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Abstract: Physically implemented neural networks are subject to external perturbations and internal
variations. Existing works focus on the adversarial attacks but seldom consider attack on the network
structure and the corresponding recovery method. Inspired by the biological neural compensation
mechanism and the neuromodulation technique in clinical practice, we propose a novel framework
of reviving attacked reservoir computers, consisting of several strategies direct at different types
of attacks on structure by adjusting only a minor fraction of edges in the reservoir. Numerical
experiments demonstrate the efficacy and broad applicability of the framework and reveal inspiring
insights into the mechanisms. This work provides a vehicle to improve the robustness of reservoir
computers and can be generalized to broader types of neural networks.

Keywords: reservoir computer; attack and recovery; Echo State Property; network structure

1. Introduction

Neural networks (NN) are subject to external perturbations and internal variations, es-
pecially when they are physically implemented [1–4]. In the past few decades, tremendous
efforts have been devoted to relieving small perturbations on the input, that is, adversarial
attacks [5–7], but are seldom made to consider the attack on the network structure. In fact,
failure of certain neurons and/or synaptic connections may also significantly reduce the
computational capacity [8,9], while biological NN compensate for this loss by adaptively
adjusting/rebirthing links [10–12]. In clinical practice, neuromodulation techniques, such
as the Transcranial Direct Current Stimulation (tDCS) [13–15], recover the neural functions
through compensating neural connections with weak direct currents [16–18]. Restoring
the network performance as much as possible from attacks on network structure becomes
an urgent challenge. Albert et al. investigated the error tolerance and attack vulnerability
under the removal of nodes in complex networks [19]. Nguyen et al. measured the network
properties when a real-world complex network is attacked by different strategies [20].
Further studies concentrated on the recovery approaches [21,22], which are vital to the
smooth functioning of the networked systems. However, the structural attack and recovery
of neural networks are barely visited and require intensive investigation [23].

Reservoir Computer (RC), a variant of the Recurrent Neural Network (RNN), has
enjoyed recent attention since the seminal works by Jaeger [24] and Maass [25], due to its
excellent training efficiency and its convenience to be physically implemented [26]. Its
architecture, comprising of an input layer, a linear output layer, and a reservoir network
consisting of dynamical neurons, well-simulates the mechanism of biological brains in a
conceptual manner [27]. While the input matrix and the reservoir matrix are randomly
generated and fixed, training the output matrix occupies the whole expense, which can be
efficiently obtained by least-squares optimization [28], and avails RC to reduce the complex
training of RNN’s parameters to a linear regression problem [24]. The fixed weights
also enable the reservoir layer to be created with a specific physical system [29]. Recent
works analytically proved that a suitably trained RC is essentially a high-dimensional
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embedding of the input dynamical system [24,30–34], as shown in Figure 1a. When its
reservoir becomes the target of an attack, on nodes and/or links, the performance may
drop significantly and can not revive without external intervention [Figure 1b]. Similar
operations performed in Deep Neural Networks (DNN) are known as dropout [35] and
pruning [36], which are usually regarded as training tricks, instead of attacks, to improve the
performance due to the redundant structures in DNN. Practically, the term “attacked” can
be also interpreted/replaced as “failed” in broader scenarios. In physically implemented
devices of RC, digital components, such as field-programmable gate arrays or digital
signal processors, are used for the reservoir layer and readout layer. The memristor [29],
a new type of information processing device which has a memory of past voltages or
currents, is recently used to boost the power efficiency of the hardware implementations of
reservoir computing systems. In these circumstances, the failures can usually be caused by
the sudden disconnection between memristors during prolonged operations [37] or/and
environmental damages to the internal electrical components [38]. These circumstances
can be regarded as “attacks” to the reservoir and thus require “recovery”. Therefore,
the study of attack and recovery for RC is not only at the theoretical level, but also has
practical significance.

Figure 1. Schematic diagram of attack and recovery in reservoir computer. (a) Before attack, in the
configuration of time series prediction, a standard RC accurately predicts the true dynamics, with
blue and red lines denoting the true values and the predicted results respectively. (b) Attacked, here
node attack is illustrated, failing its adjacent links (gray dashed arrows) and the predicted results
deviate from the true values. (c) Recovery, by adjusting automatically part of the remaining links
(orange arrows), the performance of RC improves significantly.

