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Abstract: Discovering communities in complex networks is essential in performing analyses, such
as dynamics of political fragmentation and echo chambers in social networks. In this work, we
study the problem of quantifying the significance of edges in a complex network, and propose a
significantly improved version of the Link Entropy method. Using Louvain, Leiden and Walktrap
methods, our proposal detects the number of communities in each iteration on discovering the
communities. Running experiments on various benchmark networks, we show that our proposed
method outperforms the Link Entropy method in quantifying edge significance. Considering also the
computational complexities and possible defects, we conclude that Leiden or Louvain algorithms are
the best choice for community number detection in quantifying edge significance. We also discuss
designing a new algorithm for not only discovering the number of communities, but also computing
the community membership uncertainties.

Keywords: social networks; edge significance; link entropy; deep link entropy; Leiden; Louvain;
Walktrap

1. Introduction

Understanding which edges in a network are more significant than others from a spe-
cific perspective plays a key role not only in analyzing the network, but also in designing
algorithms for manipulating it. An important perspective is the global connectivity and the
spread of information. Whether a node is connected to or disconnected from the network
can be easily figured out by computing the reachability matrix [1,2]. However, efficient flow
among a network maintaining global connectivity is a problem beyond simple reachability,
where its topology becomes crucial [3]. Quantifying the significance of nodes and edges
has been studied in not only a general context [4–6], but also a variety of networks from
power grids [7,8], communication [9] and wireless sensor networks [10,11] to biological
networks [12,13] and co-citation networks in scientific publications [14,15]. Due to its im-
portance, clustering of nodes towards forming communities [16,17] in biological networks
has received particular attention, which is also a major issue in social networks [12,18],
especially from a political perspective [19,20].

In online political communications, a social network is considered to consist of nodes
clustered around political ideologies, or simply politically fragmented communities. A
deliberative democracy cannot flourish where everyone thinks similarly, corresponding
to a nonfragmented online society at one extreme, or at the other extreme with a highly
fragmented society, resulting in no political polarization or a very sharp polarization,
respectively [21,22]. Because an appropriate level of polarization is considered to be the
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driving force for reasonable democratic pluralism where a moderate clash of ideologies
can take place. Group polarization is a natural consequence of politically fragmented
communities [19], and depending on the dynamics of fragmentation and polarization,
communities tend to form echo chambers [23,24] which might not weaken but further
cement over time [25,26], potentially leading to extremism. Recently, Sasahara et al. have
shown how unfriending accelerates the emergence of echo chambers [27]. The impact of
every unfriending corresponding to removing the edges is not the same on the dynamics
of polarization and echo chambers. Let us consider two edges, one connecting two nodes
within the same community, and the other connecting nodes in two different communities.
Intuitively, when compared to the nodes of the second edge, the unfriending of two nodes
of the first edge has a limited impact on the propagation of information throughout the
entire network.

According to Massumi’s affect theory, affect and perception are transitive among
connected nodes instead of being confined within nodes [28]. Because some edges enable
more efficient diffusion in a network than others, exploring critical or more significant
edges is recognized as crucial in various disciplines.

For quantifying the edge significance in a complex network, following the betweenness
centrality for nodes by Freeman [29] and for edges by Anthonisse [30] in the 1970s, based on
the number of the shortest paths that go through an edge, Girvan and Newman proposed
the edge betweenness centrality method [12]. Using the self-avoiding random walks of
length k, Alahakoon et al. proposed the k-path centrality method [31] which was then
generalized by De Meo et al. [32]. Wang et al. have proposed the degree product [33] and
Cheng et al. have proposed the bridgeness [34] methods.

Information-theoretic and entropy-based functions are becoming more popular in
network studies [35–38]. Bianconi defined and evaluated the structural entropy for studying
the ensembles of networks [39], and Anand and Bianconi related Gibbs entropy to large
deviations of conjugated canonical network ensembles [40]. Recently, degree distribution
and degree remaining entropy were used to study network robustness [41,42]. Wang et al.
studied rumor spreading models in networks using information entropy [43]. Wen et al.
have used joint entropy to explore the vulnerability of transportation networks [44]. Based
on Tsallis entropy, Lei and Cheong have proposed the Local Structure Entropy approach
for ranking the significance of nodes [45].

