
Citation: Jeong, G.; Han, M.; Kim, S.;

Lee, Y.; Lee, J.; Park, S.; Kim, H.

Improving Text-to-SQL with a

Hybrid Decoding Method. Entropy

2023, 25, 513. https://doi.org/

10.3390/e25030513

Academic Editors: Raúl Alcaraz,

Leandro Pardo, Luca Faes and

Boris Ryabko

Received: 31 January 2023

Revised: 2 March 2023

Accepted: 15 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Improving Text-to-SQL with a Hybrid Decoding Method
Geunyeong Jeong 1, Mirae Han 1, Seulgi Kim 2, Yejin Lee 1, Joosang Lee 1, Seongsik Park 1 and Harksoo Kim 3,*

1 Department of Artificial Intelligence, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,
Seoul 05029, Republic of Korea; jyjg7218@konkuk.ac.kr (G.J.)

2 Department of Computer Science and Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,
Seoul 05029, Republic of Korea

3 Division of Computer Science and Engineering & Department of Artificial Intelligence, Konkuk University,
120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

* Correspondence: nlpdrkim@konkuk.ac.kr; Tel.: +82-2-450-3499

Abstract: Text-to-SQL is a task that converts natural language questions into SQL queries. Recent
text-to-SQL models employ two decoding methods: sketch-based and generation-based, but each has
its own shortcomings. The sketch-based method has limitations in performance as it does not reflect
the relevance between SQL elements, while the generation-based method may increase inference
time and cause syntactic errors. Therefore, we propose a novel decoding method, Hybrid decoder,
which combines both methods. This reflects inter-SQL element information and defines elements
that can be generated, enabling the generation of syntactically accurate SQL queries. Additionally,
we introduce a Value prediction module for predicting values in the WHERE clause. It simplifies
the decoding process and reduces the size of vocabulary by predicting values at once, regardless
of the number of conditions. The results of evaluating the significance of Hybrid decoder indicate
that it improves performance by effectively incorporating mutual information among SQL elements,
compared to the sketch-based method. It also efficiently generates SQL queries by simplifying the
decoding process in the generation-based method. In addition, we design a new evaluation measure
to evaluate if it generates syntactically correct SQL queries. The result demonstrates that the proposed
model generates syntactically accurate SQL queries.

Keywords: semantic parsing; text-to-SQL; pointer network; natural language processing

1. Introduction

Semantic parsing is a natural language understanding task, which extracts the mean-
ing of natural language and converts it into an executable logical form. Various tasks exist in
semantic parsing, such as text-to-CFG [1], which converts natural language to context-free
grammar (CFG), and text-to-code [2,3], which converts natural language into a program-
ming language. text-to-SQL is a task that converts an unstructured natural language into
a semantically corresponding structured SQL query. With the increasing accumulation of
large amounts of structured text data, such as relational databases, studies in text-to-SQL
have become more active in the recent years.

Figure 1 illustrates an example of a text-to-SQL task. The goal of text-to-SQL is to
generate an SQL query to correctly answer a given question. For example, in Figure 1, for
the question “Name the number of week for game site being memorial stadium for buffalo
bills”, the text-to-SQL model generates an SQL query, SELECT COUNT(Week) FROM table
WHERE Game_Site = “Memorial Stadium” AND Opponent = “Buffalo Bills”.

Text-to-SQL is highly useful in practical applications. An understanding of SQL is
necessary in order to search for information in tables within a database. Therefore, it is
difficult for users who lack knowledge of SQL to access and search for information in a
database. However, when using the text-to-SQL model, even nontechnical users can easily
search for information in a database with natural language questions by using text-to-SQL.

Entropy 2023, 25, 513. https://doi.org/10.3390/e25030513 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25030513
https://doi.org/10.3390/e25030513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8286-7198
https://doi.org/10.3390/e25030513
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25030513?type=check_update&version=1

Entropy 2023, 25, 513 2 of 20

Additionally, SQL operators (e.g., MIN, MAX, COUNT) can be used to perform calculations on
numerical data, and SQL keywords (e.g., JOIN, GROUP BY) can be used to extract complex
information. In summary, text-to-SQL makes it possible for nontechnical users to search
databases and easily solve problems that are difficult to solve using only natural languages.
Therefore, systems based on text-to-SQL are used in a variety of fields in real life, such as
database management, question answering, information search, and voice assistants [4–9].
For these reasons, text-to-SQL is an important study topic in natural language processing,
and various methods have been studied depending on the purpose [10,11].

Figure 1. The text-to-SQL model generates an executable SQL query that corresponds to a natural
language question. The referenced table schema is relevant to the natural language question. For
example, the model references “Week”, “Opponent”, and “Game_Site” from the table schema and
“Memorial Stadium” and “Buffalo Bills” from the natural language question to generate the SQL
statement.

Initial studies in text-to-SQL utilized rule-based methods. However, with the increas-
ing application of deep learning in natural language processing, recent studies in text-
to-SQL have used deep learning-based models. Deep learning-based text-to-SQL models
consist of two parts: an encoder and a decoder. The encoder generates vector represen-
tations that encompass the natural language and structural information of the table, and
the decoder utilizes the vector representations generated by the encoder to transform the
input natural language into an SQL query. The decoder can be classified into two types,
based on the method of generation: the sketch-based method, which generates the query
by considering the components of the SQL query as slots and using a slot-filling method,
and the generation-based method, which generates the query in a sequential manner.

The sketch-based method generates SQL queries based on slots, obviating the need to
learn SQL syntax. While the syntactic correctness in the generated SQL query is guaranteed,
multiple subtasks must be performed to output the elements of each slot. The sketch-based
method has a limitation in performance due to the insufficient sharing of information
among the elements when performing these subtasks.

On the other hand, the generation-based method generates SQL queries sequentially
without performing subtasks for each element. This results in better performance than the
sketch-based method because it predicts the next slot element by utilizing information from
previously output elements. However, the generation-based method may cause syntactical
errors in SQL queries as it learns the syntax of the SQL language. As a result, if the outputs
of the table elements and SQL keywords are in an incorrect order, the generated SQL query
may fail to be executed in the database.

Entropy 2023, 25, 513 3 of 20

Figure 2 illustrates an instance of syntactical errors produced by the generation-based
method. In the generation process, the generated SQL query may not be syntactically
correct, which may result in it being unable to execute in the database.

Figure 2. Schema of a case in which the SQL query predicted by the model contains syntactical errors.
The column slot in the SELECT clause includes an aggregator, MIN, and an operator, % instead of the
keyword, WHERE.

To address the aforementioned problems, we propose a new decoding method called
Hybrid decoder that combines the sketch-based method and the generation-based method.
The Hybrid decoder follows a structure based on the generation-based method, generating
the SQL query sequentially. It also utilizes an appropriate decoding strategy for each slot
type at each step based on the sketch-based method. The proposed decoding method
reflects the information of previously generated SQL elements into the current generation
step; thus, it enables the model to incorporate inter-element information. It also defines the
possible SQL elements that can be generated at each step, resulting in the generation of
syntactically accurate SQL queries.

In addition, the proposed model uses a Value prediction module to predict the values
in the WHERE clause for efficient decoding. The values in the WHERE clause are “Memorial
Stadium” and “Buffalo Bills” in Figure 1. To extract the value candidates that appear in
natural language questions, recent generation-based methods [12] use the copy mechanism
to generate values in the WHERE clause. Since the copy mechanism includes tokens in the
natural language question in the generation vocabulary, the size of the generation vocab-
ulary increases. In addition, it takes a longer time to infer because it generates values for
each condition. The proposed method simplifies the decoding process by predicting values
simultaneously through sequence labeling [13], regardless of the number of conditions,
and reduces the size of the generation vocabulary, enabling efficient SQL query generation.
Our main contributions are as follows:

• We point out the limitations of existing decoding methods, sketch-based and generation-
based methods, and propose a new decoding method called Hybrid decoder, which
combines the advantages of both methods and overcomes their disadvantages.

