
Citation: Elwood, A.; Leonardi, M.;

Mohamed, A.; Rozza, A. Maximum

Entropy Exploration in Contextual

Bandits with Neural Networks and

Energy Based Models. Entropy 2023,

25, 188. https://doi.org/10.3390/

e25020188

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent A.

Cicirello

Received: 27 December 2022

Revised: 12 January 2023

Accepted: 15 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Maximum Entropy Exploration in Contextual Bandits with
Neural Networks and Energy Based Models
Adam Elwood † , Marco Leonardi * , Ashraf Mohamed and Alessandro Rozza

lastminute.com Group, Vicolo de Calvi, 2, 6830 Chiasso, Switzerland
* Correspondence: marco.leonardi@lastminute.com
† Work done while at lastminute.com.

Abstract: Contextual bandits can solve a huge range of real-world problems. However, current
popular algorithms to solve them either rely on linear models or unreliable uncertainty estimation in
non-linear models, which are required to deal with the exploration–exploitation trade-off. Inspired by
theories of human cognition, we introduce novel techniques that use maximum entropy exploration,
relying on neural networks to find optimal policies in settings with both continuous and discrete
action spaces. We present two classes of models, one with neural networks as reward estimators, and
the other with energy based models, which model the probability of obtaining an optimal reward
given an action. We evaluate the performance of these models in static and dynamic contextual bandit
simulation environments. We show that both techniques outperform standard baseline algorithms,
such as NN HMC, NN Discrete, Upper Confidence Bound, and Thompson Sampling, where energy
based models have the best overall performance. This provides practitioners with new techniques that
perform well in static and dynamic settings, and are particularly well suited to non-linear scenarios
with continuous action spaces.

Keywords: machine learning; multi-armed bandit; Thompson Sampling; energy based models

1. Introduction

In recent years, machine learning has been applied to solve a large array of concrete
scientific and business problems [1–3]. The rapid advancements have mainly been due
to the increased access to large datasets and computing resources. However, many real
world scenarios require online decision making. They generally do not come with readily
available datasets that cover the phase space in question, instead the data must be collected
as decisions are made. These kinds of problems generically come under the banner of rein-
forcement learning, where a sequential series of actions must be made in an environment,
where previous decisions influence future decisions.

One class of reinforcement learning problem that is particularly relevant to modern
technology businesses is known as the contextual bandit, an extension of the multi-armed
bandit problem [4]. In contextual bandit algorithms, actions must be chosen given the
state of the system, which is specified by its context. Actions are chosen so as to maximise
the total reward over time. The result of a particular action is obtained immediately and
can be used to inform future decisions. For optimal performance, these actions should
be chosen to trade-off the exploration of phase space with the exploitation of the most
rewarding behaviour. Contextual bandits are relevant in many business applications, such
as dynamic pricing [5] and recommender systems [6]. Moreover, these approaches have
shown great results in the field of advertising and sponsored search actions [7–9].

There are many machine learning models capable of making predictions about a
reward given an input action and context. Artificial neural networks (NNs) are one of the
most popular choices. However, these models are typically brittle, in that they still give
confident answers outside of the data distribution they have been trained on, where they are

Entropy 2023, 25, 188. https://doi.org/10.3390/e25020188 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020188
https://doi.org/10.3390/e25020188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6706-8443
https://orcid.org/0000-0002-7989-1162
https://orcid.org/0000-0002-6753-7254
https://orcid.org/0000-0001-6269-1351
https://doi.org/10.3390/e25020188
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020188?type=check_update&version=1

Entropy 2023, 25, 188 2 of 13

likely to be wrong. A policy for choosing actions in a contextual bandit scenario therefore
needs an exploration component added on top of the underlying reward estimator.

One approach to the above issue is to estimate the uncertainties in the predictions made
by the neural network. Actions can then be chosen via Thompson sampling, a Bayesian
methodology for making sequential decisions under uncertainty [10–12]. However, finding
accurate and efficient ways of estimating the uncertainties remains challenging.