In this paper, analogous to the neural compensation mechanism in brains, we design
several recovering mechanisms for reservoir computer to compensate its performance
loss under different types of attacks on structure, that is, adjusting only a minor fraction
of edges in the reservoir according to different attack scenarios. Results show that it is
impossible to take precautions on specific nodes/links due to the ambiguous relationship
between their a priori topological measurement and the performance loss under attack. Our
proposed strategies successfully and efficiently revive the functioning of RC by automat-
ically adjusting the remaining neurons/synapses [Figure 1c], which represent practical
advancement towards enhancing the robustness of neural networks.

The paper is organized as follows: Section 2 reviews the standard reservoir computer
and introduces the attack and recovery strategies employed in this study. Section 3 presents
the performance loss under attack and the corresponding recovery results. We also quanti-
tatively and systematically analyze the different recovery strategies. Section 4 discusses
several important related issues and concludes the paper.



Entropy 2023, 25, 515 3 of 14

2. Method
2.1. Standard Reservoir Computer

The standard framework of RC can be described in the state updating rule of the
reservoir neurons [24]:

rk = (1− α)rk−1 + αφ(Wresrk−1 + Winxk), (1)

where rk ∈ Rm represents the state of m reservoir neurons at time step k, and xk ∈ Rn is
the input signal observed from a dynamical system ϕ evolving on a compact manifoldM.
Win ∈ Rm×n and Wres ∈ Rm×m denote the input weight matrix and the reservoir network
matrix respectively, which are randomly generated according to certain distribution laws
and then fixed. We consider two settings, full connection and sparse connection, of the
reservoir, while in the latter case two nodes i, j are called linked if Wij

res 6= 0 or W ji
res 6= 0 (Wij

res
denotes the link weight from node i to node j). α ∈ (0, 1) is the leakage factor controlling
the time-scale mismatch between the input and reservoir dynamics (α = 1 represents the
previous states do not leak into the current states) and function φ determines the dynamics
of the reservoir neurons which at its simplest can be set as tanh(·). Consequently, the
output yk ∈ Rl linearly combines the reservoir states such that yk = Woutrk, with the
output weight matrix Wout ∈ Rl×m solely requiring training. RC can be adapted to different
tasks while in the task of one-step time series prediction [39–41], the target is ŷk := xk+1
and Wout can be calculated by minimizing the loss function

L =
N

∑
k=1
||xk+1 −Woutrk||2 + β||Wout||2, (2)

where β > 0 is the L2-regularization coefficient. After the training phase, the output yk can
be redirected to the input layer, that is, xk+1 := yk, thus RC runs in an autonomous mode
(in this case l = n). With these settings, RC is proved to intactly capture the dynamics of
the input dynamical system, which naturally requires the reservoir’s initial state to fade
away, that is, the Echo State Property (ESP) [24,42]. A sufficient condition guaranteeing the
ESP is that the spectral radius of Wres is smaller than 1, that is, ||Wres|| < 1. Thus in this
study we rescale the reservoir network matrix by

Wres :=
ρ∗

ρ(Wres)
Wres, (3)

where ρ(·) denotes the spectral radius or the maximum eigenvalue of a matrix, and ρ∗ is
the desired spectral radius.

We use the Mean Squared Error (MSE) to evaluate RC’s performance at different stages:

MSEk :=
1
τ

k

∑
p=k−τ+1

||yp − ŷp||, (4)

where τ denotes a specified time window. Notice that a well-trained RC can achieve
accurate prediction with saving computations [Figure 2a,b].



Entropy 2023, 25, 515 4 of 14

Figure 2. Node-attack and recovery for fully connected RC. (a) Before attack, predicted (red) and
true (blue) time series. Here the two trajectories coincide with each other. (c) Attacked, predicted (red)
and true (blue) time series. (e) Recovery, predicted (red) and true (blue) time series. (b,d,f) The pre-
diction errors for each corresponding stage. Here the MSE value denotes an average of 50 realizations.

2.2. Reservoir-Attack Mechanisms

RC runs in an autonomous mode once the output matrix Wout is trained and fixed. We
propose two possible attack mechanisms on the reservoir network, that is, node-attack and
edge-attack, while in biological neural networks, the two types of attack may represent the
apoptosis of neurons and the fracture of synapses respectively. In physical implementations,
the two types correspond to failure of a single memristor and disconnection of the circuit
between memristors respectively. It is shown that RC may lose efficacy under both attack
mechanisms [Figure 2c,d].