• Our proposed model achieved superior performance compared to models that applied
the sketch-based method. This is because our proposed model is based on the method
of sequentially generating tokens, which effectively reflects the information of the SQL
elements and predicts an accurate SQL query.

• The proposed method guarantees the syntactic accuracy of the predicted SQL query.
To evaluate the syntactic accuracy of the query, we designed a new evaluation measure
called Syntactic Error Rate (SER). When evaluated using SER, our proposed model
showed comparable performance to sketch-based methods, despite using a generation-
based method.

• Our proposed method is more efficient than existing decoding methods in terms of
the decoding process and vocabulary composition than existing decoding methods. It
simplifies the decoding process by predicting values through sequence labeling and
minimizes the size of the generation vocabulary. Consequently, our proposed method
shows a faster inference speed compared to not only the generation-based method
(BRIDGE [12]) but also the sketch-based method (HydraNet [14]).

Entropy 2023, 25, 513 4 of 20

The remainder of this paper is organized as follows. Section 2 describes the flow of studies
in text-to-SQL, and Section 3 describes the text-to-SQL model based on the new decoding
method, the Hybrid method, proposed in this paper. The dataset used for the model
experiment, evaluation measures and, experimental results are described in Section 4.
Finally, Section 5 concludes the paper and presents future research directions.

2. Related Works

Recent text-to-SQL studies differ in their datasets and decoding methods depending
on the problem being solved. The most widely used datasets and decoding methods for
text-to-SQL operations are as follows.

2.1. Dataset

The datasets for text-to-SQL tasks can be categorized into single-turn and multi-
turn datasets based on the presence or absence of context. Single-turn datasets focus on
generating SQL from a single natural language question, whereas multi-turn datasets
consider the context of the question and conversation when generating SQL [15].

The representative datasets for the single-turn text-to-SQL study are as follows. Geo-
Query is a dataset consisting of 880 natural language questions using the US geographic
facts database, referred to as Geobase. Initially, it comprised 700 questions and corre-
sponding SQL queries and a relational database schema for Geobase, as described by [16].
Subsequently, [17] annotated the remaining data for text-to-SQL tasks. Following [18], the
use of 600 and 280 examples for learning and evaluation, respectively, became the standard.
Scholar [17] is a dataset derived from a database of academic papers, consisting of 816 pairs
of natural language questions and SQL queries. To prove that the model proposed by [17]
performed well in new domains, they collected and annotated a new dataset in the aca-
demic domain and used it to evaluate their model. The data utilized in this study were
generated by crowd workers and provided a database that includes information on authors,
citations, journals, keywords, and dataset information of academic papers. To evaluate the
model in real-world environments, [19] utilized the Microsoft Academic Search(MAS) [20],
IMDB movie (https://www.imdb.com/interfaces, accessed on 30 January 2023), and Yelp
(https://www.yelp.com/dataset, accessed on 30 January 2023) business review databases,
and collected and published natural language questions. The datasets used in this study
consist of multiple tables and the natural language questions comprise 196, 131, and 128
questions for each database, respectively. In subsequent studies, large-scale cross-domain
databases have been used instead of databases for specific domains for more practical
study. WikiSQL [21] is the first large-scale cross-domain text-to-SQL dataset. It consists
of tables from the English Wikipedia, natural language questions corresponding to these
tables, and SQL queries derived from the natural language questions. The natural language
questions are user inquiries regarding a specific table, and the SQL queries are used to
search the database for the answer to these questions. The queries in WikiSQL comprise
only SELECT/WHERE/FROM clauses. Additionally, as the queries are for a single table, they
are relatively simple and only handle a single SELECT clause and aggregations without
considering the relationships between tables. The Spider dataset [22] was proposed to
study a wider range of queries than the WikiSQL dataset. It comprises 200 databases from
138 different domains, including 10,181 natural language questions and 5693 SQL queries.
In contrast to previous datasets that contain multiple tables within the same domain, Spi-
der uses multiple databases and domains while incorporating complex natural language
questions and SQL queries and assigns four levels of difficulty.

The representative datasets for the multi-turn text-to-SQL study are as follows. The
ATIS dataset (https://www.kaggle.com/datasets/siddhadev/ms-cntk-atis, accessed on 30
January 2023) consists of 5418 utterances regarding an air reservation system, with pairs
of SQL queries to answer the relational database and queries. It is a dataset composed of
dialogues and is labeled with slot-filling tasks. The original dataset is not as efficient as a
dataset for text-to-SQL tasks. Therefore, [17] used a dataset that has converted IN clauses

https://www.imdb.com/interfaces
https://www.yelp.com/dataset
https://www.kaggle.com/datasets/siddhadev/ms-cntk-atis

Entropy 2023, 25, 513 5 of 20

to JOIN, while verifying that the query output has not been altered. CoSQL [11] is the first
large-scale cross-domain conversational text-to-SQL dataset. A total of 138 domains and
200 complex databases were reconstructed from the Wizard-of-OZ (WOZ) [23] setup, with
over 3000 turns of conversation. CoSQL is composed of more than 30,000 conversations and
10,000 annotated SQL queries. Each conversation was obtained through crowd-workers
who acted as users and searched the database for their answers. SQL experts transformed
vague queries into clear queries, and if the user’s query was answerable in SQL, the expert
constructed the data by writing the corresponding SQL and execution results. SparC [10] is
a large-scale cross-domain context-dependent dataset constructed by utilizing the questions
from the Spider dataset. SQL queries were annotated for each question for interrelated
questions made up of conversations. CHASE [24] is a large cross-domain context-dependent
Chinese dataset with 5459 interrelated questions in dialogue sequences and 17,940 natural
language questions and SQL query pairs. The natural language query-SQL query pair with
context is based on 280 databases, 35% of the questions are context-independent, and the
difficulty of 28% of the total SQL queries is easy.

In this paper, we use a single-turn dataset, which assumes a situation in which a user
asks only a single question rather than engaging in a conversation with the model.

2.2. Method

The initial text-to-SQL systems primarily focused on simple rule-based methods using
user queries and databases [25]. Ref. [26] organized user queries into rules and designed
query trees for use with databases. Ref. [27] proposed a system that enables users who
lack the ability to write SQL queries to easily search information in the database using
CFG-based rules. Ref. [28] used statistical parsing for the first time to convert natural
language questions into SQL queries. They transformed natural language queries into
logical forms using statistical parsers and mapped the logical forms to SQL queries using
relational learning algorithms. Ref. [29] carried out a study using rule-based templates
to directly match natural language sentences with string patterns, and used a pattern to
formalize the syntax tree to match the syntax analysis tree of the natural language sentence.

However, a limitation exists in the manual design for rule-based and statistical meth-
ods, leading to the proposal of Seq2SQL [21], which applied neural networks to text-to-SQL.
Seq2SQL employed an encoder-decoder neural network structure that receives a natural
language question and generates an SQL query. Recent neural network-based models for
text-to-SQL can be broadly classified into two categories based on their decoding meth-
ods: sketch-based and generation-based [15]. Ref. [30] first designed a sketch according
to SQL grammar and then predicted and filled only the slots of the sketch using a neural
network. Ref. [31] was the first to use a pre-trained language model as the encoder in text-
to-SQL. The pre-trained language model encodes a natural language question, and then,
the sketch-based decoder predicts an SQL query for each subtask to output the final query.