Another approach is maximum entropy exploration, sometimes known as Active
Inference or Boltzmann exploration. This is also popular in neuroscience as a model of the
way the human brain works [13–20]. In maximum entropy exploration, a policy is built that
maintains a high entropy over the action space, ensuring that it tries lots of different actions,
while still aiming for the best possible reward. This has been introduced for contextual
bandit problems with a discrete action space [21]. In this work, we extend this approach to
work with a continuous action space.

Energy Based Models (EBMs) are particularly well suited to maximum entropy ex-
ploration, due to the close relationship of EBMs with Boltzmann distributions [22]. While
straightforward neural networks trained with cross-entropy or mean-squared-error losses
can work well as reward estimators, they are prone to brittleness. Conversely, EBMs natu-
rally build uncertainty into their formalisation. Instead of giving a certain answer on the
best action to play, energy based functions give a degree of possible actions based on the
shape of the energy function. Actions can then be found by sampling from this function
with techniques based on Markov Chain Monte Carlo (MCMC). These types of models
have been considered in full reinforcement learning scenarios [23,24]. In this work, we
introduce a method to apply EBMs based on NNs to contextual bandit problems.

In this paper, we introduce two new contextual bandit algorithms based on maximum
entropy exploration. Both algorithms are able to make decisions in continuous action
spaces, a key use case that has not been studied as thoroughly as discrete action spaces.
Our main contributions can be summarised as follows:

• Introducing a technique for maximum entropy exploration with neural networks
estimating rewards in contextual bandits with a continuous action space, sampling
using Hamiltonian Monte Carlo;

• A novel algorithm that uses Energy Based Models based on neural networks to solve
contextual bandit problems;

• Testing our algorithms in different simulation environments (including with dy-
namic environments), giving practitioners a guide to which algorithms to use in
different scenarios.

2. Related Work

As they are very relevant to many industry applications, contextual bandits have been
widely studied, with many different algorithms proposed, see for example [4,25,26].

Many of the most successful algorithms rely on linear methods for interpreting the
context, where it is easier to evaluate output uncertainty [11,27]. This is necessary, because
the most commonly applied exploration strategies, Thompson Sampling [10] and the
Upper Confidence Bound (UCB) algorithm [28], rely on keeping track of uncertainties and
updating them as data are collected. However, several techniques for non-linear contextual
bandit algorithms have been proposed, using methods based on neural networks with
different approaches to predicting uncertainties in the output [29–32].

2.1. Entropy Based Exploration in Contextual Bandits

As an alternative to Thompson Sampling and UCB, in this work we focus on entropy
based exploration strategies, with an emphasis on their application to non-linear contextual
bandit problems. This approach has been researched in the reinforcement learning [33,34]
and Multi Armed Bandit literature [19,35].

Entropy 2023, 25, 188 3 of 13

For the contextual bandit use case, non-linear maximum entropy based exploration
with a discrete action space has been considered by [21]. In this case, the non-linearity
comes from neural networks, which are used to estimate a reward.

2.2. Energy Based Models in Reinforcement Learning

Many problems in machine learning, contextual bandits included, revolve around
modelling a probability density function, p(x) for x ∈ RD. These probability densities can
always be expressed in the form of a scalar energy function Eθ(x) [36]:

p(x) =
exp(−Eθ(x))∫

x′ exp(−Eθ(x′))dx′
, (1)

which allows many machine learning problems to be reformulated as an energy based
modelling task [37]. The difficulty with this reformulation comes in estimating the integral
in the denominator of Equation (1), which is usually intractable. However, if this difficulty
can be overcome, a scalar function, Eθ(x), is learned, which can be evaluated at any value
of x, providing a fully generative model.

Another advantage of EBMs in a reinforcement learning setting is that sampling from
them naturally leads to maximum entropy exploration [22]. This has been applied to
solve full reinforcement learning problems in both model-based [24] and model-free [23,38]
formulations. However, it has not yet been applied to specifically solve the contextual
bandit problem.

