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Abstract: At low temperatures, classical ultrasoft particle systems develop interesting phases via
the self-assembly of particle clusters. In this study, we reach analytical expressions for the energy
and the density interval of the coexistence regions for general ultrasoft pairwise potentials at zero
temperatures. We use an expansion in the inverse of the number of particles per cluster for an
accurate determination of the different quantities of interest. Differently from previous works, we
study the ground state of such models, in two and three dimensions, considering an integer cluster
occupancy number. The resulting expressions were successfully tested in the small and large density
regimes for the Generalized Exponential Model α, varying the value of the exponent.

Keywords: soft-core interaction potential; GEM-α model; classical ground state

1. Introduction

Bounded repulsive interaction potentials whose Fourier transform has a negative
minimum are known to be responsible for the self-assembly of cluster structures in systems
of fully penetrable particles [1–4]. In the last decades, these so-called ultrasoft systems have
emerged as a preferential model to study interesting collective phenomena that belong
to apparently distant domains, from cold atoms [5–9], vortex matter [10–12] and nuclear
matter [13–15] to colloidal and polymeric systems [16–20]. In this way, the interest in
describing the general properties of ultrasoft models and their connections to specific
hamiltonians includes both theoretical and practical motivations.

While the specific description of self-assembly processes is a general open subject in
complex systems science, cluster-forming experimental setups have risen up in recent years
within soft and condensed matter [21–23] and have been successfully realized in purely
repulsive DNA-based systems [24]. In all cases, the cluster formation occurring below the
2d-solid melting temperature in ultrasoft systems closely resembles the properties and
topological signatures of the corresponding ground-state phases. It is then straightforward
that a full understanding of the zero-temperature diagram of the cluster phases can boost
the general comprehension of this emergent phenomenology.

In two and three dimensions, with increasing density, ultrasoft systems undergo an
infinite sequence of transitions between cluster-crystalline states with increasing occu-
pancy numbers [2,25,26]. That is, between crystal structures in which the nodes consist
of particle clusters of different sizes or occupancies, i.e., number of particles per cluster.
Interestingly, these isostructural transitions occur without changing the underlying crys-
talline symmetries and only increasing the cluster occupancy through the phase separation
mechanism expected for a first-order transition. It is worth mentioning that, according
to [26], these kinds of systems at finite temperatures develop a cascade of isostructural tran-
sitions between cluster states with different occupation numbers that ends in a sequence of
critical points.
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The described behavior for cluster-forming systems has been well-documented via
phase diagrams obtained with computer simulations in a number of ultrasoft
systems [4,27–29]. From these numerical studies, it is clear that phases with an integer
cluster occupation number, i.e., phases in which all clusters have exactly the same number
of particles, emerge within intervals instead of at sharp values of density. However, this
interplay between phases with integer and fractional occupation, which is key for the
accurate description of the low-temperature phase diagrams, has been elusive in many
theoretical calculations. Here, it is worth mentioning the work from Likos et al. [26], in
which the ground-state properties of the face-centered cubic (FCC) cluster structure for the
GEM4 model in three dimensions is properly calculated using Maxwell’s construction.

In this work, we use the method followed in [26] to obtain analytical expressions
for the coexistence regions of soft-core pair interaction potentials. These expressions are
given as expansions in the inverse of the occupation of the corresponding cluster phase
undergoing the isostructural transition as the density is increased. We showed that the
obtained analytical expressions are able to accurately describe the phase diagram of the
soft-core GEM-α models, even at the transitions occurring at the lowest densities.

In these cases, the clustering mechanism is a way of minimizing the repulsion between
particles, and consequently, the system arranges itself into a triangular lattice of particle
clusters in two dimensions and in an FCC structure for three dimensions. By focusing on
states of clusters with constant integer occupancy, referred to as pure phases, our formalism
determines the energetic characteristics of these structures to explore their stability as a
function of the density. First-order transitions from a cluster-crystal phase with occupancy
n to another of n + 1 occur through a coexistence region that can be characterized by a
fractional occupancy. Therefore, using purely thermodynamical principles, a very general
result can be obtained describing the emergence of both pure and mixed phases.

As a significant proof, the method is applied to the generalized exponential model
GEM-α, which is a well-known cluster-forming interaction whose low-temperature phase
diagram has been explored with numerical simulations for some values of α. We found a
perfect agreement between our outcomes and the reported simulation results [4,27]. The
additional finding of closed analytical expressions for the emergence of the different phases
in the high-density regime also enlarges the relevance of the present study for the soft
matter community.