Mechanism 1 (Node-attack). For a well-trained and autonomous RC, node-attack denotes the
removal of certain node s and its all adjacent edges, which is performed by

rk := 0, W :,s
res := 0, Ws,:

res := 0, W :,s
in := 0, Ws,:

out := 0,

where k > k∗, k∗ is the attack time, and the superscript “:” denotes the corresponding row/column.

Mechanism 2 (Edge-attack). For a well-trained and autonomous RC, edge-attack denotes the
removal of certain link from node i to node j, which is performed by

Wij
res := 0.

In practice, the attack can be launched to a proportion of the nodes and/or edges
according to certain rule.

2.3. Rc-Revive Strategies

We denote Wres and W̃res as the reservoir matrix before and after attack respectively.
To realize recovery in an energy-efficient manner, we revive RC’s performance by adjusting
only a small fraction of the weights in W̃res, which are treated as values to be optimized to
achieve minimal MSE, leading to the revived reservoir matrix W∗res.

Different optimization methods can be utilized to achieve the goal. In this study,
Simulated Annealing (SA) [43] is used and integrated in our proposed reviving strategies
to automatically find the optimal set of connections to impose adjustment, with the specific
procedures presented in Algorithm 1.



Entropy 2023, 25, 515 5 of 14

Algorithm 1 Simulated Annealing-based recovery of RC

Input: W̃res, E is a set of edges in W̃res allowing adjusting depending on strategies, kmax is
the maximum iterations, N is the number of edges perturbed each time during SA

Output: W∗res
MSE = MSE(W̃res)
for t = 1→ kmax do

Perturb N edges randomly from E by adding random(−1, 1) to obtain W∗res
MSE∗ = MSE(W∗res)
if MSE∗ < MSE then

P = 1
else

P = exp(−(MSE∗−MSE)
0.95t )

end if
if P > random(0, 1) then

MSE = MSE∗, W̃res = W∗res
end if

end for
W∗res = W̃res

We first propose two strategies to revive RC from node-attack. Here the reservoir struc-
ture is preserved during the recovery process, that is, no new links is allowed to generate
[Figure 1c]. As shown in the following Strategy 1 and 2, we choose the set of connections
in a completely random manner or related to the attacked node respectively. In physical
implementations, the selected set denotes partial connections between the memristors.

Strategy 1 (Full selection). The allowing set of edges here is defined as

EF := {(i, j)|i, j 6= s, W̃ij
res 6= 0}.

Strategy 2 (Relevant selection). The allowing set of edges here is defined as

ER := {(i, j)|i, j 6= s, W̃ij
res 6= 0, Wis

res, Wsi
res, W js

res, Wsj
res are not all zero}.

In this study, we consider both fully and sparsely connected reservoir structures, while
Strategy 1 and 2 become the same for the former case and we compare the two strategies
for the latter case. Biologically, the relevant selection strategy is more ubiquitous since
compensation always occurs at the neighbouring neurons [10–12].

We next consider the recovery of edge-attack. The above two strategies can be utilized
in an analogous manner and achieve good recovery results. Here we propose another
strategy allowing adding new links, which enriches the structure of the reservoir and
represents the birth of new synapses. This strategy is more natural in physiology, but
difficult to implement in digital devices.

Strategy 3 (Incremental selection). The allowing set of edges here contains all rest of the edges:

EI := {(i, j)|(i, j) is not attacked}.

We trade off the selected edges by γ percentage of existing edges and 1− γ percentage of adding
edges during SA.

Note that retraining the RC may be considered as a solution. However, considering
practical scenarios, retraining usually requires re-collecting a large amount of training
data. Moreover, the operators of the devices often are not authorized to touch the system
underpinnings [44], which imposes a requirement of adaptive recovery mechanism that
does not need external interventions.
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3. Result

We test and analyze the proposed methods in reservoir computers with m = 100
reservoir neurons and leaky factor α = 0.25, which is trained with the normalized x
component of the benchmark Lorenz system:

ẋ = −σx + σy,
ẏ = rx− y− xz,
ż = −bz + xy

(5)

with σ = 10, r = 28, b = 8/3 [45]. 1000 points with discretization time step 0.03 are
used as training set, and the leading 100 reservoir states are discarded to eliminate the
transient behavior. The input matrix Win and the reservoir matrix Wres are generated with
the elements randomly selected from [−1, 1]. Wres is rescaled to a spectral radius of 0.9. We
set the initial value of the SA procedure to be the reservoir state after attack, that is, W̃res,
and update the temperature every 100 iterations with kmax = 20,000 maximum iterations.