3. Algorithms to Solve Contextual Bandit Problems with Maximum Entropy Exploration

In this section, we introduce two classes of algorithms for solving contextual bandit
problems with NNs, using exploration strategies based on entropy maximisation. In each
case, the algorithm defines a policy, π(a|si), which gives the probability of playing action a,
given the observation of state si. The policy is applied by sampling actions from the policy,
a∼π, at a particular time step. This policy is then updated given the rewards observed in
previous time steps by retraining the NNs.

3.1. Contextual Bandit Problem Formulation

Contextual bandit problems require an algorithm to make the choice of an action,
a ∈ A (where A is an action space), upon observing the context state of the environment,
s ∈ S (where S is a context space). Upon making the action, a reward, r ∈ R, is received.
For each state observed, an action is chosen and the reward recorded. This results in a
dataset, X , being built up over a run, consisting of triplets, {si, ai, ri} ∈ X , where i ∈ N is
the time step of a particular triplet. At any step i, the data available for choosing the action
ai consist of the set of triplets {sj, aj, rj}, where j < i.

The goal of the problem is to maximise the expected reward over an indefinite time
horizon, where an arbitrary number of actions, N, can be played. This is usually measured
in terms of the regret:

RN =
N

∑
i=0

[r∗i − rai
i], (2)

where r∗i is the best possible reward at the time step i and rai
i is the reward at time step i

received by the action played, ai. A more successful action choosing policy will have a
lower regret.

In this work, we assume A ∈ R; S ∈ Rn, where n is the dimension of the context
vector and depends on the particular problem being considered; andR ∈ R, where many
of the problems considered assumeR ∈ [0, 1].

Entropy 2023, 25, 188 4 of 13

3.2. Maximum Entropy Exploration

First, we define a reward estimator, r̂θ(si, a), which gives the expected reward of
action a in state si and is parameterised by the vector θ, similar to the approach in [21]. In
maximum entropy exploration, the policy is defined as follows:

π(a|si) = arg max
π

(Ea∼π [r̂θ(si, a)] + αH(π)), (3)

where H(π) = Ea∼π [− log(π)] is the Shannon entropy. This can then be solved with
a softmax:

π(a|si) =
er̂θ(a,si)/α∫

a′ e
r̂θ(a′ ,si)/αda′

. (4)

This approach finds a policy that trades off maximising the expected reward with a
chosen action (the first term in Equation (3)) with trying a range of different actions, which
give a large Shannon entropy (the second term in Equation (3)). The degree of this trade off
is controlled by the α ∈ R+ parameter, which is typically chosen to be at the same scale as
the expected reward. Larger α values result in more exploration. Models for r̂θ should be
chosen to have a fairly flat prior across the states and actions upon initialisation, which will
encourage exploration in the early stages of a contextual bandit run. As time progresses
and r̂θ becomes more certain, the entropy term ensures exploration is not reduced too
prematurely. In the case of static environments, it is also desirable to reduce the α value
over time, ensuring the total regret of the algorithm is bounded as N → ∞ [21,39].

3.3. Maximum Entropy Exploration with Neural Networks Modelling Reward

We build our reward estimator, r̂θ(a, si), with a neural network trained to predict the
reward, ri. With this methodology, we model the expected reward given a certain action.
This then allows us to select an action based on this expectation value. As there is no explicit
model of the environment, this can be thought of as analogous to the suite of “model free”
techniques in reinforcement learning [40].

In the general case, the neural network can be treated as a regressor with a loss based
on the mean-squared-error. In the binary reward case (R ∈ [0, 1]), the network can be
treated as a classifier and trained with the binary cross-entropy. Given the reward estimator,
samples are drawn from π to choose actions online, and r̂θ is refit as we collect more data.
However, due to the fact that the integral in the denominator of Equation (4) is likely
intractable, sampling is not always trivial. We therefore take two different approaches to
approximate the integral.

3.3.1. Discrete Action Sampling

In the case where there is a predefined discrete set of actions, the integral in Equation (4)
can be rewritten as a sum over all possible actions, a′, and explicitly calculated:

π(a|si) =
er̂θ(a,si)/α

∑a′ er̂θ(a′ ,si)/α
. (5)

This has the advantage of being easy to implement and applies to a wide range of
contextual bandit problems. However, it has the limitation that the time for calculating
π scales linearly with the number of actions to be sampled, so is not easily applicable to
problems with large or continuous action spaces.