In 2017, Qian et al. [46] proposed the Link Entropy (LE) method for quantifying edge
significance on maintaining global connectivity. For an edge ei−j connecting nodes ni
and nj, following a community discovery step based on the iterative nonnegative matrix
factorization (NMF) algorithm by Wang et al. [47] which computes the uncertainty of each
node of belonging to each community, LE computes the entropies of ni and nj, and their
Jensen–Shannon divergence [48]. The basic idea is that edges which enable the interaction
of communities are more significant. That is, the nodes ni and nj of such a community-
bridging edge are connected to nodes belonging to more than one community. Therefore,
when compared to nodes which are connected to nodes of only a single community, it is
more uncertain to which community ni and nj belong to, resulting in a higher entropy.

Sorting edges in the descending order of their significance computed by each method
listed above, and then removing the most significant edge one by one, Qian et al. calculates
in each removal the fraction of nodes of the largest component as the KPI for comparing the
performance of the methods. Faster decrease of the fraction from unity indicates a higher
performance because it implies that the method has quantified the significance of edges
more successfully regarding the global connectivity. This way, Qian et al. showed that their
LE method outperforms the previously proposed methods [46].

Very recently, also taking into account the entropies of the adjacent nodes of ni and nj
multiplied a weight χ to be determined, and running the community discovery algorithm
at each removal, because the network keeps changing at each removal, the proposed
Deep Link Entropy (DLE) method [49] was shown to outperform LE, or in the worst case
with χ = 0, it reduces to an improved version of LE by running the community discovery
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algorithm at each removal. It was also shown that DLE outperforms LE in detecting political
secession [50]. Considering the recent work of Lv et al. on deep link prediction [51], this
shows that deeper strategies have been becoming more popular in social network studies.

As will be detailed in the next section, in the above link entropy-based methods, the
execution of the community discovery algorithm in each quantification step is initiated
with a prefixed number of communities. This number is obtained from either a visual
observation or a general knowledge on the initial topology of the given network. However,
considering an arbitrary network in general, or even a well-known network, throughout the
changes in the topology due to edge-removal, the pre-fixed number of communities might
fail to grasp the actual number of communities. For example, a network might initially
consist of four communities, but during the edge-removal process, or in real-life social
networks, due to unfriending or unfollowing each other, some communities disintegrate,
resulting in more than four communities.

In this work, we ask whether predicting the number of communities before running
the community discovery algorithm each time can play an important role in determin-
ing the performance of the edge significance quantification methods. Employing three
major community number detection algorithms, namely Louvain [52], Leiden [53] and
Walktrap [54], we propose an improvement over the LE method, which we call the Im-
proved Link Entropy (ILE) method. Running experiments on five popular benchmark
networks, that is, Wang et al.’s network [47], Zachary’s Karate Club [55], Dolphins [56],
Hermaphrodite [57], and Jazz [58], networks, we show that while running the community
discovery algorithm in each edge-removal iteration as the basic ILE method is already a
significant improvement over LE, detecting community numbers as an extra initial step
can further significantly improve the performance of ILE.

This paper is organized as follows. In the Materials and Methods section, we first
present the LE method consisting of the NMF algorithm of Ding et al. [47] and quantification
strategy of Qian et al. [46]. Next, we briefly present the community number detection algo-
rithms, our proposed ILE method, and how to test the performance of each method. In the
Results section, we present our experimental findings showing the significant improvement
of ILE. Following the discussions including prospects on online political communications,
we conclude.

2. Materials and Methods
2.1. Nonnegative Matrix Factorization Algorithm

Let us consider an undirected unweighted network with k unconnected communities,
and graph of each community is represented with adjacency matrix Si. Then the adjacency
matrix of the network can be represented by G as

G =


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sk

, (1)

which can be factorized as G = XSX> with k × k identity matrix S and the community
membership matrix X.