2. Analytical Description

The interaction energy of a classical system of particles is given by

E =
1
2 ∑

i 6=j
V(~ri −~rj). (1)

We separately analyze the sequence of transitions occurring for the triangular lattice of
clusters in two dimensions and for the FCC cluster lattice in three dimensions. In the
following subsections, we present a full characterization of the zero-temperature properties
of the system assuming that clusters are formed by superimposed particles.

2.1. Triangular Cluster-Crystal in Two Dimensions

The energy per particle of a two-dimensional triangular lattice of n-particle clusters,
with lattice spacing an, is given by

E
N

=
1
2

(
n ∑

p,q
V(|~rp,q|)−V(0)

)
, (2)

where~rp,q = an(p~e1 + q~e2), p and q are integers, and the basis vectors representing the
triangular lattice are taken as ~e1 = (1, 0) and ~e2 = (−1/2,

√
3/2). Since the system is
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organized in a triangular lattice of clusters formed by n superimposed particles, with lattice
parameter an, it is straightforward to conclude that the average density of the system will be

ρ =
2n√
3a2

n
. (3)

This relation allows us to calculate the lattice parameter an(ρ), at a given density, for
configurations with any cluster occupation. The expression (2) can still be written in a more
interesting way by rewriting it in terms of the Fourier transform of the interaction potential
V̂(~k), defined as

V̂(k) =
∫ d2r

(2π)2 ei~k·~rV(r). (4)

Now, we can take advantage of the identity

∑
p,q

V(|~rp,q|) =
2√
3a2

n
∑
p,q

V̂(|~kp,q|), (5)

where the set of wave vectors~kp,q = k0(n, ρ)(pe′1 + qe′2) represent the reciprocal lattice
vectors of the corresponding triangular lattice~rp,q. Considering our previous choice of
~rp,q, the basis vectors of the set~kp,q can be taken as e′1 = (0, 1) and e′2 = (

√
3/2,−1/2),

and the lattice size is given by k0(n, ρ) = 4π/(
√

3an(ρ)). In Appendix A, we present a
demonstration of the identity of Equation (5), which allows rewriting of the energy per
particle of the triangular lattice as

E
N

= En =
1
2

(
ρ ∑

p,q
V̂(|~kp,q|)−V(0)

)
. (6)

The above expression corresponds to the exact energy of a pure triangular cluster lattice
with a given integer cluster occupation number and density. As we will see, this information
is sufficient to calculate all the ground-state properties, including the classical ground-state
phase diagram. The first building block to calculate the properties of the sequence of phase
transitions, occurring as density is increased, will be the study of the crossing energies
between energy curves corresponding to clusters with integer consecutive occupation
numbers. In the next section, we focus on the analytical treatment of this problem.

2.1.1. Energy Crossing Densities

In general, each first-order transition occurring as the density is increased is given
by a crossover region in which the occupancy number grows continuously from a given
integer value n to its consecutive n + 1. A first estimation of the location of these phase
transitions can be obtained by calculating the densities at which the energy curves corre-
sponding to each consecutive integer occupation number cross. Imposing the condition
En(ρn) = En+1(ρn), we reach the condition

fV(k0(n, ρn)) = fV(k0(n + 1, ρn)), (7)

where
fV(k) = ∑

p,q
V̂(k|pe′1 + qe′2|). (8)

Since k0(n, ρ)/k0(n+ 1, ρ) =
√
(n + 1)/n, we know that in the limit n→ ∞, k0(ρ, n)→

k0(n + 1, ρ). This implies that, if Equation (7) has a sequence of solutions consistent with
repeated transitions from clusters with occupation n to n + 1, the function fV(k) must have
a local maximum or minimum at some value km, around which the sequence of values
of k0(n, ρn) and k0(n + 1, ρn) at the transition, converges to km as n → ∞. Considering
that in our case an increase in the density always produces transitions in which the cluster



Entropy 2023, 25, 356 4 of 15

occupation number increases from n to n + 1, it can be concluded that fV(k) must have
a local minimum at km. Consequently, around k = km, fV(k) can be approximated by a
quadratic form of the type

fV(k) = fV(km) + a/2(k− km)
2. (9)

From Equation (7), and considering that for large enough n the values of k0(n, ρn) and
k0(n + 1, ρn) at the transition are close to km, we can reach the condition k0(n, ρn) + k0(n +
1, ρn) = 2km. This condition allows us to estimate the density ρn at which the energies of
the n and n + 1 phases coincide, which yields

ρn =

√
3k2

mn(n + 1)

2π2
(√

n + 1 +
√

n
)2 . (10)

This result is expected to be valid in the large n limit. Nevertheless, several cases were
tested, producing relatively good estimates, even for n = 1.

