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Abstract: A methodological study of triplet structures in quantum matter is presented. The focus is
on helium-3 under supercritical conditions (4 < T/K < 9; 0.022 < ρN/Å−3 < 0.028), for which strong
quantum diffraction effects dominate the behavior. Computational results for the triplet instantaneous
structures are reported. Path integral Monte Carlo (PIMC) and several closures are utilized to obtain
structure information in the real and the Fourier spaces. PIMC involves the fourth-order propagator
and the SAPT2 pair interaction potential. The main triplet closures are: AV3, built as the average of
the Kirkwood superposition and the Jackson–Feenberg convolution, and the Barrat–Hansen–Pastore
variational approach. The results illustrate the main characteristics of the procedures employed by
concentrating on the salient equilateral and isosceles features of the computed structures. Finally, the
valuable interpretive role of closures in the triplet context is highlighted.

Keywords: quantum triplet structures; path integral Monte Carlo; closures; supercritical helium-3

1. Introduction

Quantum triplet structure studies are key to developing the statistical mechanics of
equilibrium many-body systems at low (nonzero) temperatures. Despite the fact that triplet
structures are not determined experimentally [1], the computational approach to this topic not
only justifies itself by the gaining of knowledge about quantum matter, but it also is crucial
for further applications of quantum reasoning (e.g., phase transitions and design of materials,
phonon-phonon interactions in superfluids, time-dependent phenomena, etc.) [2–5].

As stressed elsewhere [6], exact quantum triplet calculations are presently an extremely
demanding task. This contrasts sharply with their counterparts in the classical domain
where the calculations are far more affordable [7–10]. Putting aside the high dimensionality
that the triplet functions can reach (e.g., 10-D for spatial triplets in a monatomic solid),
one should note the quantum variety of physically significant n-particle structures that a
system can exhibit in both the real space (r-space) and the reciprocal Fourier space (k-space)
(see [11,12] for a basic description). For the reader to grasp the overall situation, suffice it to
consider a monatomic homogenous and isotropic fluid with substantial quantum effects that
make a classical description meaningless. This fluid shows six basic triplet functions that can
be classified into three types, namely, instantaneous, total continuous linear response, and
centroids (the classical counterpart only has two basic functions in a single class) [5,6,11,12].
Each of these three types contains one generalized triplet correlation function H3(r12, r13, r23)

together with its related Fourier transform S(3)(k1, k2, cos(k1, k2)), where rjm =
∣∣∣qj − qm

∣∣∣ is
the distance between particles j and m, and k1 and k2 are two wavevectors of moduli k1 and
k2, respectively. As seen, these triplet functions are already 4-D.

Accordingly, one can obtain an initial impression of the magnitude and expected cost
of the related quantum computations, which would increase if higher-order structures were
to be dealt with. However, this impression becomes more acute when the inherent features
of the actual computations enter the discussion. Very powerful methods to calculate
most of the properties of equilibrium quantum condensed matter are based on Feynman’s
path integrals (PI) [13]. Within PI two main simulation techniques are available: path
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integral Monte Carlo (PIMC) and path integral molecular dynamics (PIMD) [11,14–30]. In
a way similar to the classical MC and MD techniques, the quantum PIMC and PIMD are
highly accurate, their procedural “errors” (e.g., statistical, numerical) being diminished
by increasing the simulation run lengths and/or the precision of the computations. By
focusing on definiteness for the PIMC simulations of quantum equilibrium structures, they
may also be regarded as “exact” in that they provide self-contained solutions unattainable
via basic frameworks in statistical mechanics. In relation to this, one should recall the case of
the exact (and theoretically revealing) Bogolyubov–Born–Green–Kirkwood–Yvon hierarchy
(BBGKY), which needs the knowledge of higher-order structures to define lower-order
structures [31]. Thus, although BBGKY is an exact formulation, it leads to calculational
schemes (not in use) that cannot be “exact”, since they need extra information to break/close
the working equations (e.g., hypothesis about the form of triplet correlations -closures- to
calculate the pair correlations). This does not occur with PIMC, which is self-contained
(e.g., pair and triplet correlation functions can be calculated independently of each other)
and whose accuracy can in principle be arbitrarily increased so as to reproduce the targeted
theoretical values of the model selected [14,15,18]. Note that the foregoing polysemous
use of the term “exact” is independent of another use referring to the computational effort
required to deal with an increasing number of particles in a system.

The PI difficulty lies in the extended simulation samples NS × P that PIMC and PIMD
use; NS stands for the conventional number of actual particles, and P > 1 is an integer
number to be optimized that serves to represent the thermal quantum delocalization of
an actual particle (theoretical accuracy is reached in the Trotter’s limit P→ ∞) [18]. As
a rule, P increases with the quantum effects and there are ways to soften its impact on
the number of calculations (e.g., pair actions [18,19], fourth-order propagators [20,25–30],
parallel computing [20], etc.). All in all, when very strong quantum effects (including
bosonic exchange [18,23,28]) are to be studied, the PI undertaking of the triplet task in
its entirety, and within reasonable CPU times (and electric power consumption), may
remain today out of the reach of most interested researchers. In this regard, note that
triplet r-space information, though expensive, is still affordable, whereas its counterpart
in k-space is highly demanding because of the necessity to scan appropriate sets of k
wavevectors commensurate with the simulation box. It thus seems that the related numeri-
cal evaluations of detailed quantum r- and k- structures for triplets (and beyond) could
be appealing targets for the PI implementations in the coming exascale computers [32].
For completeness, note that, apart from the present author’s works, PI work on significant
aspects of the equilibrium structures in quantum matter can also be found in the general
references [14–30], more specifically [14,16,18,20,27–30]. However, none of the latter deals
with all the aforementioned types, nor goes beyond the pair level.

For the time being, the main structural features of triplets in fluids with quantum
behavior can be extracted by means of PIMC (or PIMD). Recent works by the present
author have shown how to tackle this problem when dealing with quantum diffraction
effects [2,6,33–36]. In these works, one can find comprehensive descriptions of the methods
employed, and also positive identifications (or well-grounded indicators) of physically
significant triplet patterns in the statistical distributions of the actual particles. The systems
studied were the quantum hard-sphere fluid, bare [2,33] and with Yukawa attractions [35],
helium-3 at very low densities [34], liquid neon [6], and liquid para-hydrogen [6,36]. By
defining the parameter γ = ρNλ3

B as a (rough) measure of the magnitude of the quantum
effects, where ρN is the number density, and λB = h/

√
2πmkBT is the thermal de Broglie

wavelength, the studied conditions covered up to γ . 2.7.
As complementary tools, one can also employ the so-called closures, which for triplets

intend to infer their characteristics from the available information at the pair level: g2(r)
correlations, c2(r) direct correlation functions, S(2)(k) structure factors, and other auxiliary
functions [3,5,37]. Closures are certainly approximations and imply far less expensive
calculations than the exact PI techniques. Furthermore, closures may turn out to be highly
accurate, as shown at the pair level [11,38], or, alternatively, very useful as interpretive
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tools for analyzing complex structural problems [2,6,36]. From the point of view of the
present author, any theoretical object allowing further reasoning and a deeper understand-
ing always deserves careful study, and this turns out to be the case of closures in the
quantum domain.