X =



1 0 . . . 0
... 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


. (2)
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This simple factorization does not apply to the case of real networks where commu-
nities can be connected, so that G would not be diagonal, and columns of X would not
be orthogonal. The nonnegative matrix factorization (NMF) algorithm of Wang et al. can
be used for discovering communities [47], which was also used as the first step of the LE
method [46]. Because the network is undirected, X can absorb S as X ← XS1/2. Aiming to
find X, NMF is based on minimizing the loss

min
X≥0

∥∥∥G− XX>
∥∥∥2

F
, (3)

with the loss function
‖A− B‖2

F = ∑
ij
(Aij − Bij)

2. (4)

Starting with a random X matrix of nonzero elements, the minimization can be performed
by iteration

Xik ← Xik

(
1
2
+

(GX)ik(
2XX>X

)
ik

)
. (5)

and normalizing the rows of X in each iteration. After sufficient number of iterations, each
Xik represents the probability that node i is a member of community k.

2.2. Edge Significance Quantification of Link Entropy Method

The above NMF algorithm finding the X matrix, that is, the probability of each node
to be the member of each community constitutes the first step of the LE method proposed
by Qian et al. [46]. To calculate the significance of an edge ei−j connecting nodes i and j, LE
first takes the average M = (Xi + Xj)/2.

With the standard entropy

H(Xi) = −
K

∑
k=1

xik log xik, (6)

and

D(Xi ‖ M) =
K

∑
k=1

xik log
xik
mk

, (7)

LE calculates the Jensen–Shannong divergence

JSD(Xi ‖ Xj) =
D(Xi ‖ M) + D(Xj ‖ M)

2
. (8)

and finally, the significance of edge ei−j as

LEij =
(H(Xi)) +

(
H(Xj)

)
/2 + JSD(Xi ‖ Xj)

2
. (9)

2.3. Testing the Performance of Edge Significance Methods

Following the LE method [46], to compare the performance of edge significance
quantification methods, we use the fraction of nodes of the largest component, RGC as
the KPI. Given that every node in the network is reachable, initially, RGC = 1. Having
quantified the significance of all the edges according to each method, edges of the network
were removed in a descending order of significance, and at each removal, RGC was re-
calculated, which became RGC < 1 in the first disconnection of any node or community.
RGC keeps decreasing as more nodes or communities are disconnected. With a network of n
nodes, the disconnection of a single node yields RGC → RGC− 1/n, while the disconnection
of a community of m nodes yields RGC → RGC −m/n.

In some cases, plotting the curves showing the decrease of RGC according to each
method provides a clear visual opportunity to compare the performance of each method.
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However, to have a numerical comparison, we calculate the area under each curve. Because
approaching zero in the curve faster indicates better performance, the method which results
in a smaller area outperforms others.

The significance of edges is defined from the perspective of global connectivity and
propagation of information among the network. Therefore, edges constituting a bridge
between communities yield greater significance, and their removal results in a greater
decrease of RGC. Therefore, the decrease pattern indicates whether a single node, or a com-
munity of a particular number of nodes is disconnected at each edge-removal. Moreover, s
faster decrease of RGC approaching zero through quantification of a method shows that it
outperforms other methods. A key point here is that LE [46] runs the community discov-
ery algorithm only once at the beginning, and removes the edges one by one. However,
removal of each edge changes the network. Considering this, besides taking into account
the deeper nodes as well, DLE [49] runs the community discovery algorithm not only at the
beginning, but also after each removed edge, as an improvement over the original LE.

2.4. Community Number Detection Algorithms

An important shortcoming of both LE and DLE is that to start the community discovery
algorithm, they set the number of communities manually at the beginning based on a priori
knowledge. Thus, they cannot grasp the actual number of communities throughout the
edge-removal process. The network might start with k communities, but due to removing
some edges, number of communities might be greater than k, degrading the performance
of community discovery algorithm that finds X, the community membership matrix, and
therefore the performance of edge significance quantification algorithms.

In this work, aiming to address this shortcoming, our method integrates the following
community number detection algorithms to the community discovery algorithm.