Regarding the dependence of the ground-state energy on the density, in general, we
already know that

En(ρ) =
1
2
(ρ fV(k0(n, ρ))−V(0)), (11)

which is valid for densities ρ in the interval (ρn−1, ρn). In the asymptotic regime n � 1,
Equation (11) can be approximated by

En(ρ) =
1
2

(
ρ( fV(km) +

a
2
(k0(n, ρ)− km)

2)−V(0)
)

. (12)

The family of energy functions defined by Equation (11) describes the ground-state energy
of the system considering only pure phases, i.e., without considering the existence of
coexistence regions.

It is worth comparing these results with the classical mean-field results, in which n is
taken as a variational parameter. In the latter case, it is straightforward to conclude that n
varies continuously with density, in such a way that k0(n, ρ) = km. This means that in the
usual mean-field approximation

EMF(ρ) =
1
2
(ρ fV(km)−V(0)). (13)

Interestingly, this curve represents the envelope curve of the family of curves En(ρ) given
by Equation (12). Moreover, at low enough densities, we can see that EMF(ρ) < 0, which is
clearly a drawback of the mean-field approach, since for purely repulsive potentials the
ground-state energy will always be a positive definite quantity. Finally, we would like
to add that it is in principle possible to improve the mean-field description using more
sophisticated calculations schemes in order to properly capture the low-temperature and
density regimes of soft-core particles systems, as shown by Prestipino et al. in ref. [30].

2.1.2. Coexistence Regions

As mentioned above, the first-order transitions between different cluster-crystal
phases, as the density is increased, occur through a coexistence region in which the oc-
cupancy number has a crossover from n to n + 1. The densities corresponding to the
beginning and the end of the coexistence regions can be determined by means of thermo-
dynamic principles. Within the coexistence regions, the pressure P(ρ) and the chemical
potential µ(ρ) of each pure cluster phase are equal and remain constant, while the density is
increased along the whole coexistence region. The mathematical condition determining the
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densities ρ1n and ρ2n at the beginning and the end of the coexistence region corresponding
to the transition of a cluster with occupancy number n to n + 1 is given by

Pn(ρ1n) = Pn+1(ρ2n)

µn(ρ1n) = µn+1(ρ2n). (14)

These pressures and chemical potentials can be calculated using the relations Pn(ρ) =

ρ2 ∂En(ρ)
∂ρ and µn(ρ) = En(ρ) + ρ

∂En(ρ)
∂ρ .

The system of Equation (14) cannot be solved in general for an arbitrary potential,
even considering the large n limit of the functions En(ρ) given in Equation (12). To proceed,
we look for a solution for ρ1n and ρ2n in the form of a large n expansion of the type

ρ1n = a0n + a1 +
a2

n
+ . . .

ρ2n = b0n + b1 +
b2

n
+ . . . , (15)

and solve the set of Equation (14) order by order. It is worth noticing here that, due to
the nature of the power expansion in Equation (15), the coefficients {aj} and {bj} are
n−independent. However, this does not affect the convergence of ρ1n and ρ2n; in any case,
we realize that as long as ∑j aj and ∑j bj converge, the expansions will be well-defined. A
simple argument that can be raised in general about the convergence of such expansions is
that, by construction, they are the solution of the system of Equation (14), so as long as a
coexistence region exists, the convergence is assured.

We should note that since the r.h.s. of Equation (10) grows linearly with n, the
expansion’s leading term for ρ1n and ρ2n should thus be O(n). Additionally, as we will see,
the subleading terms of order O(1) and O( 1

n ) significantly improve the accuracy of the
proposed expansions.