In the hope of shedding some more light on quantum triplet structures, and as a
preliminary part of a larger project, this article addresses some relevant issues. The focus is
on the instantaneous triplet structures in the r and the k spaces of supercritical helium-3.
The triplet behavior is explored for conditions

(
4 < T(K) < 9; 0.022 < ρN

(
Å−3

)
< 0.028

)
(critical point: TC = 3.3157K; ρN = 41.191 kg

m3
∼= 0.0082246 Å−3) [39]. Why helium-3 under

these conditions? One obvious reason is to give a service by communicating more experi-
ence on the, as yet, unexplored triplet topic. Another reason is that quantum diffraction
effects (γ . 3.2) beyond those mentioned above can be analyzed in (a model of) a real
system as important as helium-3. Furthermore, the rationalization of the quantum triplet
structures in terms of closures built from the underlying pair structures is worth pursu-
ing [2,6,36]. The supercritical conditions are far from fermionic exchange, known to be
present for T ≤ 1K and affected by the computational “sign problem”, which precludes
practical applications of PIMC (see [17] for a pioneering PIMC approach to this problem). In
this article, the equilateral and isosceles correlations are determined in r-space with PIMC
and closures, and in k-space with closures. PIMC involves the fourth-order propagator put
forward in [25–27] (compare with the early application of the primitive propagator that
was utilized in [34] for the study of helium-3 at very low densities). The triplet closures
employed are Jackson–Feenberg convolution JF3 [3], Kirkwood superposition KS3 [37], the
intermediate AV3 = (KS3 + JF3)/2 [2], and the variational Barrat–Hansen–Pastore approach
(BHP) [5]. KS3, JF3, and AV3 are utilized for r-space and k-space, whereas BHP is utilized
only for k-space. The effects in r-space arising from changes in temperature and in density
are discussed, and the significant role of the closures is highlighted.

The outline of this article is as follows. Section 2 contains a summary description
of the underlying theory and methods. Section 3 is devoted to the main computational
details, and Section 4 gives the results and their discussion. Finally, Section 5 collates the
conclusions of this work.

2. Theory
2.1. Path Integral Monte Carlo

For a monatomic homogeneous and isotropic fluid at equilibrium, in which quantum
exchange can be neglected, the general form of the PI-canonical (N, V, T) partition function
reads as [14,18]

ZNP = (N!)−1
(

mP
2πβ}2

)3NP/2 ∫
∏P

t=1 drN,texp
[
−βWNP

(
rN,1, . . . , rN,t; β,}, m

)]
(1)

where m is the particle mass, β = 1
kBT is the inverse temperature, the actual N parti-

cles (j = 1, 2, . . . , N) are represented by N necklaces with P beads apiece (t = 1, 2, . . . , P),
rN,t =

(
rt

1, . . . , rt
N
)

where rt
j denotes the coordinates of bead t belonging to necklace j,

drN,t = drt
1 . . . drt

N , and WNP is the effective potential for the whole set of N × P beads.
Equation (1) resembles the form of a semiclassical partition function [11,13], which gives
rise to the so-called (semi-)classical isomorphism [14] that is at the root of the great PI
success. The number P is assumed to be optimized in what follows.

The specific expression of WNP depends on the selection of the thermal propagator. In
this work this propagator is the fourth-order choice in the final form given by Voth et al.
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to the Suzuki-Chin developments [25–27]. In this case P is an even integer, and WNP is
given by

WNP = mP
2β2}2

N
∑

j=1

P∗
∑

t=1

(
rt

j − rt+1
j

)2
+ 2

3P ∑
j<m

{
∑

t=odd
v
(

rt
jm

)
+ 2 ∑

t=even
v
(

rt
jm

)}
+

β2}2

9mP3 ∑N
j=1

{
α ∑t=odd

(
∑j 6=m

dv(rt
jm)

drt
jm

ηt
jm

)2
+ (1− α)∑t=even

(
∑j 6=m

dv(rt
jm)

drt
jm

ηt
jm

)2
}

,
(2)

where the * in the first t-summation implies the cyclic property t + 1 = P + 1 ≡ 1, α is
a real number in the interval [0, 1], v

(
rt

jm

)
is the continuous pair potential v(r) acting

between equal-t beads in different necklaces, rt
jm =

∣∣∣rt
j − rt

m

∣∣∣, ηt
jm = rt

jm/rt
jm, and the

asymmetry in the bead contributions coming from odd-t (t = 1, 3, . . . , P− 1) and even-t
(t = 2, 4, . . . , P) is to be noticed. This asymmetry has an obvious impact on the thermody-
namic evaluations, but it is of critical importance to the structural computations, for only
the odd-numbered beads are physically significant. The reader is referred to [11,27,28] for
the related discussions.

By focusing only on the instantaneous structures (ET for equal-t) at the fluid number
density ρN = N/V, one finds at the pair and triplet levels the following direct canonical
averages 〈. . .〉 in the r- and k- spaces

ρ2
N gET2(q1, q2) = ρ2

N gET2(r12) =
2
P
〈∑j 6=m ∑t=1,3,..., P−1 δ

(
rt

j − q1

)
δ
(
rt

m − q2
)
〉, (3)

ρ3
N gET3(q1, q2, q3) = ρ3

N gET3(r12, r13, r23) =

2
P
〈∑j 6=m 6=n 6=j ∑t=,1,3,..., P−1 δ

(
rt

j − q1

)
δ
(
rt

m − q2
)
δ
(
rt

n − q3
)
〉, (4)

S(2)
ET (k) =

2
NP
〈∑N

j=1 ∑N
m=1 ∑t=1,3,...,P−1 exp[i k·(rt

j − rt
m)]〉, (5)

S(3)
ET (k1, k2, cos γ) =

2
NP
〈∑N

j=1 ∑N
m=1 ∑N

n=1 ∑t=1,3,...,P−1 exp[i(k1·rt
j + k2·rt

m − (k1 + k2)·rt
n)]〉. (6)

In connection with the foregoing formulas, some remarks are to be made: (a) qj stands for

the absolute position vector of the actual particle j, so that rjm =
∣∣∣qj − qm

∣∣∣ is the distance
between the actual particles j and m; (b) in Equations (5) and (6) terms of the δ(k)− type are
omitted, as is customary [40,41]; (c) γ is the angle between the wavevectors k1 and k2; and
(d) while S(2)

ET (k) is essentially the Fourier transform of hET2(r12) = gET2(r12)− 1, S(3)
ET is the

Fourier transform of an involved r-space function, HET3(r12, r13, r23) [6,11]. The latter not
only contains gET3(r12, r13, r23), but also additional terms which include two- and one-body
contributions. It is worth stressing that Equations (3)–(6) are the common quantities in the
structural study of fluids at equilibrium. Actually, S(2)

ET (k) is directly related to the system
response that can be obtained in X-ray or elastic neutron diffraction experiments [18,31].
However, for many purposes, the grand canonical extensions are essential, as will be
considered later on (see [6,11] for the other functions and their physical meanings).

There are well-known problems with the simulation of Equations (5) and (6) in the
low-k regions, caused by the finite particle sample size NS (or volume VS) and the required
commensurability of the wavevectors with the central box [40,41]. For a cubic box of length
L the allowed wavevectors must be of the form k =

( 2π
L
)(

kx, ky, kz
)

with the kx, ky, kz
components being integer numbers, and a summary description of these problems seems
worth including here (see [11] for a review and complete discussion).