However, the problem with this approach is that all columns in the table are used
as inputs to the language model, which does not consider the relationship between the
natural language question and each column. To address this issue, Ref. [14] improved
the encoding process by incorporating the relevance between the input natural language
question and the corresponding column. In addition, the performance was improved by
adding a ranking algorithm during the decoding process. The sketch-based method, which
decodes pre-determined slots, is simple to process for simple queries. However, it becomes
complicated when generating SQL queries that involve multiple tables or nested queries.
As a result, the generation-based method is actively being studied for the generation of
complex SQL queries. Ref. [32] solved the difference between natural language questions
and SQL statements by adding a SemQL, an Abstract Syntax Tree, in the intermediate
stage. It also used Schema Linking with word and type embeddings to understand the
relationships between multiple tables. IRNet [32] attempted to find the semantic relevance
between the question and schema, but it did not accurately identify the relevant schema.
As a result, RAT-SQL [33] proposed a solution using self-attention to identify the exact

Entropy 2023, 25, 513 6 of 20

relationship between the question and the relevant schema, while still using Schema
Linking. Ref. [12] suggested using not only incorporating structure and field information
from the schema but also encoding values. It also proposed using a pointer-generator
network based on LSTM to decode the encoded hidden representation. This allows for the
consideration of weighted words in the encoded sentence, resulting in the advantage of
considering the words in the encoded sentence during the decoding process.

3. Methodology

Figure 3 illustrates the overall architecture of the proposed model. The proposed
model basically adopts a Seq2seq architecture, consisting of an encoder and a decoder.
The encoder takes a natural language question and a table schema as input and outputs
a set of vectors that reflect the interrelationship between the natural language question
and the table through a language model. The decoder then takes the output vectors of the
encoder as input and generates an SQL query that semantically corresponds to the natural
language question.

Figure 3. Overall architecture of the proposed model. The proposed model consists of an encoder
and a decoder, and the decoder includes a subtask, the Value prediction module.

3.1. Encoder

The encoder encodes the meaning of an input sequence into vector form. Pre-trained
language models such as BERT [34] are used to obtain better vector representations. These
pre-trained models are trained on large amounts of text corpus, enabling them to effectively
understand the meaning of the input sequence. However, because of restrictions on input
length, the language models may not be able to utilize all the information in a table. To
alleviate this problem, BRIDGE [12] uses a method that selects the table information to be
input into the encoder based on the anchor text. The anchor text refers to the cell value
selected by matching the lexical similarity between the cell value of the referenced table
and the natural language question. We apply the method proposed in BRIDGE and use
the column names of the table and anchor text as the table schema. The natural language
question and the table schema are serialized and used as input to the language model, and
the vector representations that reflect the mutual relationship between the input natural
language question and the table schema are obtained from the output result of the language
model. The configuration of the input sequence is detailed as follows. A natural language
question Q, which is segmented into token units, is followed by a table schema T, which
is also segmented into token units, and the natural language question and table schema

Entropy 2023, 25, 513 7 of 20

are separated by a special token [SEP]. A special token [CLS] is inserted at the beginning
of the input sequence to encapsulate the overall information of the natural language
question and table schema, and a special token [SEP] is appended to indicate the end of
the input sequence. The table schema is inputted after a natural language question, along
with additional special tokens for separating each element of the table. Special tokens are
inserted before each element to distinguish between column names in the table and anchor
texts. The special token [COL] is inserted before the tokenized column name C and used as
an embedding vector for each column. Similarly, the special token [VAL] is inserted before
the tokenized anchor text V and attached after the column name that contains the cell value.
The equation used to construct the input sequence is represented as follows:

X = [CLS], Q, [SEP], T, [SEP] (1)

Q = q1, . . . , qn (2)

T = [COL], C1, [VAL], V1, . . . , [COL], Cy, [VAL], Vz (3)

Ci = ci1, . . . , cimi (4)

Vj = vj1, . . . , vjlj
(5)

where n denotes the number of tokens in a natural language question Q, which is segmented
into tokens. The i-th column Ci in the table schema T comprises mi tokens, as expressed in
Equation (4), and the j-th value Vj in the table schema T comprises lj tokens, as expressed
in Equation (5). y, z in Equation (3) represent the number of columns in the table schema T
and the number of anchor texts, respectively.

An example of the encoder input method is as follows. The reference table for the
natural language question in Figure 1 “Name the number of week for game site being
memorial stadium for buffalo bills” comprises the columns “Week”, “Date”, “Opponent”,
“Game_Site” (y = 4). The reference table yields the anchor texts “Memorial Stadium”,
“Buffalo Bills” (z = 2). “Memorial Stadium” and “Buffalo Bills” are contained in the columns
“Game_Site” and “Opponent”, respectively. Therefore, the table information sequence T for
this example is as follows. T = [COL], week, [COL], date, [COL], opponent, [VAL], bu f f alo,
bills, [COL], game, _, site, [VAL], memorial, stadium. The input token sequence X, which is a
linear representation of a natural language question and a table schema, is encoded into a
vector set Eemb through a language model. The equation for Eemb is as follows:

Eemb = ecls, eQ, esep, ecol , ec1 , eval , ev1 , . . . , ecol , ecy , eval , evz , esep (6)

eQ = eq1 , . . . , eqn (7)

eci = eci1 , . . . , ecimi
(8)

evj = evj1 , . . . , evj lj
(9)

In the representation Eemb, the token vectors for the special tokens [CLS], [SEP], [COL],
[VAL] are denoted by ecls, esep, ecol , and eval , respectively. The token vectors for Q, Ci, Vj are
represented as eQ, eCi , eVj , respectively.

3.2. Hybrid Decoder

The decoder uses the vectors Eemb produced by the encoder to generate an SQL query
that corresponds to the given natural language question. Hybrid decoder that we propose
is a new decoding method that combines generation-based and sketch-based methods.
Hybrid decoder sequentially generates an SQL query based on a generation-based structure
and defines the possible SQL components that can be generated at each step based on the
sketch. An appropriate decoding method is then used to generate outputs based on the

Entropy 2023, 25, 513 8 of 20

corresponding slot type. The SQL components that we define in this paper are listed in
Table 1. The detailed process of Hybrid decoder is expressed by Equations (10) and (11):

Token(j+1) =

{
Pointer Network Layer(dj), j = 4i f or i ∈ Z

Token Generation Layer(dj), else

}
(10)

dj = Trans f ormer Decoder Block(Eemb, Token≤j) (11)

The transformer decoder block takes the token set generated up to the j-th step,
Token≤j = {< SOS >, Token1, . . . , Tokenj}, and the output vector Eemb of the encoder as in-
put, and outputs dj. The transformer decoder block plays an important role in determining
the output at the current step by reflecting the information accumulated in the previous
steps. For example, in order to predict the third-step sel_cont in the generation process, in-
formation accumulated from previous steps (Week, Count) is required, as shown in Figure 4.
The decoder output dj that passed through the transformer decoder block generates output
differently depending on the slot type. In cases where the slot type requires generating a
specific column (sel_col, wh_col), a pointer network is used to select the relevant column
from the input table schema. In other cases (sel_agg, sel_cont, wh_val, wh_op, wh_logic),
the decoder generates the token with the highest probability from its generation vocabulary.
We determine the order of decoder outputs considering the relationships between the SQL
elements, based on the properties of the decoder, which play a crucial role in predicting
the output of the next step from the information obtained in the previous steps. sel_col,
sel_agg, sel_cont of the SELECT clause are predicted in order, and the wh_val, wh_col, wh_op,
wh_logic of the WHERE clause are predicted in order as well. When generating an SQL query
with a single condition, the steps corresponding to the WHERE clause are executed only once.
However, if the number of conditions increases, then the steps corresponding to the WHERE
clause are repeated an equivalent number of times.