3.1. Node-Attack and Recovery

Before attack, the RC is well-trained to a high prediction accuracy, see Figure 2a,b,
while it loses efficacy when one randomly selected node is attacked [Figure 2c,d]. Strategy 1
is utilized with N = 50 to fully connected RC and achieves good recovery result that
significantly reducing the prediction errors [Figure 2e,f]. Notice that for fully connected
RC, performing Strategy 2 is completely equivalent.

For sparsely connected RC (here we allow 10% connections), both strategies are applied
which successfully revive the performance to satisfactory extent [Figure 3]. However,
Strategy 1 obtains relatively higher MSE (0.6836, Figure 3d) than the relevant selection
strategy (0.3450, Figure 3c). Possible explanation lies in that adjacent links can be regarded
as belonging to the same subgraph containing the attacked node, thus share similar local
information, facilitating better recovery by adjusting them [46].

Figure 3. Node-attack and recovery for sparsely connected RC. The prediction errors for stages of
(a) before attack, (b) attacked, (c) recovery with relevant selection, (d) recovery with full selection,
respectively. Green nodes denote the neighbours of the attacked node. Here the MSE value denotes
an average of 50 realizations.

To demonstrate the mechanisms can be applied to various tasks, we additionally
consider a system reconstructing task of the Rössler system:

ẋ = −ωy− z,
ẏ = ωx + αy,
ż = β + z(x− γ)

(6)

with ω = 1, α = 0.2, β = 0.4, and γ = 5.7. Here normalized time series xt and yt are used
to reconstruct the dynamics of zt and the parameter settings of RC are the same with the
above experiment. We impose a node-attack to a fully connected RC and use Strategy 1 for
recovery with N = 50, and the experimental results are shown in Figure 4. Notice that after
the attack, RC’s reconstructing ability is significantly weakened, with large MSE of 74.45.
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After taking the strategy, the reconstructing successfully recovers with the MSE decreasing
to 12.75.

Figure 4. Node-attack and recovery for fully connected RC in the task of reconstructing Rössler
system. (a) The original Rössler attractor. The reconstructing errors for stages of (b) attacked and
(c) recovery are shown. Here the MSE value denotes an average of 50 realizations.

3.2. Edge-Attack and Recovery

Here attack is launched to 10% randomly selected edges. We apply Strategy 3 with
γ = 1 and N = 50 to a fully connected RC and present the results in Figure 5a–c, which
also reduces the prediction errors significantly and revives the RC to a healthy condition.
Notice that for fully connected RC, γ < 1 leads to the rebirth of the attacked edges, which
is not allowed in our settings. While for sparsely connected RC, we analyze the recovery
effects with different choices of γ. Notice that γ = 0 denotes the circumstance that recovery
is reached only by generating new edges and preserving all the existing ones, which
produces the MSE of 0.3080 [Figure 6b]. When γ increases to 0.5, denoting a mixing strategy
of generating new edges and adjusting existing edges, recovery MSE also increases to
0.4551 [Figure 6c]. Additionally, the strategy with γ = 1 produces the highest MSE of
0.5896 [Figure 6d]. The above MSE values are obtained through averaging the results
of 50 realizations. The experiments show that in a sparsely connected RC, adding new
edges becomes the best recovery strategy, which represents an enrichment of the reservoir’s
structure. This is in accordance with biological nervous system, in which compensation is
always reached by generating new synapses [10–12].

Figure 5. Edge-attack and recovery for fully connected RC. The prediction errors for stages of
(a) before attack, (b) attacked, (c) recovery, respectively. Here two edges are attacked for illustration.
Here the MSE value denotes an average of 50 realizations.
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Figure 6. Edge-attack and recovery for sparsely connected RC. The prediction errors for stages of
(a) attacked, (b) recovery with Strategy 3 (γ = 1), (c) recovery with Strategy 3 (γ = 0.5), (d) recovery
with Strategy 3 (γ = 0), respectively. Here the MSE value denotes an average of 50 realizations.