Considering the perturbative structure of ρ1n and ρ2n, we can conclude that to calculate
the coexistence regions up to O( 1

n ), we must keep terms up to O((k− km)3) in fV(k). The
expansion of fV(k) up to the third order reads

fV(k) ≈ f0 +
f2

2!
(k− km)

2 +
f3

3!
(k− km)

3 + ..., (16)

where fn = f (n)V (km) represents the n-derivative of the function fV(k) evaluated in k = km.
Solving perturbatively the system of Equation (14) in powers of n, we obtain

a0 = b0 =

√
3k2

m
8π2

a1 =

√
3k2

m f0

2π2( f2k2
m + 8 f0)

b1 =

√
3k2

m( f2k2
m + 4 f0)

8π2( f2k2
m + 8 f0)

a2 = b2 = −
k2

m f 2
0 (9 f2 + f3km)(3 f2k2

m + 8 f0)

2
√

3π2 f2( f2k2
m + 8 f0)3

. (17)

The obtained result for the coexistence boundaries of the first-order transition from a
cluster with occupancy n to n + 1, given in Equations (15) and (17), was compared with the
numerical solutions of Equation (14) for some specific models, and the agreement, even for
n = 1, is surprisingly good. Details of this comparison can be found in Section 3.1.1.

Finally, we turn to the question of how to determine the energy of the ground state
within the coexistence region. To exactly calculate the behavior of the energy in this
regime, we take advantage of the fact that, within this region, the pressure of the system
remains constant and equal to the coexistence pressure Pc. Integrating the equation defining
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pressure in the system of Equation (14), considering Pc as a constant, we obtain that, within
the coexistent region,

En(ρ) = En(ρ1n) + Pc

(
1

ρ1n
− 1

ρ

)
. (18)

This result is completely general and valid in the two-dimensional, as well as in the three-
dimensional, case.

2.2. FCC Cluster-Crystal in Three Dimensions

The procedures followed in the previous section to study the ground state of cluster-
forming systems in two dimensions can be generalized to the three-dimensional case
without major difficulties. Numerical simulations, as well as direct calculations, allow
concluding that, among all possible three-dimensional crystals, the one minimizing the
energy of the system under consideration is the FCC lattice. This is actually not surprising
since the FCC is one of the closest packed structures in three dimensions.

As before, the energy of a cluster-crystal of occupation with n particles per lattice site
is given by

E
N

=
1
2

(
n ∑

p,q,s
V(|~rp,q,s|)−V(0)

)
, (19)

where~rp,q,s represents the position of the clusters in an FCC structure. We choose~rp,q,s =
an(p~v1 + q~v2 + s~v3), where the basis vectors are taken as ~v1 = (0, 1, 1)1/2, ~v2 = (1, 0, 1)1/2
and ~v3 = (1, 1, 0)1/2.

For an FCC lattice of clusters, with n particles per site, the average density is given by

ρ =
4n
a3

n
, (20)

where an represents the lattice spacing of the structure. This relation allows us to calculate
the lattice spacing in terms of the particle occupation of the clusters and the average density.

Following the same method described in the two-dimensional case, we can rewrite
the energy per particle of the system in the form

E
N

= En =
1
2

(
ρ ∑

p,q,s
V̂(|~kp,q,s|)−V(0)

)
, (21)

where the wave vectors in the sum are taken as~kp,q,s = (2π
√

3/an)(pv′1 + qv′2 + sv′3), and the
basis vectors are given by v′1 = (1, 1,−1)1/

√
3, v′2 = (1,−1, 1)1/

√
3 and v′3 = (−1, 1, 1)1/

√
3.

Now, we can find the densities at which the pure phases change stability. At these
densities, the condition En(ρ) = En+1(ρ) implies that

gV(k0(n, ρn)) = gV(k0(n + 1, ρn)), (22)

where gV(k) = ∑p,q,s V̂(k|pv′1 + qv′2 + sv′3|) and k0(n, ρn) = 2π
√

3/an(ρ), where an(ρ) repre-
sents the lattice spacing of the FCC lattice related to the average particle density by Equation (20).
In this case, as in the two-dimensional case, when n � 1, an(ρ)/an+1(ρ) → 1. This means
that, once again, in order to have a sequence of cluster transitions with increasing density,
gV(k) needs to have a minimum at some finite value km. Consequently, for values of k close
enough to km, we can approximate gV(k) by its expansion up to the second order

gV(k) = gV(km) +
a
2
(k− km)

2. (23)
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The condition given in Equation (22) leads again to the conclusion that k0(n, ρn) +
k0(n + 1, ρn) = 2km. This equation allows estimating the density at the cluster transition in
the large cluster occupation limit, considering only pure phases

ρn =
4k3

mn(1 + n)
3
√

3π3(n1/3 + (1 + n)1/3)3
. (24)