First, for example, one may focus just on the pair level for simplicity and also for its imme-
diate repercussions. Note that the central thermodynamic connection S(2)

ET (k = 0) = ρNkBTχT
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cannot be strictly determined via a single direct simulation (χT = isothermal compressibility),
since k and NS extrapolations should be carried out [41]. (Due to the lack of a δ(k)-term, the
case k = 0 in Equation (5) yields an expression far from the true physical meaning of this
component [11,42]). Further, the long-range oscillations about zero of hET2(r12) cannot be
determined with reasonably workable finite sample sizes (unless one had access to computa-
tional resources whose use could be hardly justifiable). Although, these oscillations are small in
magnitude, they are decisive to obtain a significant value of S(2)

ET (k = 0) via the Fourier transform
of hET2(r12). Nothing of this is new, as this sort of problem was already known in classical
statistical mechanics, and was circumvented via the use of the Ornstein–Zernike pair scheme
(OZ2) with the introduction of the short-ranged direct correlation function c(r12) [40,41]. One
might argue that the finite sample size affects the calculation of every property in a simulation
and that there is nothing about the S(2)

ET (k = 0) evaluation, via the volume integral of hET2(r12),
that is not shared by other properties, such as the energy or the pressure, which can also be
formulated with the use of integrals involving the pair function gET2(r12) (and the interparticle
potential) [18,41]. However, it is worth recalling that, when evaluating energies or pressures
of systems composed of electrically neutral particles, the standard way to cope with the finite
size effects is to correct the simulation results with continuum contributions. The latter can be
evaluated by defining the pair function involved as g2(r12) = 1 for distances longer than half
the box length L/2. These corrections account for the missing long-range interactions, thereby
being fully dependent on the features of the interparticle potential [41], but not on the complete
structure of the actual system studied. As stated above, and apart from well-known asymptotic
behavior questions [42], the latter definition, g2(r12) = 1, would be meaningless when Fourier
transforming h2(r12), and the corresponding argument is flawed.

Second, the sampling of commensurate wavevectors implies the definitions of sets
{kuv}v=1,2,3,... compatible with the wavenumbers ku = |kuv| to be analyzed (as many sets
as wavenumbers). Therefore, and focusing on the use of (6) for triplets, the increased
computational cost involved prompts one to look for reliable alternatives. In this regard,
there are methods [11] based on the use of Ornstein–Zernike (OZn) schemes [43] that, while
in waiting for a widespread availability of exascale computers, can be explored in the
quantum domain for dealing with these serious triplet drawbacks. The OZn schemes are
deeply rooted in the grand canonical ensemble developments in both the classical [43] and
the quantum [11,14] domains and utilize the aforementioned closures. They are known
to produce highly accurate quantum frameworks at the pair level for the three types of
pair S(2)(k) [12,38] (for PI centroids the chain of OZn schemes is exact [34]). Now, before
entering the discussion on closures, three outstanding aspects of the quantum OZ2 treat-
ments deserve to be mentioned. First, the high accuracy obtainable over the whole range of
wavenumbers k ≥ 0, even with the use of moderately sized PIMC samples that provide
the basic pair structures g2(r). Second, the excellent agreement with experiment that they
produce, and third, their cost-effective character, since they only require a very low compu-
tational cost as compared to PI simulations of the structure factors. For more information on
these important conceptual and practical subjects, the reader is referred to [2,6,11,33–36,38].

2.2. Closure Approximations

The closures in r-space for the instantaneous triplet correlations employed in this
work are the following: Kirkwood superposition (KS3) [37], Jackson–Feenberg convolution
(JF3) [3], and their average AV3 = (KS3 + JF3)/2 [2]. By making use of the following
conventions: gET2

(
rjm
)
→ g

(
rjm
)

, and hET2
(
rjm
)
= gET2

(
rjm
)
− 1→ h

(
rjm
)
= g

(
rjm
)
− 1,

these closures can be cast as

gKS3
ET3(r12, r13, r23) = g(r12)g(r13)g(r23), (7)

gJF3
ET3(r12, r13, r23) = gKS3

ET3(r12, r13, r23)− h(r12)h(r13)h(r23) + ρN

∫
dq4h(r14)h(r24)h(r34), (8)



Entropy 2023, 25, 283 6 of 19

gAV3
ET3 (r12, r13, r23) =

(
gKS3

ET3(r12,r13,r23)+gJF3
ET3(r12,r13,r23)

)
2 =

1 + h(r12) + h(r13) + h(r23) + h(r12)h(r23) + h(r13)h(r23) + h(r12)h(r13)+
1
2 h(r12)h(r13)h(r23) +

ρN
2

∫
dq4h(r14)h(r24)h(r34).

(9)

Equation (9) shows the form of a truncated h-expansion in which the triple h-product,
subtracted from JF3, is recovered. Surprisingly, this form is more useful than expected, as
shown in a recent study of the quantum hard-sphere fluid along the crystallization line [2].

The closures in k-space for the instantaneous calculations contained in this work are
based on the OZ direct correlation functions cET2(r12) and cET3(r12, r13, r23), together with
their corresponding Fourier transforms c(2)ET(k) and c(3)ET(k1, k2, γ) [11]. These schemes lead
to the following classical-like recipes for the pair and triplet structure factors

S(2)
ET (k) = S(2)

ET (k) ≈
(

1− ρNc(2)ET(k)
)−1

, (10)

S(3)
ET (k1, k2) = S(3)

ET (k1, k2, γ) ≈ S(2)
ET (k1)S

(2)
ET (k2)S

(2)
ET (|k1 + k2|)

{
1 + ρ2

Nc(3)ET(k1, k2)
}

. (11)

Equations (10) and (11) are approximations to the instantaneous case within a grand
canonical ensemble description. However, the pair level Equation (10) is highly accurate for
fluids with substantial quantum behavior [11]. Moreover, the latter assertion is true for the
fluid phases of helium in which quantum exchange is negligible. This was demonstrated
for 3He and 4He at 4.2K in [38], where one can observe the almost indistinguishability
between the OZ2 and the exact PIMC results. It is worth remarking that the calculations
in r-space and in k-space can be interconnected through closures, which allows one to
achieve excellent approximations to the grand canonical ensemble structures without
performing simulations in this ensemble. Thus, by starting from the PIMC canonical
pair structures gET2(r12) and subjecting them to an extended OZ2 treatment, one can
obtain a set of improved functions, gET2(r12), cET2(r12), and S(2)

ET (k), which incorporate
grand canonical corrections. The latter contribute to correct the deficient asymptotic
behavior of the canonical pair radial correlations [42]. Hereafter, this method will be
referred to as BDH+BHw (Baxter–Dixon–Hutchison procedure plus Baumketner–Hiwatari
corrections) [44–46], of which there is plenty of information regarding quantum applications
(see [11] and references therein). The calculation of S(2)

ET (k = 0) is just a by-product that
arises directly from this approach and provides very valuable estimates of the isothermal
compressibility. (As a matter of fact, the exact value of the latter quantity for the model
system under study can be obtained via application of OZ2 to the centroid functions [12]).
In addition, the complete knowledge of S(2)

ET (k) allows one to extend, through the inverse
Fourier transform, the pair radial correlations gET2(r12) up to arbitrarily long distances.
Clearly, the latter operation benefits the closure calculations of triplets [11]. Furthermore,
the knowledge of cET2(r12) over a range of densities, at constant temperature, is key to
tackling the far more intricate problem posed by c(3)ET(k1, k2, γ).

The calculation of c(3)ET(k1, k2, γ) depends heavily on the closure selected [5,10,33–36].