2.4.1. Louvain

Newman and Girvan proposed the modularity method to exploring the community
structure in networks, which is based on maximizing the difference between the actual
number of edges in a community and the expected number of such edges [59]. Although
this method is very successful, Brandes et al. showed that its optimization is an NP-
hard problem [60], motivating researchers to find efficient optimization algorithms such
as hierarchical agglomeration by Clauset et al. [61], extremal optimisation by Duch and
Arenas [62], and Louvain by Blondel et al. [52] being one of the best-performing and
fastest algorithms.

The Louvain algorithm optimizes modularity as the quality function by repeating two
phases until the quality function achieves its highest value. Starting with a single partition
considering each node as a community, the first phase of the Louvain algorithm is the local
moving of nodes, where individual nodes are moved to one of the communities which
increases the quality function the most, resulting in a partition. The second phase is the
aggregation, where the partition is used to create an aggregate network, and the nodes in
the partitions are treated as nodes in the aggregate network.

2.4.2. Leiden

Pointing out a major defect of the Louvain algorithm which may result in badly
connected, and even disconnected communities, Traag et al. proposed the Leiden algo-
rithm [53], fixing the defect and also running faster. The Leiden algorithm employs a
refinement phase between the two phases of the Louvain algorithm. The last phase of
the Leiden algorithm is based on aggregating the network based on refined partition, and
the non-refined partition is used to create an initial partition of the aggregate network.
The refinement was performed as follows. Unlike the Louvain algorithm which moves
the nodes to a community resulting in the maximum increase of the quality function, the
Leiden algorithm randomly selects the community to merge the node among the ones that
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yield an increase of the quality function. The probability of selecting each community is
proportional to the expected increase in the quality function.

2.4.3. Walktrap

To reduce the running time of exploring the community structure in complex networks,
following the intuition that random walks on a graph frequently becomes stuck or “trapped”
into sub-graphs with many connections corresponding to communities, Pons and Pataly
proposed a measure of the similarity between nodes based on random walks [54]. The
distances between nodes are computed through the random walks, and nodes are assigned
to communities based on these distances. via bottom-up hierarchical clustering.

3. Results

For each benchmark network, to test the performance of our approach, we run five
simulations as follows:

LE: Original Link Entropy method of Qian et al. [46].
ILE: Improved Link Entropy method which runs the community discovery algorithm

in each iteration with a fixed number of community number.
ILE_Louvain: ILE which runs the community discovery algorithm after detecting the

number of communities by the Louvain method in each iteration.
ILE_Leiden: ILE which runs the community discovery algorithm after detecting the

number of communities by the Leiden method in each iteration.
ILE_Walktrap: ILE which runs the community discovery algorithm after detecting

the number of communities by the Walktrap method in each iteration.
We refer to the last four methods together as ILEs.
In each iteration, we remove the most significant edge according to each method and

calculate RGC as explained in Section 2.3. The method in which RGC approaches zero
faster is more successful in quantifying the significance of edges. The amount of decrease
of RGC indicates the number of nodes disintegrated in each iteration. A small decrease
the disintegration of a single node or a few nodes, while a huge decrease indicates the
disintegration of a community with many nodes.

The performances of three community discovery algorithms that we use to detect the
number of communities, that is, Louvain, Leiden and Walktrap are usually compared with
respect to their discovery capabilities, shortcomings or defects, and running times. Our
work provides a new test bed for the performances of these algorithms in a real-life scenario
of quantifying the edge significance for global connectivity and spread of information.

3.1. Wang et al.’s Network

Our first test was on the network considered by Wang et al. in their community
discovery work (Figure 1 of the Ref. [47]). Consisting of 30 nodes and 75 edges with a
maximum degree of 7, this is a smaller and less complex network when compared to the
other networks used for testing the algorithms. In this network, LE starts disintegrating
nodes or small communities much earlier than ILEs. However, ILEs start disintegrating
large communities, resulting in huge sudden drops in the curves, as can be seen in Figure 1.
Except for a few iterations in the beginning, all four ILEs outperform LE significantly, as
can be seen by comparing the areas under each curve presented in Table 1. It is interesting
that the performance of all ILEs almost perfectly overlaps throughout the process, implying
that taking a constant number of communities (i.e., ILE) or detecting the number through
three different algorithms in each iteration has no significant effect on the performance of
quantifying edge significance in a relatively small network. Therefore, we continue testing
our approach in larger and more complex networks.
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Figure 1. Results for Wang et al.’s network [47]. Detecting the number of communities via three
algorithms in each iteration or not, ILEs perform almost the same, and due to discovering communities
in each iteration, ILEs significantly outperform LE.