Analogous to the two-dimensional case, the system of Equation (14) can now be solved
for the FCC cluster crystal in order to find the densities limiting the coexistence region for
each first-order transition. Expanding gV(k) up to the third order, we obtain

gV(k) ≈ g0 +
g2

2!
(k− km)

2 +
g3

3!
(k− km)

3 + ..., (25)

where gn = g(n)V (km) represents the n-derivative of the function gV(k) evaluated in k = km.
The system of Equation (14) is solved now perturbatively in powers of n−1 order by

order, considering that the densities defining the boundaries of the coexistence region, for
each first-order transition, have the form given in Equation (15). This solution process leads
to the following coefficients for the three-dimensional case:

a0 = b0 =
k3

m

6
√

3π3

a1 =

√
3k3

mg0

2π3(g2k2
m + 18g0)

b1 =
k3

m(g2k2
m + 9g0)

6
√

3π3(g2k2
m + 18g0)

(26)

a2 = b2 = −
3
√

3k3
mg2

0(12g2 + g3km)(g2k2
m + 6g0)

4π3g2(g2k2
m + 18g0)3 .

As in the two-dimensional case, the analytical solutions found here showed very good
agreement with the exact numerical results, even for low values of the cluster occupancy
number n. This kind of analytical expression can be also useful to gain insights into the
behavior of the cluster crystals at low temperatures.

3. Numerical Results with GEM-α

In order to test our analytical approach, the method developed in Section 2 is used to
characterize exactly the classical ground-state of the GEM-α model, which is given by a
pairwise interaction of the form

V(r) = exp(−rα). (27)

This effective potential has been commonly used in the literature to model systems of
dendrimers, star-shaped polymers and general colloidal and polymeric system [16,17].
The GEM-α model represents a bounded, repulsive interaction, whose Fourier transform
has a negative minimum at some wave vector for α > 2 in all dimensions. It is therefore
an ultrasoft model that presents cluster phases with superimposed particles of the type
studied in the present work.

3.1. Two-Dimensional Case

To illustrate the general behavior of the GEM-α model for a specific α > 2, in this
section, we study the exact properties of the GEM-4 model. In Figure 1, we show the
behavior of the ground-state energy in a wide range of densities. In this figure, the red
curve is formed by the different energy branches En(ρ) corresponding to each pure cluster-
crystal phase. The intersection between the different branches can be identified by the
sharp peaks in the red curve (see the figure inset). At the same time, we understand that
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the first-order transition between the different cluster phases, as the density is increased,
occurs through a coexistence region in which the cluster occupancy number varies from n
to n + 1.

0.4 0.6 0.8 1.0 1.2 1.4
0.0
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0 1 2 3 4 5
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Density
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y

Figure 1. Exact ground-state energy for the GEM-4 model. The red curve corresponds to the ground-
state energy of the system considering only pure cluster-crystal phases. The change in stability for
each pure cluster phase can be identified by the sharp peaks in the red curve. The coexistence regions
corresponding to each cluster-crystal transition are represented by the shaded green areas. In these
regions, the actual ground-state energies are represented by the green solid curves. The inset panel is
a zoom of the original figure in a density interval corresponding to the energy branches E1(ρ) and
E2(ρ), given by Equation (11). It is worth noting how the coexistence mechanism results in further
energy minimization when the energy of the mixed phase is compared with the energies of the pure
phases involved in the phase transition.

The beginning (ρ1n) and the end (ρ2n) of each coexistence region can be determined
numerically by solving the system of Equation (14). Solving this system of equations allows
for determining not only the boundaries of each coexistence region but also the pressure
and the chemical potential within the coexistence region. Additionally, such information
can be used to determine the behavior of the total energy per particle within the coexistence
region by means of Equation (18).

The coexistence region for each transition is represented by a shaded region in green.
At the top of each shaded area, the exact value of the energy per particle is presented by
the green solid curves. In the inset of Figure 1, we present a zoom of the original figure
in a smaller density interval containing the first cluster transition, from the single-particle
triangular lattice to the two-particle cluster-crystal. In this figure, the differences between
the energy curves corresponding to the pure phases and those of the coexistence region are
evident. Additionally, the beginning and the end of each coexistence region are highlighted
with green dots. As we can observe, the presence of the coexistence region results in a
further minimization of the ground-state energy. From a thermodynamical point of view,
this is precisely why coexistence appears in a first-order transition: it is a mechanism of
free energy minimization.

