡ ∑k pkxkα
. Consequently, it becomes challenging to deter-

mine the evolution of the generating functions for in-degree and out-degree distributions
during the node removal process. To address this challenge, we propose a heuristic
approach whereby we map the targeted node removal process based on in-degree or
out-degree into a random node attack process.

Specifically, for node removals based on in-degree with α = 10, where a fraction of p
nodes are to be removed, we map this process to the removal of p̄ nodes in the in-degree
distribution, while maintaining the fraction of nodes in the out-degree distribution at p.
Similarly, for node removals based on out-degree with α = 10, we map the process to the
random removal of a fraction of p̄ nodes in the out-degree distribution, as well as a fraction
of p nodes in the in-degree distribution.

In-degree: In order to estimate the corresponding p̄ of a given fraction p under node
removals based on in-degree with α = 10, we adopt the assumption that nodes
are removed in descending order of in-degree. Specifically, we first sort the nodes
according to their in-degree and then remove nodes starting from the node with the
highest in-degree until the targeted fraction p is reached.

Next, we calculate the total in-degree of all the removed nodes by utilizing the original
in-degree distribution and the targeted removal fraction p. The effective fraction p̄ is
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then obtained by normalizing the total in-degree of all removed nodes with respect to
the total in-degree of all nodes in the initial network. This can be calculated as follows:

p̄in =
∑kin=k̄in

kin=kinmax
pkin

Nkin

N < kin >
=

∑kin=k̄in
kin=kinmax

pkin
kin

< kin >
, (15)

where the largest in-degree value is denoted as kinmax , the probability of removed

nodes with degree kin is denoted as pkin
and degree k̄in satisfies ∑kin=k̄in

kin=kinmax
pkin

= p.
It is worth mentioning that except for removed probability pk̄in

, other probability
pkin

is equal to probability Pin(kin) in the generating function. Then, we can use
effective proportion p̄in for the approximation of the minimum fraction of driver
nodes as follows:

Ḡin(x) = Gin( p̄in + (1− p̄in)x),

Ḡout(x) = Gout(p + (1− p)x),

nD =
1
2
{Ḡin(ω2) + Ḡin(1−ω1)− 2 + Ḡout(ω̂2) + Ḡout(1− ω̂1)

+ k(1− p + p̄in

2
)[ω̂1(1−ω2) + ω1(1− ω̂2)]}(1−

p + p̄in

2
) +

p + p̄in

2
,

(16)

where ω1, ω2, ω̄1 and ω̄2 satisfy Equation (11).

Out-degree: Analogously, for targeted node removal based on out-degree with α = 10, the
calculation of fraction p̄out follows the same assumption: nodes are removed from
the node with the highest out-degree to the node with the lowest out-degree until the
removed fraction of nodes reaches p. The effective fraction p̄out is the total out-degree
of removed nodes normalized by the total out-degree in the original network, which
can be calculated by

p̄out =
∑kout=k̄out

kout=koutmax
pkout Nkout

N < kout >
=

∑kout=k̄out
kout=koutmax

pkout kout

< kout >
, (17)

where the largest degree value is denoted as koutmax , and the probability of removed
nodes with out-degree kout as pkout . To achieve the targeted removal fraction p, we

find the minimum out-degree value k̄out satisfying ∑kout=k̄out
kout=koutmax

pkout = p. For all

out-degree values except for k̄out, their corresponding probabilities pkout are equal to
the probabilities Pout(kout) in the generating function. Then, we use p̄out, the effective
proportion of removed nodes based on out-degree, to estimate the minimum number
of driver nodes, which is given by the following expression:

Ḡin(x) = Gin(p + (1− p)x),

Ḡout(x) = Gout( p̄out + (1− p̄out)x),

nd =
1
2
{Ḡin(ω2) + Ḡin(1−ω1)− 2 + Ḡout(ω̂2) + Ḡout(1− ω̂1)

+ k(1− p + p̄out

2
)[ω̂1(1−ω2) + ω1(1− ω̂2)]}(1−

p + p̄out

2
) +

p + p̄out

2
,

(18)

where ω1, ω2, ω̄1 and ω̄2 satisfy Equation (11).