Table 1. Comparing the performance of each method by calculating the area under RGC curve as a
result of each method on Wang et al.’s network [47].

Method Area

LE 41.300
ILE 21.566
ILE_Louvain 21.600
ILE_Leiden 21.566
ILE_Walktrap 21.566

3.2. Zachary’s Karate Club Network

Next, we tested our methods on the Zachary’s Karate Club network [55] which is
very popular in testing various network analysis methods. The Karate Club network
consists of 34 nodes and 78 edges, and is usually considered to have two communities
with a maximum degree of 17. In this network, the sudden and huge drops of its curve
show that LE can disintegrate communities as well. The performances of ILE (without
detecting the number of communities), ILE_Louvain and ILE_Leiden almost perfectly
overlap (see Figure 2, while ILE_Walktrap performs the worst in the beginning but catches
other ILEs after removing around 20 edges. This result shows that as the network grows
and becomes more complex (when compared to Wang et al.’s network, for example), ILEs
start performing differently, increasing the motivation to perform experiments on more
complex networks, which can be seen by comparing the areas under each curve presented
in Table 2.

3.3. Dolphins Network

We now continue with a relatively larger and more complex network, that is, the
Dolphins network [56], which consists of 62 nodes and 159 edges, and the maximum degree
is 12. In the Dolphins network, LE immediately starts and keeps disintegrating single or
a few nodes in each iteration, while the ILEs can initiate disintegration after a while, but
disintegrates communities, as can be seen from the sudden large drops in the curves in
Figure 3. Though the performance of ILEs approximately matches after removing 80 edges,
the first community disintegration is achieved by ILE_Leiden, followed by ILE_Louvain,
ILE_Walktrap, and finally by ILE (without community number detection). Besides the fact
that even ILE outperforms LE by discovering communities in each iteration, because ILEs
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disintegrate not a single or a few nodes, but communities, it turns out that they outperform
LE, ILE_Leiden achieving the best performance. Numerical results are presented in Table 3.

Figure 2. Results for the Zachary’s Karate Club network [55]. Thanks to discovering communities in
each iteration, ILEs significantly outperform LE. Using a pre-set number or detecting the number in
each iteration via Louvain or Leiden algorithms achieves almost the same performance throughout
the process. Using the Walktrap algorithm starts disintegrating communities last, but catches the
performance of other ILEs and keeps overlapping with them.

Table 2. Comparing the performance of each method by calculating the area under the RGC curve as
a result of each method on the Zachary’s Karate Club network [55].

Method Area

LE 44.294
ILE 27.705
ILE_Louvain 27.794
ILE_Leiden 27.764
ILE_Walktrap 31.705

Figure 3. Results for Dolphins network [56]. The performances of ILEs start to differ as the network
becomes more complex. In addition to outperforming LE, the best being the ILE_Leiden, all ILEs
disintegrate large communities.
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Table 3. Comparing the performance of each method by calculating the area under the RGC curve as
a result of each method on the Dolphins network [56].

Method Area

LE 97.016
ILE 75.290
ILE_Louvain 55.145
ILE_Leiden 52.209
ILE_Walktrap 60.548

3.4. Hermaphrodite Network

Next, we ran our experiments on the Hermaphrodite Gap Junction Corrected net-
work [57], which we call the Hermaphrodite network for short. This network consists of
469 nodes and 1450 edges. As shown in Figure 4, while ILEs start with a small decrease, LE
starts with a huge decrease in the beginning. Following a constant RGC until the removal of
around the 180th edge, similar to the case of the Dolphins network, LE starts to disintegrate
one or a few nodes in each iteration, while ILEs can disintegrate the next few communities
later than LE but start to outperform it significantly. In this network, ILE_Louvain performs
the best, followed by ILE_Leiden, and ILE_Walktrap and ILE which achieve similar perfor-
mances, as can be seen from Table 4. An important and interesting point about this result is
that the refinement phase of the Leiden algorithm as a general improvement over Louvain
yields worse performance in quantifying the edge significance problem in this network.