Once we have the exact ground-state energy curve, we can calculate the corresponding
pressure and chemical potentials by means of the definitions given in Equation (14). In
Figure 2, we present the exact behavior of the pressure (panel A) and the chemical potential
(panel B). The red curves are associated with the behavior within pure cluster-crystal phases
in which the occupancy number takes integer values. For states within the coexistence
regions, the curves of pressure and chemical potential remain constant, as expected from
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thermodynamic principles. Once again, the boundaries of the coexistence regions are
highlighted with green points.
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Figure 2. Pressure (A) and chemical potential (B) as a function of the density for the GEM-4 model in
two dimensions. Red curves in both figures correspond to the behavior of the specific magnitude
within the pure cluster phases. Green curves correspond to the behavior of the specific magnitude
within the coexistence regions. The solid dots define the boundaries of the coexistence regions
associated with each first-order phase transition.

Now that the general properties of the ground state of the GEM-4 model have been
described, we take one step further in the systematic characterization of the GEM-α model.
In Figure 3, we present the exact ground-state phase diagram varying the exponent α of
the interaction potential and the particle density of the system. The shaded regions in
green represent the coexistence regions associated with each first-order transition between
different cluster states. At the same time, the densities at which the pure phases change
stability, as the density is increased, are represented by red dashed lines. As expected,
these lines are always found within the coexistence region corresponding to each first-order
phase transition.

It can be noted that, as the value of α→ 2, the position of the phase transitions moves
progressively to infinity, while the coexistence regions shrink to zero. This behavior can
be understood considering the properties of the function fV(k) in the limit α → 2. In
this regime, km(α) → ∞ and f2(km, α) → 0; this implies, according to Equation (17), that
a0 → ∞ and a1 → b1, which explains the observed behavior of the coexistence regions.
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Figure 3. Phase diagram α versus density for the GEM-α model in two dimensions. For all α > 2, the
system undergoes an infinite sequence of transitions between different cluster-crystal phases as the
density is increased. These transitions are accompanied by coexistence regions represented in the
figure by the shaded green areas. The dashed red curves represent the densities at which the pure
cluster phases change stability.

3.1.1. Comparison between Analytical and Numerical Results

In this section, we compare some of our analytical predictions with their numeral
counterparts for the GEM-α model in the two-dimensional case. For the purpose of com-
parison, we reobtain the expression of the density ρn at the crossing of the branches En(ρ)
and En+1(ρ) in the two-dimensional case. As mentioned before, during the calculation of
ρ1n and ρ2n, to obtain expressions with accuracy O( 1

n ), we need to consider an expansion
of fV(k) up to O((k− km)3). Thus, although Equation (10) is the exact solution considering
fV(k) = fV(km) + a/2(k − km)2, it is correct for the original problem only up to order
O(( 1

n )
0).

For improving this result, we consider fV(k), given as in Equation (16), and propose
an energy crossing density ρn in the form of a large n expansion of the same order of
Equation (15)

ρn = d0n + d1 +
d2

n
. (28)

In this case, the perturbative solution of Equation (7) order by order leads to the coefficients

d0 =

√
3k2

m
8π2

d1 =

√
3k2

m
16π2

d2 = − k2
m(9
√

3 f2 +
√

3k2
m f3)

384π2 f2
, (29)

where the coefficients fn and km are defined in Equation (16).
In Figure 4, we show a comparison between the analytical predictions and the exact

numerical results for the GEM-α model in two dimensions. We show two different phase
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transitions: from the simple crystal n = 1 to the two-particle cluster-crystal n = 2 (panel A),
and the transition from the cluster-crystal n = 10 to the cluster-crystal n = 11 (panel B).

The dots represent the numerical results, and the continuous curves represent the ana-
lytical large n expressions given by Equations (15) and (17) for the coexistence boundaries
and Equations (28) and (29) for the densities at the energy crossing. Green full curves corre-
spond to the boundaries of the coexistence regions in each case, while red full curves are
related to the energy crossing of the two relevant phases involved in the phase transition.

As can be observed, there is a high degree of agreement between the numerical results
and the analytical predictions obtained in the large n limit already for the n = 10 case,
within the full range of models considered. On the other hand, for the lowest possible
value of the cluster occupancy (n = 1), there is still a good agreement between analytical
predictions and numerical exact results in the whole range of α considered, especially
regarding the description of the boundaries of the coexistence region.