5.2. Results for Targeted Node Attacks
5.2.1. Case: α = 1

We ran simulations on various networks, as described in Section 2. We carried out
10,000 realizations for all networks to ensure sufficient statistical power. For ER and real-
world networks, which have a relatively small number of nodes, one node was removed at
each step until all nodes had been removed during each realization. Then, a recalculation
of the minimum fraction of driver nodes was conducted by using the algorithm. On the
other hand, due to the large number of nodes in SSNs and SFs, 1% of nodes were removed



Entropy 2023, 25, 656 9 of 20

at each step until all nodes had been removed during each realization. Subsequently,
the minimum fraction of driver nodes was recalculated based on the modified network
structure. The average value of results obtained from the 10,000 realizations was taken as
the final simulation output.

We present the results of targeted node removal based on in-degree and out-degree
with α = 1, as depicted in Figures 1 and 2. The simulation results are shown in green lines,
whereas the analytical results are in red. The results of random node removal are also
presented in gray lines for comparison. We observe that the analytical results serve as a
closed-form approximation of the minimum fraction of driver nodes (nD), as a discrepancy
exists between the predicted and simulation values during the targeted node removal
process based on in-degree or out-degree. In the case of ER networks and SFs, the in-degree
and out-degree distributions are identical. Consequently, the predicted values of targeted
removal based on in-degree and out-degree are also the same. For SSNs, the out-degree of
nodes is fixed. Therefore, the lines of analytical results of targeted node removal based on
out-degree with α = 1 in SSNs overlap with the lines of random node removal. We find
that for SFs and SSNs, the simulation results of targeted removal based on in-degree and
out-degree are slightly different from the simulation results of random removals. Thus,
even though the analytical results of SFs differ slightly from the simulation results of
random removals and the analytical results of SSNs are the same as the random removal
results, they closely approach the simulation results of targeted removals.
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Figure 1. The minimum fraction of driver nodes nD during targeted node removal based on in-degree
with α = 1 for different kinds of networks.
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Figure 2. The minimum fraction of driver nodes nD during targeted node removal based on out-
degree with α = 1 for different kinds of networks.

When the removed fraction p is small, the simulation results of targeted removals
based on in-degree and out-degree are close to those of random removals. We verified
this by calculating the Root Mean Square Error (RMSE) between the simulation results of
targeted removals based on in-degree and out-degree and analytical results of randomly
removing nodes below 10%, as shown in Table 2. Moreover, we calculated the RMSE
between the simulation and analytical results of targeted node removals based on in-degree
and out-degree below 10%, as shown in Table 3. The results indicated that both methods
provide a good approximation of the simulation results, as the values in both tables for
targeted node removals based on in-degree and out-degree with α = 1 are reasonably small.

Table 2. The RMSE between the analytical results of random removals and the simulation results
under random removals, target removals with α = 1 and α = 10, respectively, while removing 10% of
the nodes. The column labeled “Random” indicates the RMSE under random removals. The columns
labeled “α = 1” and “α = 10” represent the RMSE under targeted node removals with α = 1 and
α = 10, respectively. The columns labeled “Indegree”, “Outdegree”, and “Degree” represent the
RMSE under targeted node removals based on in-degree, out-degree, and total degree, respectively.
The analytical method for random removals is from the reference [19].