Table 1. SQL elements and their descriptions.

Terms Abbreviations Description

sel_col select-column column of SELECT clause

sel_agg select-aggregate function aggregate function of SELECT clause

sel_cont select-continue

Indicates whether an SQL syntax continues,
e.g., [EOS] denotes the termination of the SQL,
and None_cont indicates the continuation of the
SQL and the start of the WHERE clause.

wh_col where-column column of WHERE clause

wh_op where-operator comparison operator of WHERE clause

wh_logic where-logical operator logical operator of WHERE clause

wh_num where-number condition number of WHERE clause

wh_val where-value value of WHERE clause

Table 2 illustrates the order of the SQL-written statements and sequence of slot pre-
dictions provided by the proposed model. Since the SQL query generated by the model
differs in order from the actual executable SQL query, it is not possible to execute it directly
in the database. Therefore, the slot values generated by the model are sorted to form an
executable SQL query format. Figure 4 shows an example of this process.

Entropy 2023, 25, 513 9 of 20

Table 2. Comparison of SQL generation order and written order.

Generation
Order sel_col → sel_agg→ sel_cont→ wh_val → wh_col → wh_op→ wh_logic

Written Order sel_agg→ sel_col → sel_cont→ wh_col → wh_op→ wh_val → wh_logic

Figure 4. Output SQL query tokens, “Week, Count, Nonecont, Arg1, Game_Site, =, AND, Arg2,
Opponent, =, < EOS >”, are sorted into an executable SQL statement form. Through this sorting
process, an executable SQL query “SELECT COUNT(Week) FROM table WHERE Game_Site = Arg1
AND Opponent = Arg2” can be completed.

The proposed method generates Arg1, Arg2, Arg3, and Arg4 for values in the WHERE
clause and predicts value candidates in the Value prediction module for efficient decoding.
The final SQL query is completed by inserting appropriate cell values into Arg1, Arg2, Arg3,
and Arg4, based on the lexical similarity between the value candidates and the cell values in
the table. The value of the WHERE clause must be part of the natural language question Q; so,
recent studies in sequence generation models have used the copy mechanism [35] to extract
partial parts of the sequence. However, implementing the copy mechanism in the decoding
phase, which predicts values by repeating at each step, increases computation and time.
We apply a sequence labeling task to extract parts of the natural language question as the
value of the WHERE clause. The proposed method can predict multiple value candidates at
once, and by substituting the values with special tokens without considering the semantics,
it can reduce the vocabulary size. In conclusion, the proposed method leverages inter-
element information by incorporating previously generated SQL elements into the current
generation step, based on a generation-based approach. Additionally, this method employs
a sketch-based approach to define templates and generate appropriate tokens for each
corresponding slot type, which ensures the generation of syntactically correct SQL queries.
To improve the efficiency of the decoding process, we employ a Value prediction module
for the value of the WHERE clause. This reduces the burden of generating value tokens in
the decoder.

3.2.1. Token Generation Layer

In the Token generation layer, the elements that compose an SQL query are generated
from the generation vocabulary, using the output vectors obtained from the transformer
decoder block. In all the steps of the decoder process except for the steps in which the

Entropy 2023, 25, 513 10 of 20

column names are predicted, the Token generation layer is used to predict the slot values.
The generation vocabulary used in the Token generation layer is listed in Table 3.

Table 3. Types and description of tokens in generation vocabulary used in Token generation layer.

Group Token Description

operator =, >, < tokens that indicate operators

aggregate function Noneagg, MAX, MIN,
COUNT, SUM, AVG tokens that indicate aggregate function

logical operator AND, Nonecont
tokens that indicate the continuation of
where condition

value of where condition
Arg1, Arg2,
Arg3, Arg4

tokens that indicate the value of where
condition

else [PAD], [SOS],
[EOS]

tokens that are not directly included in
SQL statement, but used as a tool in the
generation process

The prediction process in Token generation layer is described in Equations (12)–(14):

Token(j+1) = argmax(ŷgn
j) (12)

where Token(j+1) ∈ Vocabulary

ŷgn
j = Linear(dj)Mgn

j (13)

Linear(dj) = WTdj + b (14)

The vector dj obtained from the transformer decoder block is reduced to the same size
as the generation vocabulary through a linear layer and is transformed into a probability
distribution over all the tokens in the generation vocabulary. In accordance with the slot
type, masking is applied to transform the output vector into a probability distribution over a
set of possible tokens in the generation vocabulary. W and b represent trainable parameters,
weight and bias. Mgn

j represents the masking matrix that restricts the generation candidates,
ensuring that only valid tokens are generated according to the slot type in the (j + 1)-th
order. Without masking, all the tokens in the generation vocabulary have a probability of
being generated regardless of the slot type, but with masking, restrictions are imposed on
the token candidates that can be generated according to the slot type. Masking prevents
the type errors that produce tokens that do not match the slot type and the generation of
in-executable SQL queries that cause syntax errors.

Figure 5 depicts the token generation process when wh_op is generated. At the wh_op
step, vector dwh_op from the transformer decoder is input into the Token generation layer,
and a probability distribution is obtained through a linear layer. Before the application of
masking, all tokens in the generation vocabulary are considered output candidates, with
>, MAX, and AND being the top three candidates in the probability distribution. Although
this step is to predict the aggregate function, the aggregator (MAX) and logical operator
(AND) are included as output candidates. This leads to not only the possibility of incorrectly
predicting the aggregate function but also the possibility of a type error that fails to predict
the correct slot type. Therefore, we apply masking to the generation probability distribution,
and eliminate the probability of generating tokens other than the slot type to be generated
in the current step. After masking is applied, only the tokens in the generation vocabulary
corresponding to the operator, such as >, =, <, are considered as output candidates, and the
output token is generated accordingly.

Entropy 2023, 25, 513 11 of 20

Figure 5. The token generation process when the step is assumed to generate wh_op. The vector
dwh_op generates ‘>’ through the linear layer and masking.

3.2.2. Pointer Network Layer

The Pointer network layer selects an appropriate column through an attention op-
eration between the output vector of the transformer decoder block and a given table
schema. The Pointer network layer is employed in all the steps for column prediction
(sel_col, wh_col) to predict the slot value. The equation is as follows:

ŷpn
j = Pointer Network(dj, Eemb) (15)

c = argmax(ŷpn
j Mpn

j) (16)

The current decoder hidden vector dj and the output vector of the encoder Eemb are
input into the pointer network and converted into a ŷpn

j . Since the pointer network is used
for column selection, we mask the attention scores to distinguish between columns and
non-columns, limiting the selection to only within columns. Mpn

j represents a masking
matrix that restricts the candidates to columns that can be selected using the (j + 1)-th
slot type. The column c with the highest probability distribution, determined by argmax,
is selected among the candidate columns. Attention mechanism is utilized to evaluate
the mutual correlation between the arguments (Query, Key) involved in the operation. In
the proposed model, the current decoder hidden vector dj and the output vector of the
encoder Eemb are set as Query and Key in the attention operation to determine the mutual
association. The higher the attention score, the higher the mutual correlation is perceived,
and the column with the highest attention score is selected as the output for the current
step. As pointer the network mechanism cannot select multiple tokens in a single step,
the model is trained to select the special token [COL] in front of each column name. The
use of a Pointer network layer allows for the accurate prediction of the column in a table
schema that is most relevant to the current decoder step token dj, even if the number of
columns in the table schema increases. This enables the model to adapt to a table schema
with variable lengths. Additionally, the need to include the names of all columns in the
generation vocabulary is eliminated, reducing the size of the vocabulary and preventing
the occurrence of grammatical errors in column names because it is selected from the given