4. Discussion
4.1. Ineffectiveness of Precaution to Reservoir

To avoid performance collapsing under attack, precautionary actions may be taken.
For example, if we can identify the most essential nodes/edges in advance, protections
can be imposed to these targets. Usually, there are many methods/measurements from
complex network theory to evaluate the importance of nodes based on their local or global
information, e.g., Degree Centrality [47], Node Strength [48], Betweenness Centrality [49],
PageRank [50], and so forth. For a fully connected reservoir, all nodes have indistin-
guishable evaluations, preventing the emergence of the key nodes. Here we show in the
framework of sparse reservoir computer, the performance loss under node-attack is also
irrelevant with node’s importance measurements. We test the linear relationship between
MSE under node-attack and several measurements of the node, and list the results in
Table 1, demonstrating all nodes are of similar importance in the reservoir. Therefore,
taking precautionary actions is difficult, and recovery strategies proposed in this work
are of great significance. In addition, previous experiments show that although the reser-
voir structure is initially randomly chosen, the performance is quite sensitive to small
perturbations in the network structure, further demonstrating the significance of this work.

Table 1. Relationship between node-attack MSE and importance measurements (y = ax + b).

Importance Measurement a R2-Score

Degree Centrality −0.32± 0.65 0.03
Node Strength −0.51± 0.72 0.06

Betweenness Centrality +0.28± 0.52 0.12
PageRank −0.30± 0.81 0.07

4.2. Echo State Property vs. Attack and Recovery

The spectral radius of the reservoir matrix plays crucial role in determining the per-
formance of RC by ensuring the Echo State Property and balancing memory capacity and
nonlinearity [51]. We are interested in the variation of the spectral radius, thus the ESP, dur-
ing attack and recovery. A rigorous theory characterizing this variation lies in the spectral
graph theory and can be referred to reference [52]. Here we perform numerical analysis
using 100× 100 randomly and sparsely connected reservoir network matrix rescaled to
different initial spectral radius and randomly remove an increasing proportion edges. As
shown in Figure 7a, the spectral radius has a decreasing trend following the removing
procedure, harming the performance of RC, as demonstrated in [24] that RC runs most
effectively with a spectral radius close to 1. However the ESP remains satisfied.

For the recovery, we successively added new edges to the reservoir network, and
present the results in Figure 7b. We find the spectral radius gradually increases as the
network gets denser, but will exceed 1 eventually, violating the ESP and failing the per-
formance. However, in our framework, utilizing Strategy 3 together with the Simulated
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Annealing optimization produces Figure 7c, which shows that the spectral radius stabi-
lizes at around 1 and the network stops growing automatically, guaranteeing the best
performance of recovery.

Meanwhile, we experimentally verify that whether the recovery can be achieved
by adjusting the spectral radius. We rescale the fully connected reservoir matrix being
node-attack, and find that the MSE shows a slow decreasing trend with the turning up
of the spectral radius (still remains large after adjustment, see Figure 8). Nevertheless,
adjusting the spectral radius requires an overall manipulation of the whole matrix, which
is time-consuming compared to our proposed strategies.

Figure 7. Variation of spectral radius during attack and recovery. (a) A decreasing trend from
differently selected initial values of the spectral radius during edge-attack, harming the performance
of RC. (b) The spectral radius gradually increases as the network gets denser, but will exceed
1 eventually, violating the ESP and failing the performance. (c) With our framework, the spectral
radius stabilizes at around 1 and the network stops growing automatically, guaranteeing the best
performance of recovery. The horizontal axis show the numbers of added/removed edges. Error bar
denotes standard deviation of 20 realizations.

Figure 8. Variation of MSE during spectral radius adjustment. MSE gradually decreases with the
increase in the spectral radius, but the recovery is inefficient and the MSE after recovery remains
large compared to our proposed strategies.

4.3. How to Choose Recovery Strategies

Exposing to different attacked scenarios, we analyze the proper selection of recovery
strategies. Two criteria, reservoir connectedness [53] and attacked edge betweenness cen-
trality [54], are adopted to determine the optimal strategy. Here we compare two attacked
scenarios for a sparsely connected RC, with its healthy state presented in Figure 2a. The
first case (attack 90% connections) renders the reservoir separating into several connected
components, significantly harming its prediction ability [Figure 9a]. Strategy 2 is applied
with s adjusting to be the vertexes of the attacked edges, decreasing the MSE to 0.7182
[Figure 9b]. As comparison, Strategy 3 with γ = 0 is applied and achieves generally better
recovery results. At optimal case that the reservoir returns to be connected, smaller MSE of
0.4976 is achieved [Figure 9c]. However, for the second case of attack that does not harm
the reservoir’s connectedness, the two strategies have similar results, with MSE values of
0.8979 and 0.8176 respectively.