3.3.2. Continuous Action Sampling

Equation (5) has the form of a posterior probability distribution, which is one of the
quantities in Bayesian statistics, so techniques for sampling from this distribution are widely
covered in the literature. To draw samples from π(a|si) in a continuous action space, we
can make use of MCMC sampling algorithms. In our case, we employ the Hamiltonian

Entropy 2023, 25, 188 5 of 13

Monte Carlo (HMC) algorithm [41,42], due to its wide usage and availability of suitable
implementations [43,44].

This solution works in the general case of a continuous action space, where a ∈ R.
However, in many cases, the action space is constrained such that any particular action a is
subject to a ∈ [alower, aupper], where alower and aupper denote the upper and lower bounds
of possible actions. To deal with this constraint, we can modify the reward estimator to
include the constraints, rc

θ , to return a large negative number when the action is outside
the bounds:

r̂c
θ(a, si) = r̂θ(a, si) when a ∈ [alower, aupper]

r̂c
θ(a, si) = −∞ otherwise.

(6)

Replacing r̂θ with r̂c
θ in Equation (5) when carrying out the HMC sampling will then ensure

the actions that are sampled are within the constraints.
A summary of the algorithms described in this section can be seen in Algorithm 1,

where the sampling procedure will change depending on whether the action space is
discrete or continuous, as described above. At every timestamp i, the algorithm parame-
terized by θ has to choose an action ai upon the given context si. Then it receives a reward
ri and the dataset X is updated with the triplet {si, ai, ri}. Every k iteration, the model is
trained over the dataset X . In the following, these algorithms will be named NN Discrete or
NN HMC, respectively.

Algorithm 1 Maximum entropy exploration with neural networks

Input: α, N, θ0,X0, k
for i = 1, . . . , N do

Receive context si and choose ai ∼ πi where

πi(a|si) =
e

r̂θi−1
(a,si)/α∫

a′ e
r̂θi−1

(a′ ,si)/α
da′

Agent receives reward ri
Add the triplet {si, ai, ri} to the dataset X
Every k steps train the model r̂θ :
θi = arg minθ ∑{sj ,aj ,rj}∈X |rj − r̂θ(aj, sj)|

end for

3.4. Maximum Entropy Exploration with Energy Based Models (EBMs)

Energy-based models allow us to model the probability of choosing an action given
a reward, p(a|si, r), with a scalar-valued energy function Eθ(a, si, r), parameterised by θ,
which is then marginalised over the state and reward spaces:

p(a|si, r) =
exp(−Eθ(a, si, r))∫

a′ exp(−Eθ(a′, si, r))da′
. (7)

This then allows us to find the optimal policy by finding the probability of an action to
obtain an optimal reward, r∗:

π(a|si) =
exp(−Eθ(a, si, r∗)/α)∫

a′ exp(−Eθ(a′, si, r∗)/α)da′
. (8)

Drawing samples of actions from this distribution with MCMC techniques will natu-
rally carry out a maximum entropy exploration policy, where the degree of exploration can
again be controlled by the size of α [22].

This methodology is particularly well suited to the case of binary rewards,R ∈ [0, 1],
as it is easy to choose the optimal reward: r∗ = 1.

Contrary to the previous algorithm, when solving the contextual bandit problem with
EBMs, we model the probability of an action acting on the environment so as to obtain

Entropy 2023, 25, 188 6 of 13

a certain reward. This is analogous to modelling the probability of a state transition on
the environment, so is more in line with the “model based” techniques discussed in the
reinforcement learning literature [24,45,46].

3.4.1. Training EBMs to Solve Contextual Bandit Problems

A generic energy function can be learned by minimising Eθ(a, s, r) for the most proba-
ble {s, a, r} triplets and maximising it for the least probable triplets that currently have a
low energy [36]. A simple form of loss function that achieves this goal is [47,48]:

L = Ex+∼pD
(Eθ(x+))−Ex−∼pθ

(Eθ(x−)), (9)

where x+ represent {s, a, r} triplets drawn from the historical dataset, X , while x− represent
triplets sampled from the model.