Entropy 2023, 25, 513 12 of 20

table schema. The attention mechanism used in the proposed model to perform the Pointer
network layer is the scaled-dot product attention, and its equation is as follows:

Attention Score(Query, Key) =
Query · KeyT
√

dimh
(17)

Query and Key correspond to the decoder hidden vector dj at current step j and the output
vectors from the encoder Eemb, respectively. dimh represents the size of the hidden vector.
In the Pointer network layer, the attention score between the language model’s output
vector Eemb and the decoder’s hidden vector dj at the current step is used to predict the
column of the SQL query. The pointer network is only executed in the steps for predicting
the columns of the SELECT and the WHERE clauses, so only dsel_col and dwh_col among the
decoder hidden vectors are used in the attention mechanism. In the step of predicting the
column name in the SELECT clause, the attention score between the first step of the decoder,
denoted by dsel_col , and the output sequence of the encoder is calculated, while in the step
of predicting the column name in the WHERE clause, the attention score between the output
vector of the previous step, denoted by dwh_col , and the output sequence of the encoder is
calculated. After performing the attention mechanism, a mask is applied to the scores of
the tokens excluding the [COL] tokens, and only the attention scores corresponding to the
[COL] token are used. Only the tokens corresponding to the columns from the table schema
can be output by applying a column mask that selects the special token [COL] inserted
before the column.

Figure 6 illustrates the column prediction process. The decoder output dwh_col from the
previous step is used as an input in the current step, and the attention operation between
dwh_col and the output vector of the encoder Eemb are performed in the Pointer network
layer. Tokens that are relevant to dwh_col are produced by the attention score, which is the
result of the Pointer network layer. Tokens that are considered highly relevant to dwh_col
include the tokens which are not columns, such as “buffalo” and “bills”. This implies that
non-column tokens may be predicted in the decoding steps when columns are intended
to be predicted. Therefore, we apply a column mask to the attention scores to exclude
non-column vectors from the candidates. After masking, constraints are imposed on the
selection candidates by only considering the attention scores of the column special tokens
[COL], scol , so the most relevant column, “Opponent”, is selected.

Figure 6. Process of pointer network assuming the step for predicting dwh_col . The vector dwh_col
generates “Opponent” through the linear layer and masking.

Entropy 2023, 25, 513 13 of 20

3.2.3. Value Prediction Module

The proposed method performs a subtask to predict the WHERE values in an input
sentence. The Value prediction module determines value candidates for the WHERE clause
from natural language questions through sequence labeling. Previous studies predicted
values in WHERE clauses using a copy mechanism or span prediction. However, the copy
mechanism uses attention to copy a specific part of the input sequence as the output of
the decoder, resulting in an expanded generation vocabulary and longer inference time
due to the repeated generation of tokens for each condition. Additionally, span prediction
requires a span sorting process based on the start and end scores in the natural language
question. By contrast, the Value prediction module predicts the values of the WHERE clause
using a sequence labeling model that assigns a label to each token in the input sequence.
As a result, it can predict all values at once even if the number of conditions increases
and avoid unnecessary sorting processes, rendering it more efficient in terms of speed
compared to the previous methods. The Value prediction module uses sequence labeling to
label each token in a natural language question with BIO tags to identify the cell values
present in the question. Tag B represents the token that starts the cell value, I represents the
tokens that correspond to the cell value but are not the starting tokens, and O represents
the tokens that are not cell values. The detailed process for predicting the cell values is as
follows. First, the cell values used in the WHERE clause are part of the input natural language
question, so only the natural language question embedding vector eQ is used, excluding the
part corresponding to the table schema among the output vector Eemb from the language
model. eQ passes through a bidirectional LSTM to incorporate contextual information. The
equation is as follows:

−→
h i = LSTM(eQ,

−→
h i−1) (18)

←−
h i = LSTM(eQ,

←−
h i−1) (19)

←→
h i = [

−→
h i;
←−
h i] (20)

H =
←→
h q1 ,

←→
h q2 ,

←→
h q3 , . . . ,

←→
h qn (21)

The set of vectors H that have passed through the LSTM is passed through a linear
layer to attach B, I, and O tags to each token of the natural language question. The equation
is as follows:

ŷvpm = WT H + b (22)

The linear layer receiving H has the trainable parameters W and b. Based on the tag
information attached to each token, it is possible to predict the value of a WHERE clause in
a natural language query. Finally, it is necessary to substitute the value candidates of the
WHERE clause predicted in the Value prediction module with the slots of the SQL templates,
Arg1, Arg2, Arg3, and Arg4. The proposed method uses a lexical-based similarity score
to connect the predicted value candidate with the most similar cell value in the table by
selecting the cell value from among those that can be substituted. The cell values of the
table are targeted at replaceable cell values rather than at all cell values. For example, if the
generated result is assumed to be WHERE col1 = Arg1, the value that can be placed in Arg1
must be selected from the cell values included in col1.

Figure 7 is an example of the process of obtaining value candidates and replacing them
with values in the WHERE clause through the Value prediction module. With the BIO results
attached to each natural language token, “being memorial stadium” and “buffalo bills” can
be obtained as value candidates. The generated SQL query template is SELECT COUNT(Week)
FROM table WHERE Game_Site = Arg1 AND Opponent = Arg2, so Arg1 and Arg2 must
be replaced with appropriate value candidates. The process of restoring Arg1 involves
using the information of the column “Game_Site” to calculate the lexical similarity score
between all candidate values and the cell values contained in the “Game_Site” column

Entropy 2023, 25, 513 14 of 20

of the table. The cell value and candidate value with the highest lexical similarity are
“Memorial Stadium” and “being Memorial Stadium”, so Arg1 is finally replaced with
“Memorial Stadium”. If this process is repeated for each condition, the final executable SQL
statement, SELECT COUNT(Week) FROM table WHERE Game_Site = “memorial stadium”
AND Opponent = “buffalo bills”, can be obtained. The advantages of the proposed
method are that even if the value to be substituted in the table cannot be accurately
predicted from the natural language question during the generation process, the highest
similarity can be obtained in the lexical-based similarity matching process, which prevents
errors in sequence labeling. In Figure 7, the cell value to be substituted in the table is
“Memorial Stadium”, but even if it is predicted as “being memorial stadium”, it can be
restored to the correct value. Furthermore, it allows more efficient generation of executable
SQL queries. If the predicted value in the natural language question is not included in
the table as a synonym, obtaining accurate answers is difficult. However, by using the
proposed method, the value can be directly obtained from the table cell; so, this problem
can be solved and more accurate results can be obtained when executing SQL queries.

Figure 7. Example of the process of obtaining candidate values through the Value prediction module
and substituting them with cell values in the table. Arg1 is substituted based on the candidate values
predicted from the Value prediction module.