Network Random
α = 1 α = 10

Indegree Outdegree Degree Indegree Outdegree Degree

SF(105, 3, 5) 0.0005 0.0010 0.0010 0.0010 0.0032 0.0032 0.0032

SF(105, 3, 10) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

ER(50, 0.07) 0.0137 0.0164 0.0156 0.0155 0.0190 0.0195 0.0223

ER(100, 0.04) 0.0079 0.0086 0.0095 0.0094 0.0126 0.0121 0.0156

HinerniaGlobal 0.0039 0.0052 0.0110 0.0084 0.0025 0.0152 0.0152

Syringa 0.0071 0.0136 0.0217 0.0179 0.0237 0.0263 0.0443

Interoute 0.0011 0.0008 0.0106 0.0056 0.0064 0.0072 0.0175

Cogentco 0.0011 0.0090 0.0053 0.0071 0.0156 0.0091 0.0248

SSN(104, 2) 0.0000 0.0103 0.0003 0.0052 0.0143 0.0007 0.0155

SSN(104, 5) 0.0000 0.0006 0.0000 0.0003 0.0008 0.0001 0.0008
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Table 3. The RMSE between the analytical results of the proposed analytical methods and the
simulation results under different kinds of removals while removing 10% of the nodes. The column
labeled “Random” indicates the RMSE under random removals. The columns labeled “α = 1” and
“α = 10” represent the RMSE under targeted node removals with α = 1 and α = 10, respectively. The
columns labeled “Indegree”, “Outdegree”, and “Degree” represent the RMSE under targeted node
removals based on in-degree, out-degree, and total degree, respectively. The analytical methods for
random removals and targeted node removals based on the total degree are from the reference [19].

Network Random
α = 1 α = 10

Indegree Outdegree Degree Indegree Outdegree Degree

SF(105, 3, 5) 0.0005 0.0010 0.0010 0.0546 0.0764 0.0764 0.1573

SF(105, 3, 10) 0.0001 0.0001 0.0001 0.0555 0.0799 0.0799 0.1600

ER(50, 0.07) 0.0137 0.0122 0.0113 0.0095 0.0588 0.0595 0.0543

ER(100, 0.04) 0.0079 0.0058 0.0067 0.0039 0.0189 0.0193 0.0284

HinerniaGlobal 0.0039 0.0089 0.0136 0.0025 0.0281 0.0349 0.0354

Syringa 0.0071 0.0096 0.0143 0.0061 0.0157 0.0235 0.0142

Interoute 0.0011 0.0151 0.0242 0.0009 0.0265 0.0454 0.0229

Cogentco 0.0011 0.0233 0.0244 0.0050 0.0314 0.0330 0.0322

SSN(104, 2) 0.0000 0.0085 0.0002 0.0027 0.0331 0.0006 0.0343

SSN(104, 5) 0.0000 0.0094 0.0000 0.0024 0.0167 0.0001 0.0264

5.2.2. Case: α = 10

We ran the simulations of 10,000 realizations with α = 10 under in-degree and out-
degree node removals in mentioned networks. Each realization of every network is the
same as described in case α = 1. The simulation results of network controllability are
shown in the green lines in Figures 3 and 4. As before, the analytical results are depicted
in red lines, while the simulation results of network controllability under random node
attacks are shown in gray lines.

In addition to targeted node removals based on out-degree in SSNs with fixed out-
degree, the analytical results are consistent with random node removals. Notably, the
analytical results exhibit a similar pattern for α = 10, where they initially surpass the
simulation results before eventually intersecting and becoming inferior to the targeted node
attack lines but superior to the random node attack lines as the fraction of removed nodes
approaches one. We find the proposed methods can closely approximate network controlla-
bility using a closed-form approach, but do not precisely align with simulation results.

Upon examining Tables 2 and 3, we observe that both the proposed analytical methods
and the analytical results of random node removal demonstrate satisfactory performance
for targeted node removal based on in-degree and out-degree with α = 10 when the
fraction of removed nodes p is below 10%. However, the values obtained for α = 10 are
comparatively inferior to those obtained for α = 1 and random node removal. These
outcomes highlight the limitations of our proposed approach. Specifically, our method
assumes that nodes are removed from the node with the highest degree to the node with
the lowest degree, which is true when α is large enough, such as infinity. In this context, we
choose α = 10 and the node with the highest degree is much more likely to be removed,
but still cannot be guaranteed to be removed at each step.
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Figure 3. The minimum fraction of driver nodes nD during targeted node removal based on in-degree
with α = 10 for different kinds of networks.
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Figure 4. The minimum fraction of driver nodes nD during targeted node removal based on out-
degree with α = 10 for different kinds of networks.
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6. Conclusions and Discussion

This study introduces analytical methods based on generating functions to determine
the minimum fraction of driver nodes required to maintain network controllability in
directed networks under node failures based on in-degree and out-degree. We develop
separate analytical techniques for two scenarios, namely α = 1 and α = 10. Our proposed
analytical methods demonstrate reasonable results to predict the minimum fraction of
driver nodes under targeted attacks. Furthermore, our investigation indicates that random
node removal may also serve as a reliable predictor of the results of various targeted node
removals, particularly when the fraction of removed nodes is minimal (below 10%).