Figure 4. Results for the Hermaphrodite network [57]. Although LE starts better by disintegrating a
larger community than ILEs in the beginning, it is outperformed by ILEs afterwards.

Table 4. Comparing the performance of each method by calculating the area under the RGC curve as
a result of each method on the Hermaphrodite network [57].

Method Area

LE 828.304
ILE 674.345
ILE_Louvain 507.464
ILE_Leiden 553.392
ILE_Walktrap 628.266

3.5. Jazz Network

Our last experiment is on the Jazz network [58] consisting of 198 nodes and 2742 edges
with the maximum degree being 100. We found results similar to those of the Dolphins
network, though ILE_Louvain and ILE_Leiden achieved almost the same performance
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with overlapping curves in Figure 5. The overlapping of ILE_Louvain and ILE_Leiden
showed that the refinement phase of the Leiden algorithm as an improvement over the
Louvain algorithm was ineffective in this network. Numerical results for the areas under
the RGC curves are presented in Table 5.

Figure 5. Results for the Jazz network [58]. Except for a few times, the LE method can disintegrate
only one node or a few nodes, but not large communities consisting of many nodes, and it is
outperformed by ILEs, the best by detecting the numbers via the Louvain and Leiden algorithms.

Table 5. Comparing the performance of each method by calculating the area under the RGC curve as
a result of each method on the Jazz network [58].

Method Area

LE 1845.353
ILE 1613.176
ILE_Louvain 940.005
ILE_Leiden 941.843
ILE_Walktrap 1353.838

In order to provide a comprehensive picture on the overall results, in Figure 6, we
plotted the area under the RGC curve for each network found by ILEs normalized to LE. This
shows that although the impact of community discovery algorithms on edge significance
quantification is similar for small networks, ILE_Louvain and ILE_Leiden outperform
Walktrap as the network grows. Considering the area under the RGC curve as the KPI, our
ILE algorithm roughly doubled the performance of LE in general, especially if ILE_Louvain
or ILE_Leiden were used.

The major contribution of our work is the improvement of the LE algorithm with
dynamic community number detection, community discovery, and community member-
ship probability updates in each edge-removal iteration. For this purpose, any community
number detection algorithm can be used. Here, we chose three popular algorithms. Al-
though all gave similar results in small networks, the difference became bigger for larger
networks, suggesting the use of ILE_Louvain or ILE_Leiden. Our study does not ex-
clude the possibility of achieving even better results by using another community number
detection algorithm.

In the Ref. [46], Qian et al. found that regardless of the real number of communities, k,
setting k = 2 in the LE algorithm yields the best results. However, we show that discovering
communities not only once in the beginning as in LE but in every iteration as in ILE, the
value of k plays a crucial role in quantifying edge significance in complex networks.
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Figure 6. Comparing the performance of edge significance quantification algorithms, LE [46], the
proposed ILE with fixed number of communities, and ILE versions with dynamic community number
detection in each iteration. The bar plots show the area under the RGC curve found by each algorithm
normalized to the result obtained by the LE algorithm on the discussed benchmark networks.

4. Discussions

The reason why we used two types of community discovery algorithms in our method,
that is, the set of three algorithms, namely Louvain, Leiden, and Walktrap, and the algo-
rithm of Wang et al. [47] is as follows. First of all, in order to consider an entropy-based
algorithm, the probability of each node to be the member of each community is required,
which was provided by the algorithm of Wang et al. Secondly, in order to make a reliable
comparison between the performance of each method and the performance of LE, the same
community discovery algorithm, that is, the algorithm of Wang et al. must be used as the
first stage. However, the shortcoming of that algorithm is that it requires the number of
communities. Both LE and DLE uses the algorithm of Wang et al. with a pre-set number of
communities, which is considered in this work as a shortcoming of those methods. This
is because even if the initial number of communities in the given network is known, the
topology and the adjacency matrix changes by creating new edges and removing some
of the existing ones in general. In social networks, these actions correspond to friending
or following, and unfriending or unfollowing, respectively. Specific to the performance
testing of the edge significance quantification methods where each edge is removed in the
descending order of significance quantified by each method, the topology keeps changing
at each removal, potentially changing the community structure and the number of commu-
nities. Therefore, providing the actual number of communities to the community discovery
algorithm of Wang et al. might have an impact on the performance of the later stage of
quantifying the edge significance in any entropy-based method. In order to explore this
impact, we propose to use the three community discovery algorithms to find the number
of communities. Running experiments on popular benchmark networks in the ascending
order of complexity, we show that the larger and more complex the network is, detecting
the number of communities in each iteration yields better performance.