Apart from the “trivial” JF3 solution c(3)ET = 0, which makes JF3 a compulsory reference,
and the KS3 solution [5], the present work makes use of the elaborate variational procedure
proposed by Barrat, Hansen, and Pastore (BHP) in the classical domain [5]. Therefore, the
calculations below are based on the following equations

∂c2(r12; ρN)

∂ρN
=
∫

dq3 c3(r12, r13, r23), T = constant, (12a)

c3(q1, q2, q3) = c3(r12, r13, r23) ≈ t(r12)t(r13)t(r23), (12b)
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=[t(r)] = 4π
∫ R̃max

0
dr r2

{
∂c2(r; ρN)

∂ρN
− t(r)

∫ R̃max

0
ds t(s)t(|r− s|)

}2

(12c)

For simplicity of notation, the dependence of the direct correlation functions on ρN is
included only in c2(r). The auxiliary function t(r) defines the BHP closure by cutting
Baxter’s cn-hierarchy [47] at the triplet level, Equation (12a). The fixing of t(r) is performed
through the functional minimization of =[t(r)] (R̃max is an upper limit for the integrations
in Equation (12c)). Once t(r) is obtained, the double Fourier transform of c3 leads to
S(3)(k1, k2) [5]. Also, note the exact relationship arising from Equation (12a)

∂c(2)(k1)

∂ρN
= c(3)(k1, k2 = 0), T = constant, (12d)

The BHP applications to the ET2 case make the replacements of the pair and triplet
(BHP classical) quantities by their quantum instantaneous analogs. By taking advan-
tage of Equation (12d), approximate estimates of the double-zero momentum transfer
S(3)

ET (k1 = 0, k2 = 0) can be obtained. (In actual fact, the use of the exact centroid function
framework would yield the exact value of the latter component) [6,34]. Although Equation
(12b) is already an approximation to the exact classical behavior of c3, BHP is known to
capture some interesting traits of quantum triplet structure factors [36]. Whether or not
BHP may yield quantum triplet results of a quality comparable to that achievable at the pair
level with BDH+BHw, only further applications and comparison with PI results will settle
the question. Therefore, BHP is utilized in this work for continuing the pilot exploration of
such topic when strong quantum diffraction effects are involved.

3. Computational Details

The helium-3 state points studied are: SP1 (T = 4.21 K; V = 26.33 cc
mol ; ρN ∼= 0.022872 Å−3),

SP2 (T = 4.21 K; V = 22.06 cc
mol ; ρN ∼= 0.027299 Å−3), SP3(T = 8.99 K; V = 26.33 cc

mol ;
ρN ∼= 0.022872 Å−3), and SP4 (T = 4.2 K; V = 26.3353412 cc

mol ; ρN ∼= 0.022867 Å−3). The
atom mass of helium-3 is set to 3.01603 amu. Conditions SP1 to SP3 are taken from [48], allowing
the comparison of the r-space triplet instantaneous results under independent variations of temper-
ature and density. The selection of SP4 is made to carry out the triplet instantaneous calculations
in k-space with closures. SP4 and its adjacent states along the 4.2 K isotherm were studied in [38],
where their cET2(r12), c(2)ET(k), and S(2)ET(k) functions were obtained via BDH+BHw. For purposes of
interpretation of the results, the SP1-SP4 closeness is an advantage worth exploiting in this work.

The PIMC simulations follow the general lines already described in other works by
the present author [33,38], and only a summary is given here. The interatomic potential
employed is SAPT2 [49,50], which produces very reliable results for this system [11,38].
Consequently, SAPT2 can be regarded as adequate for the present structural purposes.
The canonical ensemble is used for the basic r-space calculations, involving the fourth-
order propagator

(
α = 1

3

)
[27], and with the sample sizes: NS × P = 1372× 66 (SP1),

1372× 80 (SP2), and 1372× 22 (SP3) (state point SP4 was studied with 1024× 66 in [38]).
The necklace normal-mode algorithm [51] is utilized, and the usual Metropolis sampling
procedure is applied by setting the acceptance ratio for the different P-moves to 50%. One
kpass is defined as 103NS × P attempted bead moves. As stated earlier, the canonical pair
instantaneous structures gET2(r) are needed to undertake the calculations of the triplet in-
stantaneous closures, and the run lengths to obtain these gET2(r) are in between 500 kpasses
and 2000 kpasses. The triplet instantaneous structures computed, gET3(r, s, s), are fixed
with run lengths in between 750 and 3660 kpasses. The sampling of the pair and triplet
structures uses a spacing in the interparticle distances set to ∆g = 0.1 Å [33]. The statis-
tical error bars remain controlled: for example, at the first peaks of gET2(r) one finds the
error bars (one standard deviation) well below 1%, and at the first peak of the equilateral
gET3(r, r, r) one finds that the error bars remain ≤ 1% (see the Supplementary Material).
The current applications using the PI fourth-order propagator employed [27] should be
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compared to those of the primitive propagator reported more than a decade ago in [34],
where gaseous helium-3 was studied at 5.23 K and very low densities

(
<0.0021 Å−3

)
with

sample sizes having: NS = 108, 500, P ≤ 130. The reduction in P and the possibilities for in-
creasing NS (or equivalently, for analyzing wider ranges of the r-correlations) are powerful
advantages offered by this efficient propagator when studying increasing densities.

Real space triplet calculations with closures use as data input the improved PIMC-
gET2(r) functions, which are extended up to distances longer than half the box-length
L/2 with the use of S(2)

ET (k). At a given state point, after calculating the PIMC-gET2(r),
this task is accomplished in three steps: (1) application of Baxter–Dixon–Hutchinson’s
treatment (BDH) of the OZ2 equation [44,45]; (2) fixing of grand canonical ensemble
corrections (BHw: five iterations) [46]; and (3) Fourier inversion of S(2)

ET (k). (For details
see [11,38,52,53]). The crucial point is that cET2(r), which is short ranged, is fixed over a
finite range RZ of distances: cET2(r ≥ RZ) = 0. In this regard, there may appear more
than one RZ value (hereafter RZ-zeros), for which the main part of cET2 is kept essentially
invariable, but obviously they yield different tails for the cET2 decay towards zero with
increasing r [53]. These tails only have (generally) a small effect on S(2)

ET (k) in the region of
very low-k values (see [38] for noticeable exceptions), and an effective averaging method has
been proposed to deal with this situation [53,54]. However, this tail effect may or may not
become important when the density derivatives involving isothermal sets {cET2(r; ρN ; RZ)}
must be computed, and the results below illustrate this point. Also, closure results for
KS3 Equation (7) are trivial, but those for JF3 and AV3 depend on the convolution integral
shown in Equation (8), which contains the total correlation function h(r) ≡ hET2(r). It is
worthwhile to mention that, in evaluating this convolution, use of a well-known expansion
in Legendre polynomials Pl(x) is made [5,55], extending the expansion up to l = 30. The
final length for these calculations is set to 70 Å, which allows one to deal appropriately
with the long-range oscillations of h(r) about zero (for more details see [2,33]).

BHP Fourier space triplet calculations at SP4 minimize with respect to t(r) the func-
tional =[t(r)] given in Equation (12c). The initial t0(r) is taken as t0(r) = h(r), and the
integration range of distances R̃max is set to: (a) 70 Å, and (b) 100 Å. Two r-distance dis-
cretizations are studied: ∆r = 0.01 Å and 0.005 Å, which in defining t(r) imply 7001 points
in 0 ≤ r/Å ≤ 70 (with 0.01), or 20,001 points in 0 ≤ r/Å ≤ 100 (with 0.005). Concomitantly,
Fourier t(k)-values are treated in the same way by taking in each case equivalent discretiza-
tions (e.g., 20,001 points in 0 ≤ k/Å−1 ≤ 100, with ∆k = 0.005 Å−1). The numerical method
chosen is a combination of conjugate gradient and pure gradient descents [5,10,56], as
explained in detail elsewhere [34,35]. Such combination drives in general the minimization
further down when the conjugate gradients “run out of steam” [56]. By doing so, a (double)
sequence

{
tτ(r); t(τ)(k)

}
τ=0,1,2,...

is obtained. It is worth remarking that a usual criterion

for convergence in this context [10] is defined in terms of a ratio between =[t(r)] and a ref-
erence density derivative quantity, by requiring =[t(r)] ≤ ε ‖ ∂c2(r;ρN)

∂ρN
‖2 where ε ≈ 10−ν.