In addition to the findings presented in this paper, we have endeavored to apply our
simulations to various other real-world networks. Our analysis reveals that the minimum
fraction of driver nodes calculated by the proposed analytical method utilizing generating
functions does not coincide with the results obtained using the maximum matching algo-
rithm before node removal. As such, our proposed methods are inadequate for predicting
the minimum fraction of driver nodes under node removal for these networks. When tar-
geted node removal is based on in-degree and out-degree with α = 10, our approximation
method assumes that nodes are removed in descending order of in-degree and out-degree.
However, the assumption does not reflect the actual removal process, as we recalculated the
removal probabilities to choose nodes at each step. This discrepancy is one of the reasons for
the inaccurate results obtained. Moreover, we acknowledge that further improvements are
required to enhance the method’s efficacy. Notably, the numerical solution of the predicted
outcomes can be challenging to obtain, particularly when attempting to acquire the results
for SFs with some other parameters.

The approximation of node removals based on in- or out-degree involves an assump-
tion that the in-degree distribution and out-degree distribution evolve independently.
However, the assumption requires further investigation to ensure its validity. To address
this issue, an avenue of promising research involves examining the relationship between
in-degree and out-degree distributions through the randomization of networks. Such
analyses may provide upper and lower bounds for analytical methods, contributing to the
improvement of predictions about network controllability under targeted attacks based on
in-degree and out-degree.

In the future, we aim to broaden the scope of our findings by including other types
of node attacks, specifically localized node attacks, as documented in [28]. Furthermore,
we intend to verify our conclusions on a more comprehensive collection of real-world
networks and various types of networks, such as interdependent networks. We also plan
to apply additional prediction techniques, such as machine learning methods, to assess
network controllability under node removals concerning in-degree and out-degree.
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Abbreviations
The following abbreviations are used in this manuscript:

ER Erdös-Rényi networks
SSNs Swarm Signal networks
SFs Scale-free networks
RMSE Root Mean Square Error

Appendix A. The Simulation Results Based on Different α Values

The following figures demonstrate for α = 0, α = 1, α = 10 and α = 100 how the
minimum fraction of driver nodes changes under targeted attacks based on degree, in-
degree and out-degree for ER networks and SSNs. We find that the results of α = 10 and
α = 100 overlap.
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Figure A1. The minimum fraction of driver nodes nD during targeted node removal based on in-
degree and out-degree with α = 0, α = 1, α = 10 and α = 100 for different kinds of networks. The
results are the average nD calculated by the maximum matching algorithm over 10,000 realizations of
real-world networks and 1000 realizations of model networks. The blue, orange, and green dashed
lines are the results of simulations with α = 0, α = 1 and α = 10 separately. The pink dotted lines are
obtained by the simulation results with α = 100.
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Appendix B. Comparison with Node Removal Based on Degree with α = 1

We present the results of four types of node removal strategies: random removal,
targeted node removal based on the total degree with α = 1, targeted node removal
based on in-degree with α = 1, and targeted node removal based on out-degree with
α = 1 for three networks in Figure A2. We find that the three targeted node removal
strategies are more disruptive than random removal. However, the effectiveness of the
targeted node removal strategies varies depending on the network structure. For instance,
in ER(100,0.04), all three targeted node removal strategies show similar performance. In
SSN(104, 2), the targeted node removal based on in-degree is the most disruptive; whereas,
in HinerniaGlobal, the targeted node removal based on out-degree is the most disruptive.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.0

0.2

0.4

0.6

0.8

1.0

n D

ER (100, 0.04)

random
degree
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outdegree

(a) ER(100, 0.04)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed nodes (p)

0.2

0.4

0.6

0.8

1.0

n D

SSN (N=104, k=2)

random
degree
indegree
outdegree

(b) SSN(104, 2)
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0.8
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n D

HinerniaGlobal

random
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indegree
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(c) HinerniaGlobal

Figure A2. The minimum fraction of driver nodes nD during random removal and targeted node
removal based on degree, in-degree and out-degree with α = 1 for three networks. The results
are the average nD calculated by the maximum matching algorithm over 10,000 realizations of
HinerniaGlobal and 1000 realizations of ER(100, 0.04) and SSN(104, 2). The blue, red, orange and
pink dashed lines are the results of simulations with random removal, target removal based on the
total degree with α = 1, target removal based on in-degree with α = 1 and target removal based on
out-degree with α = 1 separately.