(A)
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Figure 4. Comparison of the analytical and exact numerical predictions for the densities as a function
of the exponent α of the GEM-α model for specific transitions between different cluster states. The
red dots represent the numerical exact values of the densities at the crossing of consecutive energy
branches, while the continuous red curve represents the analytical asymptotic prediction given by
Equations (28) and (29). The green dots correspond to the numerical exact values of the boundaries
of the coexistence region, while the green continuous lines are given by the analytic predictions in
Equations (15) and (17). Panel (A) corresponds to the transition from triangular lattice n = 1 to
the two-particle cluster n = 2. Panel (B) corresponds to the transition from the cluster crystal with
(n = 10) to the cluster crystal with n = 11.
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3.2. Three-Dimensional Case

For completeness, in this section, we apply the formalism described in Section 2 to
study the GEM-α model in three dimensions. For values α ≤ 2, the function gV(k) does not
have a minimum at a finite value km, and therefore, the system orders in a simple, noncluster
crystalline state. Nevertheless, as density increases in this regime, a structural transition
occurs from an FCC to a BCC structure, accompanied by a very narrow coexistence region.
For α > 2, there is an infinite sequence of transitions between different FCC cluster-crystal
phases in which the occupation number of the clusters increases with density. In this regime,
the FCC cluster structure always has lower energy than the BCC cluster arrangement.

In Figure 5, the α versus density phase diagram is constructed for the 3D system,
comparing the energy per particle of the different cluster-crystal phases organized in an
FCC lattice and in a single-particle BCC lattice. In the α ≤ 2 regime, as mentioned before,
there is no cluster formation and, instead, only a first-order structural phase transition takes
place from the FCC lattice to the BCC lattice as the density is increased. The coexistence
region associated with this transition is very narrow, and consequently, it is barely visible
in Figure 5.

In the regime α > 2, in which cluster formation occurs, the scenario is similar to the
one observed in the two-dimensional case. In Figure 5, the shaded green areas represent
the different coexistence regions associated with each cluster transition. The red dashed
lines, as before, provide the boundaries at which the different pure cluster-crystal phases
change stability. Finally, the white regions of the phase diagram correspond to pure FCC
cluster-crystal phases.

FCC

1 2

1+2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1

2

3

4

5

Density

α

Figure 5. Phase diagram α versus density for the GEM-α model in three dimensions. For values
of α ≤ 2, the system orders in a single-particle array presenting a structural transition from an
FCC lattice to a BCC lattice, for high enough densities. For α > 2, a sequence of different FCC
cluster-crystal phases occurs as the density is increased. These phases are represented by the white
areas in the figure and have a well-defined number of particles per cluster that increases with density.
The dashed red curves represent the densities at which the pure cluster phases change stability,
while the green shaded regions represent the coexistence regions associated with each cluster-crystal
phase transition.

4. Concluding Remarks

We analyzed the ground-state phase diagram of ultrasoft systems of particles undergo-
ing a sequence of isostructural cluster transitions as the density of particles is increased, in
two and three dimensions. We found closed analytical expressions for the boundary of the
coexistence regions as expansions in the inverse of the number of particles per cluster. In
this way, we were able to construct the ground-state phase diagram for the GEM-α family
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of pair interaction potentials producing accurate results, even for the transitions taking
place at the lowest densities.

If we compare our zero temperature results with related works in the literature, we
observe that, although it has been considered that the occupancy number of clusters can be
treated as a variational real parameter, this assumption in general produces quite different
phase diagrams when compared with the exact behavior. This version of the mean field
approximation can be understood as an attempt of describing the cluster transitions at
high densities, which neglects the fact that such first-order transition occurs through phase
separation and not irregularly distributing particles over the lattice of clusters. In this
context, coexistence regions are not usually identified, since pure clusters phases do not
exist in extended regions of the phase diagrams. A nice implementation of the mean-field
technique free of the above-mentioned problems can be found in ref. [30].

Finally, we would like to add that the assumption of stability of cluster phases with a
homogeneous occupancy number allows to conclude the existence of first-order transitions
and not crossovers between the different cluster phases. The properties of these first-
order transitions were calculated from very general thermodynamic considerations, and
consequently, our results show full consistency with what is expected from a physical point
of view. All analytical results show excellent agreement with the exact numerical results
presented and with previous numerical simulation results obtained for specific GEM-α
models [4,27].
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Appendix A. Lattice Sum Identity

In order to prove the identity of Equation (5), let us consider the sum

S = ∑
n,m

g
(
(n~e1 + m~e2)a

)
, (A1)

where~e1 = (1, 0) and~e2 = (cos θ, sin θ) represent the basis vectors of the lattice over which
the sum is performed. Our goal in this appendix is to obtain an equivalent expression
for S in terms of the Fourier transform of g(~r), assuming that such a function exists.
Note that in our case this is always possible, since g(~r) remains finite in all points of the
summation lattice.