Once convergence is reached at a given step τC, the final calculations of c(3)ET(k1, k2) [5] can

be performed, thereby giving S(3)
ET (k1, k2) as indicated in Equation (11).

As regards the isothermal derivative of the direct correlation function, ∂cET2(r;ρN)
∂ρN

, the
results obtained in [38] give two possibilities for carrying out the numerical treatment, since
five states at 4.2 K were OZ2-studied with BDH+BHw: ρN

(
Å−3

)
= 0.02286713± ∆ρN ;

∆ρN = 0, 0.002, 0.004. There is the simple derivative estimate involving the two states
adjacent to SP4 (“finer” Stirling), and also the more accurate estimate obtainable with
Richardson’s extrapolation that involves the four states around SP4 [57]. To visualize the
situation, by denoting x = 0.004 Å−3, Stirling estimate is accurate up to terms of order
O
(( x

2
)2
)

, while Richardson’s extrapolation is accurate up to terms O
(

x4). Consequently,
for the sake of comparison, these two algorithms are employed in this work. Now, the
significant ranges RZ for nonzero pair direct correlation functions [53,54] arising from the
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whole OZ2 treatment must be considered. As these OZ2 computations show, the significant
RZ-zeros of the different cET2(r; ρN ; RZ) do not coincide with one another, and to calculate
the density derivatives the cET2(r)-data regions needed are padded with zero-values. This
extension with zero-values is also applied to every cET2(r; ρN) beyond its selected RZ up to
the limit fixed for the variational calculation of t(r)

(
R̃max = 70 Å; 100 Å

)
. The latter action

is consistent with the initial choice t0(r) = h(r), thus allowing for a long-range nonzero
behavior of t(r) to develop. The longest {R Z − zeros} applications may be expected to
perform better, in response to the wider radial cET2-behavior that they contain. However,
the effect of this operation deserves closer inspection. Therefore, separate computations
based on the Richardson extrapolation are carried out with the two sets {cET2(r; ρN ; RZ)}
corresponding to the minimal RZ-zeros (m: {RZ}m, in between 9.9 Å− 11 Å) and the
maximal RZ − zeros (M: {RZ}M, in between 10.2 Å− 14.1 Å) obtained at the four densities
(see the Supplementary Material).

The current minimizations have square norms of the derivative of cET2(r; ρN) at state point
SP4 that are ≈ 5× 106. Note that: (a) rapid convergences are achieved, e.g., τC =500–700 it-
erations; and (b) final =[t(r)] values are ≈ 10−2 − 10−3, which make ε ≈ 10−9 − 10−10. At
the final stages of the different minimizations, the convergences in the auxiliary function t(r)
yield typically ‖tτ(r)− tτ+1(r)‖2 . 10−9. Fourier transforms are performed via Fourier sums
over the discretizations mentioned above. The behaviors of the auxiliary functions t(r) and
t(k) are consistent with significant applications of the Fourier transform: the two functions tend
effectively to zero as both r and k increase. In fact, by focusing the attention on the basic quan-
tity t(r) it is worth remarking that the onset of its quick decay shows up in the region defined
by the zeros {RZ} employed. To illustrate this point, some representative results, once con-
vergence is reached, are quoted. Thus, for the case

(
R̃max= 70 Å; ∆r = 0.01 Å

)
RM

, employing

Richardson’s extrapolation (R) and the maximal RZ− zeros (M), one finds: (a) t(r = 0) ∼= −2.338,
t(k = 0) ∼= −843.3; (b) t(r = 14) ∼= 3.7× 10−5, t(k = 14) ∼= −1.2× 10−3; (c) t(r = 43.17) ∼=
−1.7×10−8, t(k = 43.17) ∼= 7.2×10−5; and (d) |t(67 ≤ r ≤ 70)| . 10−10, |t(67 ≤ k ≤ 70| . 10−5.
With increasing r and k both t(r) and t(k) show very small and damped oscillations about zero
(see t(r) in the Supplementary Material). Thus, there appears a t(r)-nonzero tail for distances
greater than the longest maximal-RZ that defines the density-derivative nonzero range (r < RZ),
albeit the related features are rather small. The further enlargement to R̃max = 100 Å only brings
about very slight changes in the t(r) absolute values, thereby producing final S(3)ET(k1, k2) results
in close agreement with the former at R̃max = 70 Å (see Section 4). Among these changes in t(r),
two may be worth mentioning: (i) within the essential region of nonzero density derivatives the
values remain stable up to four/five decimal places; and (ii) for both R̃max = 70 Å and 100 Å
and, roughly speaking, for distances in intervals within the range 17.6 . r/Å . 22.3, one finds a
relative increase in the |t(r)| values with respect to their decay trends

(
|t(r)| ∼ 10−4). As stated

above, these changes do not alter the physics of the results obtained, although the second item
might be subjected to a closer numerical inspection in future work. The foregoing general features
are maintained under the different integration conditions used for=[t(r)].

4. Results
4.1. r-Space Triplet Correlation Functions

Figure 1 contains the final results at the pair level for state points SP1, SP2, and SP3.
One observes in Figure 1a the rightward shift and smoothing of the instantaneous radial
structure gET2(r) when the temperature is lowered (SP3-8.99 K vs. SP1-4.21 K) and the
density is held fixed (0.022872 Å−3). Additionally, in Figure 1a the “compression” (or closer
packing) of the instantaneous radial structure is apparent when the density is increased
at constant temperature (4.21 K: SP1-0.022872 Å−3 vs. SP2-0.027299 Å−3). These are the
expected features of gET2(r). In stark contrast with the results in the classical domain, the
smoothing is consistent with the increasing quantum delocalization of the particles under
diminishing temperatures. For visualization purposes, this general smoothing of structures
is perhaps easier to grasp via the semiclassical Feynman-Hibbs Gaussian picture [13]. In
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this semiclassical approximation, each quantum particle is described by a thermal Gaussian
packet. The pair radial function arises from a convolution, involving two of these packets,
which smears out the sharper features of the pair radial function between the centers of the
packets. With diminishing temperatures the width of the Gaussian packet increases, and
through the convolution so does the smoothing effect (see [11] for further references and
some related calculations).
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(
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)

, SP3
(

8.99K, 0.0228717687 Å−3
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densities employed in the calculations they are given in this caption up to ten decimal places.