This approach works in the general case and has the advantage of learning a generative
model, which can be used to find any conditional probability distribution. However, train-
ing in this way is intensive and unstable, as it requires MCMC sampling when evaluating
the loss function and a large existing dataset.

In the contextual bandit use case, however, we are only interested in learning π(a|si)
for the optimal reward, so we can simplify this approach by reducing the input dimensions
to the energy function and only learning energies for the optimal rewards:

Eθ(a, si) ≡ Eθ(a, si, r∗). (10)

This approach is both easier to train and requires fewer initial training examples.
After experimenting with the different forms for L described in [36], we settled on a

logarithmic form, which had the most consistent stable performance:

L = log(1 + exp(Eθ(a+, s)− Eθ(a−, s))), (11)

where a+ are actions that result in an optimal reward, r∗, and a− are actions that result in a
suboptimal reward (0 in the binary case). These values and their corresponding states, si,
are taken from historical data.

3.4.2. Architectures for EBMs

To be able to train EBMs, it is convenient to choose an architecture that can easily be
updated with stochastic gradient descent, while avoiding instabilities in the training. Such
instabilities include arbitrarily large or small energy values and energy collapse, where a
model learns a minimal value of the energy function across all input values. These criteria
can be fulfilled by combining two neural networks, fφ and gψ, in an implicit regression
architecture [36], where:

fφ : a→ R
gψ : si → R.

(12)

The energy function can then be defined in two different ways, either linear:

E(a, si) = | fφ(a)− gψ(si)| (13)

or quadratic:

E(a, si) =
1
2
(fφ(a)− gψ(si))

2, (14)

as depicted in the Figure 1. In both these cases, the energy function is bounded from below
by 0 and requires two independent networks to both learn the same value for all inputs to
result in energy collapse. Both of these features combine to help improve training stability.
In the following, we consider the quadratic combination.

Entropy 2023, 25, 188 7 of 13

(a) (b)

Figure 1. Example of the implicit regression architecture: (a): linear case, (b) quadratic case.

The added advantage of using neural networks in the architecture is that it allows
us to easily draw MCMC samples from π using Stochastic Gradient Langevin Dynamics
(SGLD), as presented by [48–50]. This algorithm works by starting from a random point,
x̃0, and iterating in the direction of higher probability with the gradients of the energy
function [51]. Noise, ω∼N (0, σ), is added to each gradient step to ensure that the sampling
fully captures the underlying probability distribution. This chain is carried out for K steps,
where the k-th step, x̃k, is calculated as follows:

x̃k ← x̃k−1 − η∇xEθ(x̃k−1) + ω, (15)

where η is the sample gradient step size.
The full procedure required to solve the contextual bandit problem with energy based

models is summarised in Algorithm 2: At every timestamp i, the algorithm parameterized
by θ has to choose an action ai upon the given context si. Then, it receives a reward ri
and the dataset X is updated with the triplet {si, ai, ri}. Every c iteration, the model is
trained over the dataset X . In the rest of this work, this algorithm will be referred to as the
EBM algorithm.

Algorithm 2 Contextual bandit with Energy Based Models

Input: N, θ0,X0, K, c, α, amax, amin, η, σ
for i = 1, . . . , N do

Choose ai ∼ πi with SGLD, ã0 ∼ U(amin, amax)
for k = 1, . . . , K do

Draw sample for noise ω ∼ N (0, σ)
ãk ← ãk−1 − η∇xEθi−1(ãk−1, si)/α + ω

end for
Play action ãK, receive ri, update X
Every c steps train Eθ in batches:
θi = arg minθ ∑X log(1 + eEθ(a+ ,sj)−Eθ(a− ,sj))

end for

3.4.3. Evolution of the Energy Distribution with Dataset Size

One key property of any model for solving contextual bandit problems is that its
uncertainty about the correct action to play decreases as more relevant data are collected.
This ensures convergence on the best strategy, which gradually reduces the exploration
over time as the space of plausible actions decreases.