Considering the following definition of Fourier transforms:

ĝ(~k) =
∫

d2r e−i~k·~rg(~r) (A2)

g(~r) =
∫ d2k

(2π)2 ei~k·~r ĝ(~k), (A3)
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the original sum can be rewritten as

S =
∫ d2k

(2π)2 ∑
n,m

ei~k·(n~e1+m~e2)a ĝ(~k). (A4)

Additionally, taking advantage of the Dirac comb identity

∑
n

einx = (2π)∑
n

δ(x− 2πn), (A5)

the summation in Equation (A4) can be performed to reach to the following expression
for S

S =
∫ d2k

(2π)2 ĝ(~k)(2π)2 ∑
n,m

δ(~k ·~e1a− 2πn)

× δ(~k ·~e2a− 2πm). (A6)

Now, it can be directly integrated over momenta yielding

S =
1

a2| sin(θ)| ∑n,m
ĝ(~kn,m), (A7)

where
~kn,m =

2π

a| sin(θ)| (ne′1 + ne′2), (A8)

with e′1 = (0, 1) and e′2 = (sin(θ),− cos(θ)).
It is now straightforward to check the validity of Equation (5) just by considering that

our sum is performed over a triangular lattice for which θ = 2π/3.
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24. Stiakakis, E.; Jung, N.; Adžić, N.; Balandin, T.; Kentzinger, E.; Rücker, U.; Biehl, R.; Dhont, J.K.; Jonas, U.; Likos, C.N. Self
assembling cluster crystals from DNA based dendritic nanostructures. Nat. Commun. 2021, 12, 7167. [CrossRef]

25. Likos, C.N.; Lang, A.; Watzlawek, M.; Löwen, H. Criterion for determining clustering versus reentrant melting behavior for
bounded interaction potentials. Phys. Rev. E 2001, 63, 031206. [CrossRef] [PubMed]

26. Neuhaus, T.; Likos, C.N. Phonon dispersions of cluster crystals. J. Phys. Condens. Matter 2011, 23, 234112. [CrossRef]
27. Zhang, K.; Charbonneau, P.; Mladek, B.M. Reentrant and Isostructural Transitions in a Cluster-Crystal Former. Phys. Rev. Lett.

2010, 105, 245701. [CrossRef]
28. Wilding, N.B.; Sollich, P. A Monte Carlo method for chemical potential determination in single and multiple occupancy crystals.

EPL (Europhys. Lett.) 2013, 101, 10004. [CrossRef]
29. Wilding, N.B.; Sollich, P. Demixing cascades in cluster crystals. J. Chem. Phys. 2014, 141, 094903. [CrossRef]
30. Prestipino, S.; Gazzillo, D.; Tasinato, N. Probing the existence of phase transitions in one-dimensional fluids of penetrable

particles. Phys. Rev. E 2015, 92, 000138. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevLett.100.028301
http://dx.doi.org/10.1039/C8SM01738G
http://dx.doi.org/10.1063/1.4996904
http://dx.doi.org/10.1039/C6SM02718K
http://dx.doi.org/10.1039/C8NR05814H
http://www.ncbi.nlm.nih.gov/pubmed/30311616
http://dx.doi.org/10.1038/s41467-021-27412-3
http://dx.doi.org/10.1103/PhysRevE.63.031206
http://www.ncbi.nlm.nih.gov/pubmed/11308641
http://dx.doi.org/10.1088/0953-8984/23/23/234112
http://dx.doi.org/10.1103/PhysRevLett.105.245701
http://dx.doi.org/10.1209/0295-5075/101/10004
http://dx.doi.org/10.1063/1.4894374
http://dx.doi.org/10.1103/PhysRevE.92.022138
http://www.ncbi.nlm.nih.gov/pubmed/26382374

	Introduction
	Analytical Description
	Triangular Cluster-Crystal in Two Dimensions
	Energy Crossing Densities
	Coexistence Regions

	FCC Cluster-Crystal in Three Dimensions

	Numerical Results with GEM-
	Two-Dimensional Case
	Comparison between Analytical and Numerical Results

	Three-Dimensional Case

	Concluding Remarks
	Appendix A. Lattice Sum Identity
	References