The accuracy of the foregoing results for helium-3, as studied with SAPT2, can be
assessed via the information in Figure 1b, where the pair instantaneous structure fac-
tors S(2)

ET k are shown. In this regard, key pieces are the values S(2)
ET k = 0, or equivalently

the corresponding isothermal compressibilities, which compare very well to the experi-
mental values [48]. Thus, one finds: SP1 (χT/bar−1 = 0.005715 (experimental), 0.005202
(computed)); SP2 (χT /bar−1 = 0.002383 (experimental), 0.002844 (computed)); and SP3
(χT /bar−1 = 0.005003 (experimental), 0.005071 (computed)). The foregoing values are
estimates obtained: (1) via three-point quadratic interpolation of the experimental (pressure,
volume)−data; (2) by selecting one of the representative structure factors arising from the
BDH+BHw iterative procedure (five BHw iterations, and the largest-RZ case) [38,53,54].
Although other estimates are possible, for the current purposes, their overall influence
on the r- and k- results is slight. In relation to this, the averages over RZ-results for the
ET2-computed isothermal compressibilities are worth quoting: χT/bar−1 = 0.005491 (SP1),
0.002867 (SP2), 0.005090 (SP3). Accordingly, no averages of structure functions over the
significant RZ-ranges [53,54] are carried out in this work when calculating ∂c2(r;ρN)

∂ρN
. Even

though OZ2 applications to the instantaneous gET2(r) are approximations [11], not only
these computations yield χT-values close to the experimental values, but also keep their
correct ordering. Given the high sensitivity of this thermodynamic quantity, the current
structures obtained at the pair level are to be regarded as a very good representation of the
actual helium-3 structures under the conditions studied. Their use as data input to triplet
closure calculations is then fully reliable. Further support for the previous statement is pro-
vided by the PIMC calculation of pressures, which yields: SP1( p

bar = 33.64 (experimental),
32.44 (computed)); SP2( p

bar = 82.68 (experimental), 80.20 (computed)); SP3( p
bar = 55.25

(experimental), 55.05 (computed)). (Error bars for the PIMC pressures remain below 2%).
For the sake of comparison, it is worthwhile to mention that, after rounding-off to three

decimal places, the salient features of gET2(r) at SP4 (4.2 K; 0.022867 Å−3) as obtained in [38]
coincide with those shown in Figure 1a for SP1 (see the Supplementary Material). Typical
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instantaneous estimates of the isothermal compressibility at SP4 were χT/bar−1 ≈ 0.0062
as ET2-computed [38], with the experimental estimate(s) being ≈ 0.00575 bar−1 [48]. (As
regards the pressure at SP4, PIMC gave p

bar =32.11 [38]). To grasp the SP1-SP4 differences
in the ET2 computed χT , one must remark the combined effect of the substantially larger
NS (1372 vs. 1024) plus the more extensive statistics of the pair structures in the present
work than what could be achieved in [38]. The current sampling yields highly accurate
SP1 structures, hence it is the very low-k region of S(2)

ET (e.g., χT-computation at k = 0)
which benefits greatly from this, whereas the rest of the structure factor remains practically
invariable. The previous discussion lends additional quantitative support to the SP1-SP4
great proximity expected for their triplet structures.

Figures 2 and 3 display the triplet instantaneous correlations computed with PIMC
and closures and, for definiteness, Table 1 contains the PIMC salient features. As regards
the PIMC results, the equilateral correlations gET3(r, r, r) follow closely the pattern set by
the pair structures gET2(r): (1) although the triplet salient features are more pronounced,
the positions of their peaks and valleys at a given state point are close to those at the pair
level (Figures 2a and 3a,c); and (2) their relative heights are in correspondence with those
at the pair level. In addition, their expected asymptotic behavior for long distances is that
they tend to unity [33]. The isosceles correlations gET3(r, s, s) are plotted at the r-slice for
the equilateral main peak positions rM (Figures 2b and 3b,d). A relevant isosceles trait
is that for long s-distances these correlations do not tend to unity in general, but to the
limiting pair value gET2(rM) [33]. Owing to the range of distances

(
L
4

)
scanned in the

simulations, the foregoing asymptotic features are only hinted at by the oscillations in the
related graphs. Nevertheless, PIMC runs at very low densities and the current closure
applications (see below) indicate that the calculations are correct and would show these
behaviors if allowances for much longer L and computational time were made. As regards
the closure applications, three main points that agree with previous experience are to be
commented [6,36]. First, the JF3 (AV3) bad behavior for short-range distances. Second,
the remarkably good fitting provided by the closures when considered globally. Third,
the closure departure shown in Figure 2c from the exact PIMC behavior. This departure
is apparent as one inspects longer r-distances in the isosceles correlations measured with
gET3(r, sM, sM), where sM is a distance in the close vicinity of the main peak of gET3(r, r, r),
i.e., Figure 2c shows the heights in the proximity of the main peaks belonging to increasing-r
slices. One also notices that the use of the enlarged pair structures, incorporating grand-
canonical corrections for the calculations of the closure values, is consistent with the PIMC
canonical triplet structures.

Once again, a combined use of the closures KS3, JF3, and AV3 yields surprising
results [2,6,36]. One can observe the excellent overall fit they give of the PIMC results
for distances & 2.5Å. The short-range distance behavior is correctly described by KS3,
although JF3 clearly fails. Closure AV3 reduces the magnitude of such JF3-failure, but it
is not sufficient to fix it. In the cases analyzed here, a combination of KS3 for the short-
range distances, say r0 . 2.75Å, and AV3 for the distances beyond yields a very good
representation of the triplet correlations in r-space (recall the in-built correctness of the
asymptotic behavior of closures). The question of amending the closure failures remains
intriguing and, because of the current applications to helium-3, may be more focused
now. The instantaneous results in r-space obtained so far point decidedly to a prominent
role played by the underlying pair correlations in shaping the triplet correlations when
strong quantum diffraction effects are present. In relation to the quantum hierarchy of
(instantaneous) correlation functions, we owe this theoretical pair-based picture to closures.
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Table 1. Detail of the salient features of the PIMC triplet calculations in the canonical ensemble. The
reported positions and correlation values are in the close vicinities of: fp = first peak, fv = first valley,
sp = second peak, sv = second valley. Distance rM is in the vicinity of the position of the equilateral
first peak. For notational convenience: r = r12, s = r13, u = r23. Statistical error bars in the gET3

values are ≤ 1%.

gET3(r,s,u) SP1 SP2 SP3

4.21 K; 0.022872 Å−3 4.21 K; 0.027299 Å−3 8.99 K; 0.022872 Å−3

Equilateral r = s = u (r, gET3)
fp (rM) (3.45, 2.588) (3.35, 3.164) (3.45, 2.632)
fv (5.15, 0.633) (4.95, 0.522) (5.05, 0.665)
sp (6.75, 1.193) (6.45, 1.316) (6.55, 1.154)
sv (8.35, 0.910) (7.95, 0.846) (8.15, 0.937)

Isosceles r = rM; s = u (s, gET3)
fp (3.45, 2.588) (3.35, 3.164) (3.45, 2.632)
fv (5.25, 1.008) (4.95, 0.933) (5.05, 1.055)
sp (6.75, 1.560) (6.45, 1.780) (6.55, 1.537)
sv (8.35, 1.294) (7.95, 1.315) (8.15, 1.332)
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AV3 = (KS3 + JF3)/2, PIMC = path integral Monte Carlo.



Entropy 2023, 25, 283 13 of 19

Entropy 2023, 25, x FOR PEER REVIEW  13  of  20 
 

 

Figure 2. Triplet structures in rspace at state point SP1. (a) Equilateral correlations. (b) Isosceles 
correlations at the  𝑟 ൌ 𝑟ெ  slice in the close vicinity of the position of the equilateral first peak. (c) 

rprofile of the isosceles heights at the  𝑠 ൌ 𝑠ெ  distance in the close vicinities of the positions of the 

recorded  isosceles maxima. KS3 = Kirkwood superposition,  JF3 =  Jackson–Feenberg convolution, 

AV3 = (KS3 + JF3)/2, PIMC = path integral Monte Carlo. 