For an energy based model, this is visible as the energy function decreasing in width
around the optimal action ranges as the number of samples used for training increases.
With the model described in this section, we have empirically justified that we obtain this
desired behaviour. An example of this can be seen in Figure 2, where the evolution of the
energy function is plotted as the number of samples is increased for a training set with
two contexts, which both have distinct optimal action ranges. It can be seen that, as the

Entropy 2023, 25, 188 8 of 13

number of samples increases, the model learns to distinguish the two different contexts and
narrows in on the optimal action range. Any appropriate sampling approach will therefore
sample widely initially and then converge onto the optimal action for each context.

Figure 2. The evolution of an energy function as the training sample size is increased from 100 to
100,000 in an environment with two distinct context categories (labeled 0, blue, and 1, orange) with
optimal actions around 3 and 9, respectively.

4. Experiments

To test the algorithms presented so far, we carried out a series of experiments in differ-
ent contextual bandit simulation environments. We considered both static environments,
where the optimal action given a context does not vary over time, and dynamic environ-
ments, where it does. This is of particular relevance to algorithms that will be deployed
in real-world environments, which are almost never static. This fact also motivated us to
focus on settings with continuous action spaces, which are particularly relevant to many
industrial use cases. We focused on experiments in a simulation environment due to the
lack of relevant benchmarks with dynamic and continuous action spaces in the literature
with real datasets.

4.1. The Simulation Environments

Our simulation environment requires a model to play a series of actions, so as to
maximise its total expected reward. Any particular reward is obtained immediately after an
action. Let N be the number of rounds, s ∈ Rh the context vector that the policy observes,
and ri ∈ [0, 1] the the reward given by playing the action ai ∈ R on round i given the
context si.

Let J be the number different reward functions ρj : a→ [0, 1]. Each context, s, belongs
to a particular reward function, ρj.

The reward function ρj is modelled by the probability density function of a Gaussian
distribution N (µj, σ2

j) parameterized by µj and σ2
j , where µj indicates the optimal action

that has to be played for that particular reward function. Given an action, a, the reward
function first computes the expected probability of having a reward of 1 by taking the

Entropy 2023, 25, 188 9 of 13

value of the Gaussian at a, Pj(r = 1|a). It then draws a sample from a uniform distribution
between 0 and 1, ua ∼ U(0, 1) and uses it to calculate the reward:

ρj(a) =
{

1 if ua < Pj(r = 1|a)
0 otherwise

(16)

An example of reward functions for a two-context environment can be seen on the left of
Figure 3.

Figure 3. Example of a simulation environment used for testing the algorithms with two contexts.
The probability of receiving a reward given an action depends on the context as shown on the left.
The linearly and non-linearly separable contexts are shown in the centre and on the right, respectively.

To make the environment dynamic, it is possible to only modify µj based on the
current round of the simulation i, making it a function of the timestep, µj(i).

4.2. Experimental Setup

We designed our synthetic environment to have multiple homogeneous contexts, each
of which is associated to a reward function.

To test the capabilities of each proposed method, contexts s can be either linearly or
non-linearly separable. For the linear case, we generated multiple isotropic Gaussian blobs
in a three-dimensional space, h = 3. Each blob was generated from a Gaussian with a
fixed standard deviation of 0.4 and a random mean. In the non-linearly separable case, two
different set of contexts were generated in a two-dimensional space, h = 2: a large circle
containing a smaller one. Both the circles were zero centered, and had a radius of 4.0 and
0.8, respectively. Examples of similar contexts can be seen on the right and in the centre of
Figure 3.