Appendix C. Another Real-World Network Results

In this study, the real-world graphs utilized have an average degree ranging from 2 to 3.
To further evaluate the efficacy of the proposed techniques, we selected a network from the
Topology Zoo dataset, namely BtNorthAmerica, which possesses an average total degree
of 4.22. The network under consideration comprises 36 nodes and 76 links. We analyzed
the controllability of the network under node removals concerning node in-degree and
out-degree with different α. The results are presented in Figure A3 and Tables A1 and A2.
Our findings suggest that the predicted values of the proposed methods are valid. It is
worth mentioning that, when α = 10, attacks based on out-degree at the onset are not as
deleterious as random removals. Removing the node with the highest out-degree in the
initial steps results in a lower average number of driver nodes than removing other nodes,
on average.

Table A1. The RMSE between the analytical results of random removals and the simulation results
under random removals, target removals with α = 1 and α = 10, respectively, while removing 10% of
the nodes. The analytical method for random removals is from the reference [19].

Network Random
α = 1 α = 10

Indegree Outdegree Degree Indegree Outdegree Degree

BtNorthAmerica 0.0097 0.0140 0.0104 0.0121 0.0117 0.0096 0.0101
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Table A2. The RMSE between the analytical results of the proposed analytical methods and the
simulation results under different kinds of removals while removing 10% of the nodes. The analytical
methods for random removals and targeted node removals based on the total degree are from the
reference [19].

Network Random
α = 1 α = 10

Indegree Outdegree Degree Indegree Outdegree Degree

BtNorthAmerica 0.0097 0.0126 0.0175 0.0091 0.0538 0.0612 0.0527
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(b) Out-degree with α = 1
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(c) In-degree with α = 10
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Figure A3. The minimum fraction of driver nodes nD during targeted node removal based on
in-degree and out-degree with α = 1 and α = 10, respectively, for the network BtNorthAmerica.

Appendix D. Analytical Approximation of Random Node Removals about SFs

This section shows the analytical solution for random node removal in SFs. In SFs,
the in-degree distribution and out-degree distribution both follow the pure power-law
distribution with minimum degree a and exponent γ, which can be denoted as follows:

Pin(kin) = Cink−γ
in , Pout(kout) = Coutk

−γ
out , (A1)

where Cin = 1
∑∞

kin=a k−γ
in

= 1
ζ(γ,a) and Cout =

1
∑∞

kout=a k−γ
out

= 1
ζ(γ,a) , where ζ(γ, a) is the Hurwitz

Zeta function, and the average degree k = ζ(γ−1,a)
ζ(γ,a) . Correspondingly, the generating

functions can be obtained by

Gin(x) =
xaΦ(x, γ, a)

ζ(γ, a)
, Gout(x) =

xaΦ(x, γ, a)
ζ(γ, a)

, (A2)

where Φ(z, s, α) denotes the Lerch transcendent function.
Together with Equations (9) and (10), the fraction of the minimum number of driver

nodes nD after randomly removing a fraction p nodes can be calculated by
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nD =
(1− p)(−pω2 + p + ω2)

aΦ(−pω2 + p + ω2, γ, a)
ζ(γ, a)

+

(1− p)Φ
(

(p−1)Φ(−pω2+p+ω2 ,γ−1,a)(−pω2+p+ω2)
a−1

ζ(γ−1,a) + 1, γ, a
)

ζ(γ, a)

×
(
(p− 1)(−pω2 + p + ω2)

a−1Φ(−pω2 + p + ω2, γ− 1, a)
ζ(γ− 1, a)

+ 1

)a

+
k(2p− 1− p2)(ω2 − 1)(−pω2 + p + ω2)

a−1Φ(−pω2 + p + ω2, γ− 1, a)
ζ(γ− 1, a)

+ 2p− 1

(A3)

where 1−ω2 − H̄out(1− H̄in(ω2)) = 0.
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