 

Figure 3. Triplet structures in r−space. (a) Equilateral correlations at state point SP2. (b) Isosceles
correlations at SP2 at the r = rM slice in the close vicinity of the position of the equilateral first peak.
(c) Equilateral correlations at state point SP3. (d) Isosceles correlations at SP3 at the r = rM slice in
the close vicinity of the position of the equilateral first peak. The rest of the symbols as in Figure 2.

4.2. k-Space Triplet Structure Factors

Figure 4a displays the instantaneous direct correlation functions cET2(r) associated
with the instantaneous gET2(r) at the four state points about the target state point selected
for the triplet calculations in k-space, SP4

(
4.2 K; 0.022867 Å−3

)
[38]. It is interesting to

note the fast decay to zero of these functions. Figure 4b contains representative results for
the closure function t(r), Equation (12b), as arising from the variational Barrat–Hansen–
Pastore (BHP)

(
R̃max = 70 Å; ∆r = 0.01Å

)
calculations. One observes that, apart from

the deeper bowl within short range, t(r) maintains its oscillations somewhat close to
those of the starting choice t0(r) = hET2(r) = gET2(r) − 1. The effect of the derivative
computation ∂c2(r12;ρN)

∂ρN
on the final t(r) seems unimportant on the scale of the graph,

as seen in the curves of the applications of Richardson’s extrapolation (RM: four-point
derivative) and Stirling (SM: two-closest-point derivative). Other details such as the effects
of varying the ranges {RZ} considered or using a larger R̃max with a finer discretization,
e.g.,

(
R̃max= 100 Å; ∆r = 0.005 Å

)
, will be addressed below.
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(a) Pair direct correlation functions cET2(r) at the four states adjacent
to SP4 along the 4.2 K isotherm [38]. (b) Pair radial correlation function (upper plot) [38] and BHP-
closure t(r) functions obtained via two different numerical density-derivatives (Equations (12)). BHP

= Barrat–Hansen–Pastore [5],
(

R̃max = 70 Å; ∆r = 0.01 Å
)

, utilizing the cET2(r; RZ) associated with
their maximal (M) RZ-values as arising from the BDH+BHw treatment. Using the state points in
panel (a), the derivatives in panel (b) based on the maximal RZ-zeros are denoted by: SM = Stirling
derivative involving the two closest points to SP4, RM = Richardson extrapolation involving the
four points.

In interpreting the k-space results, one must keep in mind that S(3)
ET (k1, k2, γ) is es-

sentially the Fourier transform of the involved correlation function HET3(r12, r13, r23), of
which gET3(r12, r13, r23) forms a distinctive part [11]. To draw significant conclusions from
this line of thought, one would need an exhaustive gET3-knowledge that goes beyond the
equilateral/isosceles computations [6,11]. Consequently, Figure 5 contains the results based
on the alternative given by direct correlation functions. The panel (a) shows the equilateral
instantaneous components S(3)

ET (k, k, π/3) obtained with the four closures: KS3, JF3, AV3,
and BHP. One observes good agreement among the different approaches past the main
peak (k & 2.1 Å−1), which is related to the decreasing influence of c(3)ET (Equation (11)),

i.e., JF3 dominates this behavior. The interesting region is 0 ≤ k
(

Å−1
)

. 2.1, where

discrepancies among the closures are important within 0.5 < k(Å−1) . 1.5. In connection
with this region, one notes the following facts: (a) BHP estimates are based on Equa-
tion (12d) and show that S(3)

ET (k1 = 0, k2 = 0) < 0, e.g., S(3)
ET (k1 = 0, k2 = 0) = −0.0213

for
(

R̃max = 70 Å; ∆r = 0.01 Å
)

RM
. Notice that Equations (12a) and (12d) are an integral

part of BHP but not of the other three closures. (b) Actually, BHP yields (small) neg-
ative values for the equilateral S(3)

ET (k, k, π/3) components within 0 < k
(

Å−1
)

. 1,

e.g., S(3)
ET
(
k1 = 0.5, k2 = 0.5, π

3
)

= −0.0112, S(3)
ET
(
k1 = 1, k2 = 1, π

3
)

= −0.0045. (c) In
marked contrast, KS3 (and AV3) gives positive results at and near (k1 = k2 = 0), al-
though this trend changes quickly: negative results, larger than the BHP’s, arise for
0.3 . k

(
Å−1

)
. 1.4. The intermediate AV3-character between KS3 and JF3 makes AV3

show a less pronounced behavior than KS3, but this is still far from BHP. To complete the
interpretation of Figure 5a, some additional equilateral BHP components may be worth giv-
ing here: S(3)

ET
(
0.8, 0.8, π

3
)
= −0.0109, S(3)

ET
(
1.5, 1.5, π

3
)
= 0.1575, S(3)

ET
(
2.1, 2.1, π

3
)
= 1.9039,

S(3)
ET
(
2.7, 2.7, π

3
)
= 0.9814, S(3)

ET
(
3.1, 3.1, π

3
)
= 0.8744.
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Figure 5. Triplet instantaneous structure factors at state point SP4. (a) Equilateral components.
(b) Isosceles components in the close vicinity of the equilateral maximum at k = kM. (c) Comparison of
different applications using the sets {cET2(r; RZ)} corresponding to the maximal (M: 10.2 Å− 14.1 Å))

and minimal (m: 9.9 Å− 11 Å) {RZ}-sets: BHP
(

R̃max = 70 Å; ∆r = 0.01 Å
)

with Stirling (S) and
Richardson’s extrapolation (R) derivatives, JF3 = Jackson–Feenberg. Continuous lines treated
with splines.

In addition to the equilateral features, Figure 5b gives the isosceles components in
the close vicinity

(
kM = 2.1 Å−1

)
of the maximum of the equilateral components. Dis-

crepancies between JF3 and AV3 are small (KS3 details can be inferred from the graph).
BHP results follow very closely the JF3/AV3 trend within 1.32 . γ ≤ π, but they depart
noticeably from it for 0 ≤ γ . 1.32.

Figure 5c displays the very little global effect that using two sets of ranges of dis-
tances {RZ} has on the BHP triplet equilateral calculations. In this case, with the use of
Richardson’s extrapolation, the ranges are in between: (Rm) 9.9 Å− 11 Å for the minimal
set {RZ}m, and (RM) 10.2 Å− 14.1 Å for the maximal set {RZ}M. (As a reference, JF3
results arising from the set {RZ}m are also shown). To complete this description some

numerical values are worth quoting. For example, using
(

R̃max = 70 Å; ∆r = 0.01 Å
)

, the

double-zero momentum transfer S(3)
ET (0, 0) undergoes a relatively large change: (a) −0.0213

for Richardson-maximal (RM), (b) −0.0155 for Richardson-minimal (Rm), although the
respective absolute values are certainly small and agree qualitatively. As regards the main
peak heights arising from the latter applications, one finds for S(3)

ET
(
2.1, 2.1, π

3
)

the values:
(a) 1.9039 (RM), and (b) 1.8947 (Rm). Another issue shown in Figure 5c relates to the little
overall importance of employing Stirling (70-SM) or Richardson (70-RM) derivatives in
the current case, a fact that could change dramatically under conditions involving higher
densities or more structured {c2(r; RZ)} functions. In connection with this, as was to be
expected, relatively appreciable effects occur for low-k wavenumbers, e.g., the double-zero
momentum transfer for which 70-SM yields S(3)

ET (0, 0) = −0.0275. The discrepancies be-
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tween 70-SM and 70-RM can affect the third decimal places as observed in the equilateral
components, but the relative importance diminishes with increasing k-wavenumbers due
to the BHP-properties of S(3)

ET
(
k, k, π

3
)

(e.g., it monotonically increases for 0.9 . k/Å . 2.1,
remaining above 0.874 for larger wavenumbers).