3.3. Training

The cross-entropy loss function was used for training. The formula for cross-entropy
is as follows:

Lossce = −
1
N

N

∑
i=1

C

∑
j∈Class

ŷijlog(yij) (23)

The final loss function Loss used for training consists of the loss function values
Lossvpm, Lossgn, and Losspn generated in the sequence labeling task of the Value prediction

Entropy 2023, 25, 513 15 of 20

module, token generation, and pointer network, respectively. The formula for the final loss
function Loss of the proposal model is as follows:

Loss = Lossvpm + Lossgn + Losspn (24)

4. Experiments
4.1. Metric

We use Logical Form (LF) as a metric for evaluating the performance of the proposed
model. LF is also referred to as the Exact Set Match Accuracy (EM), which is calculated
by comparing the predicted SQL query with the ground-truth SQL query. The equation is
as follows:

ScoreLF(Ŷ, Y) =
{

1, Ŷ = Y
0, Ŷ 6= Y

}
(25)

where Ŷ = {(k̂i, v̂i)|i ∈ (1, m)}, Y = {(ki, vi)|i ∈ (1, m)}

LF =
1
N

N

∑
n=1

ScoreLF(Ŷn, Yn) (26)

N denotes the total number of data samples. ScoreLF(Ŷ, Y) assigns a score of one if the
ground-truth SQL query Y and the predicted SQL query Ŷ are identical (Y = Ŷ), and
a score of zero if they are not (Y 6= Ŷ). Ŷ and Y represent the sets of the predicted and
ground-truth SQL queries, respectively. LF is the average of ScoreLF(Ŷ, Y) calculated over
all data samples. As a natural language question can have multiple corresponding SQL
queries, LF is a strict metric that evaluates the ability of the model to generate semantically
equivalent SQL queries. Execution Accuracy (EX) is calculated by comparing the execution
results of the ground-truth SQL query and the predicted SQL query. The equations for
ScoreEX(V̂, V) and EX are as follows:

ScoreEX(V̂, V) =

{
1, V̂ = V
0, V̂ 6= V

}
(27)

EX =
1
N

N

∑
n=1

ScoreEX(V̂n, Vn) (28)

ScoreEX(V̂, V) assigns a score of one if the execution result V of the ground-truth SQL
query Y and the execution result V̂ of the predicted SQL query Ŷ are identical, and a score
of zero if they are not (V 6= V̂). EX represents the average of ScoreEX(V̂, V) calculated over
all data samples.

4.2. Dataset

The WikiSQL dataset was used for experimentation and evaluation. WikiSQL is a
dataset that is widely used for single-turn text-to-SQL tasks. The WikiSQL dataset consists
of 80,654 natural language questions and 24,241 tables extracted from Wikipedia, of which
56,355 are used as training data, 8421 as development data, and 15,878 as evaluation data.
A single natural language question may have multiple corresponding SQL queries, and
each SQL statement contains a SELECT clause with a maximum of one aggregate operator
and a WHERE clause with a maximum of four conditions joined by an operator AND.

4.3. Experimental Parameters and Environment

We use the BERT-large-uncased model as the language model. The specific hyperpa-
rameters used in training are listed in Table 4, and the experimental environment is listed
in Table 5.

Entropy 2023, 25, 513 16 of 20

Table 4. Experimental parameter settings.

Parameter Type Parameter Value

batch size 128
learning rate 0.00005

dropout 0.3
epoch 30

number of transformer decoder layer 8
number of heads for attention head in the decoder layer 8

size of the vector of head for attention head in decoder layer 128

Table 5. Experimental environment settings.

Object Environment

system Ubuntu 18.04.6 LTS
GPU NVIDIA RTX 8000

Python version Python 3.8.15
Pytorch 1.13.1

transformers library 4.25.1
CUDA version 11.6

4.4. Comparison of Overall Performance

We conduct a performance evaluation of the proposed method by comparing its
results with those of existing models to determine whether it generates SQL queries that
correspond semantically to natural language questions. The comparison was performed
using SQLova, X-SQL, HydraNet (sketch-based models), and BRIDGE (a generation-based
model). The evaluation metrics used are LF and EX, and the results are listed in Table 6.
Additionally, to verify the time efficiency of the proposed method for generating SQL
queries, we measure the inference speed of the models. For a fair comparison, we measure
the inference time in the same environment. To measure the inference time per sentence,
the batch size was set to 1, and the average inference time was calculated based on three
separate measurements.

Table 6. Accuracy (LF, EX) of SQL query generation and inference speed (ms/sentence) on the
WikiSQL dataset.

Model Base Model Decoding Method Test (LF) Text (EX) Inference Time (ms/Sentence)

SQLova Bert-Large sketch-based 80.7 86.2 41.1
X-SQL MT-DNN sketch-based 83.3 88.7 -

HydraNet Bert-Large sketch-based 83.4 88.6 85.2
BRIDGE Bert-Large generation-based 85.7 91.1 124.6

Ours Bert-Large hybrid 83.5 89.1 71.5

The experimental results show that LF and EX performances of the proposed model
improved to 83.5 and 89.1, respectively, compared to sketch-based models (SQLova, X-SQL,
and HydraNet). The proposed model applies a generation-based structure and arranges
the order by considering the mutual information between slots when generating the SQL
elements, resulting in an effective reflection of the mutual information between the SQL
elements. In addition, the proposed method shows significant results in terms of time
efficiency, with an inference speed of approximately 71.5 ms/sentence, which is faster
than both generation-based BRIDGE and sketch-based HydraNet. Therefore, based on
these experiment results, Hybrid decoder outperforms sketch-based methods by effectively
reflecting the mutual information between SQL elements and efficiently generates SQL
queries by simplifying the decoding process in generation-based methods.

Entropy 2023, 25, 513 17 of 20

4.5. Comparison of Performance by Each SQL Element

We measured the performance of each component that constitutes an SQL query and
compared its performance with that of existing models. The models used for comparison
are SQLova, X-SQL, and HydraNet, which are sketch-based models. The target elements of
the experiment are the subtasks performed in the sketch-based method, sel_col, sel_agg,
wh_num, wh_col, wh_op, and wh_val. The test set is used for experiments, and the results
are presented in Table 7.

Table 7. Comparison of partial performance of the model.

Model Base
Model

Decoding
Method sel_col sel_agg wh_num wh_col wh_op wh_val

SQLova Bert-Large sketch-based 96.8 90.6 98.5 94.3 97.3 95.4
X-SQL MT-DNN sketch-based 97.2 91.1 98.6 95.4 97.6 96.6

HydraNet Bert-Large sketch-based 97.6 91.4 98.4 95.4 97.4 96.1

Ours Bert-Large hybrid 97.2 91.0 99.3 94.0 98.4 97.3

The results of the experiment show that the proposed model exhibits similar per-
formance to other sketch-based models in terms of sel_col, sel_agg, and wh_col, but it
outperforms the comparison models in terms of wh_num, wh_op, and wh_val. The compar-
ison models use a span-prediction task to find the start and end positions in the natural
language question to predict the value in the WHERE clause. However, we apply a sequence
labeling model to predict the value from the natural language question. Table 8 lists the
performance of labeling BIO tags, which is the result of the Value prediction module.

Table 8. Sequence labeling performance of Value prediction module.