Although the tests of Traag et al. showed that the Leiden algorithm significantly
outperforms Louvain in general thanks to the refinement phase [53], our results on the
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edge significance quantification problem show that it is not the case every time; that is,
the refinement yields zero or a very small performance difference in the small Wang et
al. network and Zachary’s Karate Club networks, and slightly worse performance then
Louvain in the Hermaphrodite network.

Considering the two arguments above in addition to reducing the overall running
time, we point out to the need to design new community discovery algorithms which not
only discovers the communities such as Louvain, Leiden or Walktrap, but also calculates
the community membership probability of each node, such as the algorithm of Wang et al.,
which does not require the number of communities as a priori knowledge.

The DLE method [49] was also proposed as an improvement over LE by taking into
account, with a weight of χ, the uncertainties of the adjacent nodes of the pair of nodes
connected by the edge in consideration. It also included the community discovery algorithm
of Wang et al. The reason we have not studied DLE in this work is that although the weight
was set to χ = −0.12 in the Ref. [49] which was sufficient to show that DLE outperforms
LE, in general, the χ to be determined is specific to each social network. Therefore, we
leave this problem to a future work.

We analyzed popular benchmark networks in the literature in a systematic way.
Technically, our algorithm can be used for even larger networks. However, when it comes to
social networks such as Facebook, consisting of billions of nodes and edges with a maximum
degree up to 5000 [24], software and even hardware optimization can be considered for
reducing the execution time.

The drawback of introducing additional steps to the entropic algorithm for signifi-
cantly more precise edge significance quantification is the increase in the computational
complexity. In the Ref. [54], Walktrap algorithm’s complexity was found to be O(n2). Mov-
ing the nodes not to the best neighbor community as in the original Louvain algorithm, but
to a random neighbor community, Traag reduced the computational complexity of the Lou-
vain algorithm from O(n2) to O(n log(n)) [63]. The Leiden algorithm not only fixes some
defects of the Louvain algorithm, but also runs faster [53]. Hence, considering also that
ILE_Louvain and ILE_Leiden outperform ILE_Walktrap in edge significance quantification
as shown in Figure 6, they appear as a better choice.

Nevertheless, designing a new algorithm combining NMF [47] and Louvain or Leiden
in the sense that it discovers the number of communities and at the same time computes
entropies based on community membership probabilities, we believe the overall computa-
tional complexity of ILE can be reduced significantly.

Thanks to the asymmetric version of the NMF algorithm of Wang et al. [47], in principle,
both LE and our ILE algorithms can be adapted to directed graphs as well. However,
because not only the diffusion mechanism but also the dynamics and interpretation of
fragmentation and echo chambers become more sophisticated in directed graphs, we
consider this problem for future works.

5. Conclusions

We have proposed a significant improvement over the Link Entropy (LE) method
which has been outperforming the previous edge significance quantification algorithms.
The LE method starts with the community discovery algorithm as the first phase, which
requires a pre-set number of communities. Our method employs the Louvain, Leiden
and Walktrap algorithms to detect the number of communities as the initial step, so that
the community discovery algorithm yields more accurate results. Running experiments
on popular networks in a spectrum of complexity, we have shown that the our proposal
outperforms the LE method. We also showed that, although the Leiden algorithm was
introduced to outperform the Louvain algorithm by employing a refinement phase, when it
comes to an edge significance quantification task, in some networks, it performs similarly to
the Louvain algorithm. We also pointed to the necessity of designing a new algorithm for
discovering the community number detection and computing the community membership
probabilities at the same time.
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