At this point, one must also comment the effect of increasing the variational range of
distances R̃max for obtaining t(r), together with the decrease in the r-discretization interval.
In this regard, BHP calculations of S(3)

ET (k1, k2, γ) with
(

R̃max = 100 Å; ∆r = 0.005 Å
)

RM
,

and their equivalent sizes in k-space, produce results perfectly consistent with those of the
former choice

(
R̃max = 70 Å; ∆r = 0.01 Å

)
RM

: roughly speaking, one finds at least the first
four or five decimal figures stable.

The lack of exact PIMC results at SP4 for S(3)
ET (k1, k2, γ) precludes a discussion of the

relative merits of the closures employed in this work. However, some points allow one
to make an educated guess. These points are: (a) the exactness of Equation (12d); (b) the
diminishing influence of the triplet direct correlation function as wavenumbers k increase;
and (c) the previous experience gained when studying liquid para-hydrogen [36]. On these
grounds, it can be assumed that BHP gives a more acceptable description than the other
three closures. Besides, pilot PIMC results at SP4 (2400 kpasses; NS× P = 128× 66) indicate
that [58]: (d) an equilateral negative-region is expected to be a possible genuine feature
of the triplet instantaneous structure factor (compare with [36]); and (e) there is a better
behavior of BHP in such region, as deduced from the following partial median S(3)

ET
(
k, k, π

3
)
-

estimates obtained with PIMC: (i) at k = 0.5 Å−1, median ≈ −0.007, and (ii) at k = 1 Å−1,
median ≈ −0.045. The latter magnitudes are not final and differ quantitatively from BHP’s,
but they signal the negative trend. Accordingly, the pronounced negative region found
in KS3 (and AV3) for the equilateral components is likely unphysical, which should be
consistent with the discrepancies between PIMC and KS3 for the salient r-isosceles features
shown (for SP1 ≈ SP4) in Figure 2c. More relevant quantities, such as the actual intensities
of the S(3)

ET main equilateral peak and its associated isosceles features, are also expected to
be better captured by BHP, although only final PIMC results will settle this question. In
relation to this, note that the individual S(3)

ET -values fluctuate strongly when PIMC-sampling
the configurations [36]. Therefore, the computation of precise average values entails very
long run lengths in this type of calculations.

5. Conclusions

The current computational structure study has dealt with supercritical helium-3.
Real space and Fourier space properties of the triplet instantaneous correlations have
been investigated.

As regards the real space results, the exact PIMC equilateral and isosceles features
show the influence of independent variations in temperature and in density. Thus, the
structure is smoothed by the decrease in temperature, whereas it is sharpened by the
increase in density. When inspecting the equilateral correlations, one observes that the
salient features, i.e., positions and heights of the peaks and valleys, follow the patterns set
by the pair correlations, albeit the equilateral triplets show far more pronounced first peaks
and valleys. These traits are in accordance with what was obtained for the hard-sphere
fluid [2] and liquid para-hydrogen [6].

From the comparison with PIMC one finds, once again, that the triplet closures used
(KS3, JF3, AV3) reveal themselves as a great help in providing real-space physical pictures
of triplet correlations in fluids with quantum behavior. This closure usefulness is thus
consistent with that found in other applications [2,6]. One might expect this positive
working of closures to occur when studying fluid helium (far from quantum exchange),
because of its similarity to a quantum hard-sphere fluid [2,16]. Speculations are fine when
they are consistent with known related facts, but there is nothing like direct proof. The
current applications to helium-3 fill the conditions to be analyzed in that a continuous
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interparticle potential (as complementary to the hard-sphere potential) plus very strong
quantum diffraction effects (as an extension to para-hydrogen conditions) are dealt with at
the same time. The main conclusion is that pair correlations contribute decisively to shape
the correlations at the triplet level. A combination of KS3 for small ranges of distances plus
the use of the intermediate AV3 = (KS3 + JF3)/2 beyond these ranges yields a very good
representation of the exact correlations. On the one hand, this (KS3+AV3)-representation is
surprisingly accurate for: (1) the equilateral correlations over long ranges of distances, and
(2) the isosceles correlations over short-medium ranges of distances. On the other hand,
(KS3+AV3) loses predictive power for isosceles correlations beyond the ranges mentioned.
Even though ranges of distances more general than those considered herein remain to be
computed, the variety of quantum systems and conditions studied so far indicates that this
usefulness of the closures utilized is not a fortunate coincidence. Therefore, it should be
regarded as a general fact for fluids with strong quantum behavior. Although it is not fully
clear how to continue expanding Equation (9), because of the convergence properties, this
goal seems now to deserve a try.

The triplet instantaneous structure factor computations with closures at (T = 4.2 K,
ρN = 0.022867 Å−3) show the important role played by the triplet direct correlation
function. Because of Equation (11), beyond the region of the main peak k & 2.1 Å−1, the
smallness of the latter function makes KS3, JF3, AV3, and BHP be in close agreement with
one another on the equilateral component values, and also on the isosceles components
for large angles γ & 75

◦
. At γ = 60

◦
BHP separates from the rest at the main peak, and

far more noticeably within 0 ≤ k/Å−1 < 1.5. The same sort of discrepancies are found
when inspecting the isosceles components, e.g., at k = 2.1 Å−1, for angles γ . 75

◦
. By

construction JF3 takes positive values all over the possible ranges of wavevectors. However,
KS3 (and AV3) and BHP take negative equilateral values for low-k wavenumbers. BHP
(absolute) negative values are small, but this does not happen to KS3 which near 1 Å−1,
displays a pronounced dip below zero. Given the KS3 defect in reproducing the spatial
triplet isosceles correlations as the ranges of distances are enlarged, its overall k-space
behavior cannot be regarded as correct. The same may be said of AV3. BHP seems, however,
better adapted to the task of giving better estimates of triplet structure factors. A reason
for this is Equation (12b), an exact relationship which is a BHP’s in-built feature. The
negative-valued region for the equilateral components obtained in the BHP calculations
finds qualitative support in pilot PIMC results. Accordingly, one is led to surmise that
such negative region should be a genuine triplet fact. Furthermore, the calculation of
estimates of the double-zero momentum transfer component, which is a response property
of a quantum fluid independent of the structural description [6], can be better carried out
with the centroid correlations due to the exact OZ3 framework they provide.

There is ongoing work, involving PIMC and closures, which is focused mainly on the
delicate problem of determining facts as accurately as possible about triplets in k-space for
fluids with quantum behavior. The results, covering the instantaneous and the centroid
structures, will be the subject of a future article.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/e25020283/s1. r-space directory: final pair radial correlation
functions at state points SP1 and SP4 (files: g2r_et_bdhbw.sp1, g2r_et_bdhbw.sp4), PIMC triplet
correlations at state point SP1 (file: g3rss_et_pimc.sp1); k-space directory: pair direct correlation
functions at state points about SP4 (files: cr2_etbdhbw.sp4-2, cr2_etbdhbw.sp4-1, cr2_etbdhbw.sp4+1,
cr2_etbdhbw.sp4+2), pair structure factors at state points SP1 and SP4 (files: sk2_etbdhbw5.sp1,
sk2_etbdhbw.sp4), BHP-closure auxiliary function at SP4 (file: tr_et_bhp70RM.sp4), BHP and JF3
triplet structure factors at SP4 (file: sk3_etbhp70RM.sp4).
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