Group Precision Recall F1-Score Tag Count

B 98 99 99 21,337
I 100 98 99 39,001
O 100 100 100 177,605

Macro average 99 99 99 237,943

4.6. Comparison of Syntactic Error

We compare the syntactic error rate of the proposed model with those of the com-
parison models to verify whether the proposed model generates syntactically correct SQL
queries. To compare syntactic error rates, we design a new evaluation metric, Syntactic
Error Rate (SER), to evaluate the syntactic accuracy of SQL queries:

SER = 100× 1
N

N

∑
n=1

ScoreSER(Ŷn) (29)

N denotes the total number of data samples. The score ScoreSER(Ŷn) is assigned a value
of zero if the predicted SQL query Ŷ is free of syntactic errors and is executable, or one if
it contains syntactic errors and an error occurs during execution. SER is calculated as the
average of ScoreSER(Ŷ) over all data samples. Syntactic errors are determined by executing
SQL queries in a database. We consider SQLova and HydraNet as comparison models, both
of which have publicly available results for the SQL queries generated by the model. Both
models use a sketch-based method; thus, if the proposed method produces a similar SER
score, then it can be considered a syntactically accurate generation method.

Table 9 lists the results of the comparison experiment for the syntactic errors of the
models on the WikiSQL evaluation set. The sketch-based method generates SQL queries
based on slots, ensuring the syntactic accuracy of the transformed SQL query. Therefore,

Entropy 2023, 25, 513 18 of 20

SQLova and HydraNet models show low error rates of approximately 0.14% and 0.12%,
respectively. Most errors occur as a result of a mismatch between the data type of the
column and the value. In other words, the value is inconsistent with the type of data
assigned to the column (e.g., when the column type is real and the value is of string type).
The proposed model shows an SER score of zero, demonstrating that the hybrid decoding
method selectively performs the pointer network and generation on the type of slots and
uses an appropriate method for each element type. This guarantees the syntactic accuracy
of the generated SQL query.

Table 9. Comparison of syntax error on Syntactic Error Rate (SER).

Model Decoding Method SER (%)

SQLova sketch-based 0.14
HydraNet sketch-based 0.12

Ours hybrid 0.00

5. Conclusions

We address the limitations of the existing decoding methods, sketch-based, and
generation-based approaches and propose a new decoding method, Hybrid decoder, which
combines their respective advantages.

Hybrid decoder follows a generation-based structure and generates SQL queries
sequentially. At each step, a token is generated based on the slot type of the corresponding
step, using an appropriate decoding method, with the sketch as the basis. This enables the
model to effectively reflect the inter-element information of SQL elements, as it incorporates
information from previously generated SQL elements into the current generation step.
Furthermore, it defines possible SQL elements that can be generated at each step based on
the sketch, allowing for the generation of syntactically correct SQL queries.

Additionally, we introduce a Value prediction module, a subtask for predicting the
values in the WHERE clause. Previous models used copy mechanism or span prediction
to predict values, which has the drawback of taking a long inference time. However, the
Value prediction module can simplify the decoding process and reduce the size of the
generation vocabulary by simultaneously predicting values through sequence labeling,
enabling efficient SQL statement generation regardless of the number of conditions.

The results of evaluating the significance of the proposed method through the experi-
ments are as follows. First, the proposed model outperforms sketch-based models, as the
hybrid decoding method based on generation effectively reflects the mutual information of
the SQL elements, leading to improved performance. Second, we design a new evaluation
measure, SER, to evaluate whether the model generates syntactically accurate SQL queries.
Despite using the generation-based method, the performance of the proposed model is sim-
ilar to that of the sketch-based method, demonstrating that the proposed model generates
syntactically accurate SQL queries. Finally, we evaluate the inference speed to verify the
time efficiency of the proposed method in generating SQL queries. As a result, the proposed
decoding method demonstrates a faster model inference speed than BRIDGE, which is a
generation-based method, and also faster than HydraNet, which is a sketch-based method.

Hybrid decoder employs a combination of sketch-based and generation-based meth-
ods, which enables the integration of the attributes and algorithms utilized in both methods.
For future work, we plan to improve the performance through the blended utilization of
prior methods.

Author Contributions: Conceptualization, writing—original draft: G.J.; investigation, writing—
original draft: M.H.; formal analysis, visualization: S.K.; writing—review and editing: Y.L.; validation,
resources: J.L.; writing—review and editing: S.P.; project administration: H.K. All authors have read
and agreed to the published version of the manuscript.

Entropy 2023, 25, 513 19 of 20

Funding: This paper was supported by Konkuk University Researcher Fund in 2022. In addition, this
work was supported by an Institute of Information communications Technology Planning Evaluation
(IITP) grant funded by the Korean government (MSIT) (No. 2020-0-00368, A Neural-Symbolic Model
for Knowledge Acquisition and Inference Techniques).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data utilized in this study are publicly available at https://github.
com/salesforce/WikiSQL (accessed on 30 January 2023).

Acknowledgments: We thank the KISTI ScienceON service’s academic information and R&D collab-
oration management function (MyON) for its technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luz, F.F.; Finger, M. Semantic Parsing: Syntactic assurance to target sentence using LSTM Encoder CFG-Decoder. arXiv 2018,

arXiv:1807.07108. Available online: http://arxiv.org/abs/1807.07108 (accessed on 30 January 2023).
2. Soliman, A.S.; Hadhoud, M.M.; Shaheen, S.I. MarianCG: A code generation transformer model inspired by machine translation. J.

Eng. Appl. Sci. 2022, 69, 104. [CrossRef]
3. Yin, P.; Neubig, G. A Syntactic Neural Model for General-Purpose Code Generation. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017;
pp. 440–450. [CrossRef]

4. Hristidis, V.; Papakonstantinou, Y.; Gravano, L. Efficient IR-style keyword search over relational databases. In Proceedings of the
2003 VLDB Conference, Berlin, Germany, 9–12 September 2003; Elsevier: Amsterdam, The Netherlands, 2003; pp. 850–861.

5. Hristidis, V.; Papakonstantinou, Y. Discover: Keyword search in relational databases. In Proceedings of the VLDB’02: Proceedings
of the 28th International Conference on Very Large Databases, Hong Kong, China, 20–23 August 2002; Elsevier: Amsterdam,
The Netherlands, 2002; pp. 670–681.

6. Luo, Y.; Lin, X.; Wang, W.; Zhou, X. Spark: Top-k keyword query in relational databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, Beijing, China, 11–14 June 2007; pp. 115–126.

7. Zhong, Z.; Lee, M.L.; Ling, T.W. Answering Keyword Queries involving Aggregates and Group-Bys in Relational Databases.
Technical Report. 2015. Available online: https://dl.comp.nus.edu.sg/bitstream/handle/1900.100/5163/TRA7-15.pdf?sequence=
2&isAllowed=y (accessed on 30 January 2023).

8. Popescu, A.M.; Armanasu, A.; Etzioni, O.; Ko, D.; Yates, A. Modern natural language interfaces to databases: Composing statistical
parsing with semantic tractability. In Proceedings of the COLING 2004: Proceedings of the 20th International Conference on
Computational Linguistics, Geneva, Switzerland, 23–27 August 2004; pp. 141–147.

9. Kamath, A.; Das, R. A survey on semantic parsing. arXiv 2018, arXiv:1812.00978.
10. Yu, T.; Zhang, R.; Yasunaga, M.; Tan, Y.C.; Lin, X.V.; Li, S.; Er, H.; Li, I.; Pang, B.; Chen, T.; et al. SParC: Cross-Domain Semantic

Parsing in Context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 4511–4523. [CrossRef]

11. Yu, T.; Zhang, R.; Er, H.; Li, S.; Xue, E.; Pang, B.; Lin, X.V.; Tan, Y.C.; Shi, T.; Li, Z.; et al. CoSQL: A Conversational Text-to-
SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 1962–1979. [CrossRef]

12. Lin, X.V.; Socher, R.; Xiong, C. Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing. In Proceedings
of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 16–20 November 2020; pp. 4870–4888.
[CrossRef]

13. Kim, H.; Kim, H. Fine-grained named entity recognition using a multi-stacked feature fusion and dual-stacked output in Korean.
Appl. Sci. 2021, 11, 10795. [CrossRef]

14. Lyu, Q.; Chakrabarti, K.; Hathi, S.; Kundu, S.; Zhang, J.; Chen, Z. Hybrid Ranking Network for Text-to-SQL. arXiv 2020,
arXiv:2008.04759. https://doi.org/10.48550/ARXIV.2008.04759.