These results demonstrate the importance of the reservoir connectedness in selecting
optimal strategies. Generally, against massive attacks, adding new edges to restore the
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reservoir connectedness can be preferentially chosen, as connectedness plays crucial role in
ensuring the network’s proper functioning [53].

Figure 9. Different choices of recovery strategies according to the reservoir connectedness. The
prediction errors for stages of (a) attacked, (b) recovery with Strategy 2, (c) recovery with Strategy 3
(γ = 0), respectively. Here different colors of the nodes denote their connectedness and the MSE
value denotes an average of 50 realizations.

With the same configurations, we compare Strategy 2 and Strategy 3 respectively
in two attacked scenarios with the average betweenness of the attacked edges greater
(3.8119) or smaller (3.0427) than the average betweenness of the reservoir before attack
(3.414). Results in Figure 10 show the preference of Strategy 3 when the attacked edges
are relatively important and indiscriminate selection of Strategy 2 and 3 for less important
attacked edges. In fact, a higher value of the betweenness implies the criticality of the
edges [55], and adding new edges avails recovery when crucial edges are attacked.

Figure 10. Different choices of recovery strategies according to the attacked edge betweenness
centrality. When the betweenness of the attacked edges is high, the prediction errors for stages of
(a) recovery with Strategy 2, (b) recovery with Strategy 3. When the betweenness of the attacked edges
is low, the prediction errors for stages of (c) recovery with Strategy 2, (d) recovery with Strategy 3.
Here the MSE value denotes an average of 50 realizations.

4.4. Minor Adjusting Is Sufficient for Recovery

In practice, efficient recovery is expected to achieve at minimized cost, which in our
study is reflected in the number of edges perturbed (N) during optimization, yielding a
trade-off between performance and cost. Here we search for an optimized N for a fully
connected RC under node-attack with full selection recovery strategy. The experimental
configurations are the same with Figure 2, but varying N from 10 to 100. As compared
to the network size (100× 100), recovery can be reached with extremely minor adjusting
and low cost. As shown in Figure 11, lowest MSE is reached at N = 50 and increasing
the number of adjusted edges does not benefit the efficacy of recovery. This result further
demonstrates the broad applicability and high efficiency of our proposed framework.
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Figure 11. Efficacy of recovery v.s. number of adjusted edges for fully connected RC under node-
attack. Lowest MSE is reached at N = 50, demonstrating that minor adjusting is sufficient for
recovery. Error bar denotes standard deviation of 20 realizations.

4.5. Attack and Recovery in Other Neural Networks

Reservoir computing, as a specific variant of RNN, is subject to not only attacks on net-
work structure but also adversarial attacks, while the latter is more commonly considered
in traditional NN, e.g., Fast Gradient Sign Method (FGSM) deteriorates the performance in
tasks of time series prediction and graph node classification [56,57], DeepFake causes the
face recognition model to misclassify [58–60], and so forth. Adversarial attacks on RC also
represent a promising topic which will be included in our future work, including on other
variants of RNN, such as LSTM [61] and GRU [62]. Moreover, attacks on network structure
of Deep Neural Networks (DNN) are regarded as training tricks, instead of attacks, to
improve the performance due to the redundant structures in DNN.

5. Conclusions

In this paper, inspired by the biological neural compensation mechanism in brains,
we proposed a framework of reviving attacked reservoir computers, consisting of several
strategies directed to different types of attacks. All the strategies achieved sound recovery
results. The analysis further brings inspiring insights, that:

(1) Adjusting adjacent neurons/synapses is more effective than distant ones;
(2) Enriching the reservoir network is more effective than adjusting existing edges;
(3) Reservoir connectedness and attacked edge betweenness centrality are crucial criteria

in choosing optimal recovery strategies; and
(4) Minor adjustments are sufficient for recovery.

Future work includes incorporating advanced optimization algorithms, theoretical
analysis on the choice of adjusting connections, and designing more adaptive strategies.
The proposed attack and recovery strategies can be generalized to more variants of RNN,
including LSTM and GRU. This work provided a practical framework to improve the
robustness of reservoir computers, and a vehicle towards broader types of neural networks.
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