15. Qin, B.; Hui, B.; Wang, L.; Yang, M.; Li, J.; Li, B.; Geng, R.; Cao, R.; Sun, J.; Si, L.; et al. A Survey on Text-to-SQL Parsing: Concepts,
Methods, and Future Directions. arXiv 2022, arXiv:2208.13629. Available online: https://arxiv.org/abs/2208.13629 (accessed on 30
January 2023).

16. Popescu, A.M.; Etzioni, O.; Kautz, H. Towards a Theory of Natural Language Interfaces to Databases. In Proceedings of the 8th
International Conference on Intelligent User Interfaces, IUI ’03, Miami, FL, USA, 12–15 January 2003; Association for Computing
Machinery: New York, NY, USA, 2003; pp. 149–157. [CrossRef]

17. Iyer, S.; Konstas, I.; Cheung, A.; Krishnamurthy, J.; Zettlemoyer, L. Learning a Neural Semantic Parser from User Feedback. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver,
BC, Canada, 30 July–4 August 2017; pp. 963–973. [CrossRef]

https://github.com/salesforce/WikiSQL
https://github.com/salesforce/WikiSQL
http://arxiv.org/abs/1807.07108
http://doi.org/10.1186/s44147-022-00159-4
http://dx.doi.org/10.18653/v1/P17-1041
https://dl.comp.nus.edu.sg/bitstream/handle/1900.100/5163/TRA7-15.pdf?sequence=2&isAllowed=y
https://dl.comp.nus.edu.sg/bitstream/handle/1900.100/5163/TRA7-15.pdf?sequence=2&isAllowed=y
http://dx.doi.org/10.18653/v1/P19-1443
http://dx.doi.org/10.18653/v1/D19-1204
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.438
http://dx.doi.org/10.3390/app112210795
https://doi.org/10.48550/ARXIV.2008.04759
https://arxiv.org/abs/2208.13629
http://dx.doi.org/10.1145/604045.604070
http://dx.doi.org/10.18653/v1/P17-1089

Entropy 2023, 25, 513 20 of 20

18. Zettlemoyer, L.S.; Collins, M. Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial
Grammars. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence, UAI’05, Edinburgh, UK, 26–29
July 2005; AUAI Press: Arlington, VA, USA, 2005; pp. 658–666.

19. Yaghmazadeh, N.; Wang, Y.; Dillig, I.; Dillig, T. SQLizer: Query Synthesis from Natural Language. Proc. ACM Program. Lang. 2017,
1, 63. [CrossRef]

20. Sinha, A.; Shen, Z.; Song, Y.; Ma, H.; Eide, D.; Hsu, B.J.P.; Wang, K. An Overview of Microsoft Academic Service (MAS) and
Applications. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15 Companion, Florence, Italy, 18–22
May 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 243–246. . [CrossRef]

21. Zhong, V.; Xiong, C.; Socher, R. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning.
arXiv 2017, arXiv:1709.00103.

22. Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li, Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; et al. Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 3911–3921. [CrossRef]

23. Mrkšić, N.; Ó Séaghdha, D.; Wen, T.H.; Thomson, B.; Young, S. Neural Belief Tracker: Data-Driven Dialogue State Tracking. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC,
Canada, 30 July–4 August 2017; pp. 1777–1788. . [CrossRef]

24. Guo, J.; Si, Z.; Wang, Y.; Liu, Q.; Fan, M.; Lou, J.G.; Yang, Z.; Liu, T. Chase: A Large-Scale and Pragmatic Chinese Dataset for Cross-
Database Context-Dependent Text-to-SQL. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online,
1–6 August 2021; pp. 2316–2331. [CrossRef]

25. Deng, N.; Chen, Y.; Zhang, Y. Recent Advances in Text-to-SQL: A Survey of What We Have and What We Expect. In Proceedings
of the 29th International Conference on Computational Linguistics, International Committee on Computational Linguistics,
Gyeongju, Republic of Korea, 12–17 October 2022; pp. 2166–2187.

26. Li, F.; Jagadish, H.V. Constructing an Interactive Natural Language Interface for Relational Databases. Proc. VLDB Endow. 2014,
8, 73–84. [CrossRef]

27. Mahmud, T.; Azharul Hasan, K.M.; Ahmed, M.; Chak, T.H.C. A rule based approach for NLP based query processing. In
Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), Khulna,
Bangladesh, 10–12 December 2015; pp. 78–82. [CrossRef]

28. Tang, L.R.; Mooney, R.J. Automated Construction of Database Interfaces: Integrating Statistical and Relational Learning for
Semantic Parsing. In Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora: Held in Conjunction with the 38th Annual Meeting of the Association for Computational Linguistics—
Volume 13, EMNLP ’00, Hong Kong, China, 7–8 October 2000; Association for Computational Linguistics: Stroudsburg, PA, USA,
2000; pp. 133–141. [CrossRef]

29. Kate, R.J.; Wong, Y.W.; Mooney, R.J. Learning to Transform Natural to Formal Languages. In Proceedings of the 20th National
Conference on Artificial Intelligence—Volume 3, AAAI’05, Pittsburgh, PA, USA, 9–13 July 2005; AAAI Press: Washington, DC,
USA, 2005; pp. 1062–1068.

30. Xu, X.; Liu, C.; Song, D. SQLNet: Generating Structured Queries From Natural Language without Reinforcement Learning. arXiv
2018, arXiv:1711.04436.

31. Hwang, W.; Yim, J.; Park, S.; Seo, M. A Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualization. arXiv
2019, arXiv:1902.01069. Available online: https://arxiv.org/abs/1902.01069 (accessed on 30 January 2023).

32. Guo, T.; Gao, H. Content Enhanced BERT-based Text-to-SQL Generation. arXiv 2019, arXiv:1910.07179. [CrossRef]
33. Wang, B.; Shin, R.; Liu, X.; Polozov, O.; Richardson, M. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL

Parsers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020;
pp. 7567–7578. [CrossRef]

34. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

35. Gu, J.; Lu, Z.; Li, H.; Li, V.O. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016;
pp. 1631–1640. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3133887
http://dx.doi.org/10.1145/2740908.2742839
http://dx.doi.org/10.18653/v1/D18-1425
http://dx.doi.org/10.18653/v1/P17-1163
http://dx.doi.org/10.18653/v1/2021.acl-long.180
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.1109/EICT.2015.7391926
http://dx.doi.org/10.3115/1117794.1117811
https://arxiv.org/abs/1902.01069
http://dx.doi.org/10.48550/ARXIV.1910.07179
http://dx.doi.org/10.18653/v1/2020.acl-main.677
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/P16-1154

	Introduction
	Related Works
	Dataset
	Method

	Methodology
	Encoder
	Hybrid Decoder
	Token Generation Layer
	Pointer Network Layer
	Value Prediction Module

	Training

	Experiments
	Metric
	Dataset
	Experimental Parameters and Environment
	Comparison of Overall Performance
	Comparison of Performance by Each SQL Element
	Comparison of Syntactic Error

	Conclusions
	References