The experiments consisted of N = 10,000 observations with J = 2 different reward
functions. They both had the same variance, 0.6. In the static environments setting, the
mean value, µj, was set to 1 and 4, respectively, while in the dynamic setting, it was
perturbed by a cosine function:

µj(i) = µj + cos
(

i
500

)
+ 0.5. (17)

4.3. Baseline Algorithms

We considered the most popular bandit algorithms as baselines against which we
compared our algorithms. As a baseline that does not take into account the context, we
looked at two Multi–Armed Bandit (MAB) approaches, namely the Upper Confidence
Bound bandit algorithm (UCB1) [28] and Thompson Sampling (TS) [10]. These algorithms
have an arm for each action and learn the best action to play on average. As a baseline that
takes into account the context, we chose the linear UCB algorithm (linUCB) [27] and the
linear TS algorithm (linTS) [11].

Entropy 2023, 25, 188 10 of 13

4.4. Specific Configurations of the Algorithms

Before running all the experiments, all the parameters of the methods were manually
fine tuned to achieve the best results.

For the discrete action algorithms (including the MAB and linUCB algorithms), the
possible actions were chosen to be between 0.2 and 5.2 with an offset of 1, giving six possible
actions. None of the possible discrete actions were set on the optimal action point for the
simulation environment to avoid giving the discrete algorithms an unfair advantage with
respect to the continuous algorithms.

For linUCB, the α parameter was set to 0.05, which was chosen from a hyperparameter
tuning of values between 0 and 10, while for linTS the v parameter was fixed at 1 for the
whole simulation.

One difficulty with the neural network policies is that they run into the cold-start
problem, where the they are unable to make any decisions before they have been trained on
some data. For these methods, we set up a warm-up phase in which the policy randomly
explores the action space by sampling the actions from a uniform distribution. After
this initial phase, the algorithm should have enough data to train. In the experiments,
we set a warm-up time of 1000 steps, with actions sampled from a uniform distribution
a∼U(0.5, 5.5).

Both the NN Discrete and the NN HMC algorithms share the same neural network
architecture, which is a simple multilayer perceptron (MLP) with two hidden layers of
50 neurons with ReLu activation functions and a single neuron with a sigmoid activation
function on the output. They were trained after every 100 steps for 10 epochs with a batch
size of 2. The alpha entropy exploration term was set to 0.1 and 0.5 for NN discrete and the
NN HMC, respectively.

For the NN HMC algorithm, the initial state of the MCMC was set to 2.5, with a step
size of 1 and 100 burn in steps. Adam [52] was used as an optimiser over the binary
cross-entropy loss with a learning rate of 0.001.

For the EBM algorithm, both fφ and gψ share the same architecture with sightly differ-
ent parameters. They are both MLPs composed of four layers, each of which have sigmoid
activation functions, except the last block which is just a linear output. Sigmoids were
chosen as they were shown empirically to perform better than ReLu activation functions.

The first two blocks of fφ have an output size of 256, while the following two have
output sizes of 128 and 1, respectively. Instead, gψ is composed of internal layers with an
output size of 128.

The EBM was trained every 100 environment steps for a total of 150 epochs, with
a learning rate of 0.005, a dropout of 0.2 on every internal layer, and a batch size of 128.
For each training iteration after the first, the weights of the MLPs were initialised as the
resulting weights of the previous training run. For the action sampling, the exploration
term α was set to 10, the gradient step size η was set to 0.2, ω was sampled from a Gaussian
with σ = 0.005, and 100 SGLD steps were carried out to choose the action.

To deal with instabilities in the training of the EBMs, for the first training iteration we
initialised the weights randomly and retrained the model from 10 to 55 times, searching for
the model that minimises the difference between a played action and the action that brings
a positive reward. Looking at the actions in the warm-up phase that resulted in positive
rewards, we evaluated the actions that the model would play, by drawing a single sample
from π. We computed the average absolute difference over all of these samples and took
the model that minimises this average, or stopped if we found a model with an average
difference of less than 0.6.

4.5. Results

In Table 1, we report the results of all the considered algorithms over all the afore-
mentioned environments: linearly separable (Linear) and non-linearly separable (Circle),
both static and dynamic. In each case, the regret is calculated as shown in Equation (2),
where the best possible reward is obtained from the simulation environment. Each run was

Entropy 2023, 25, 188 11 of 13

carried out five times, with the mean and standard deviation of stochastic regret reported
in the table.

Table 1. Average stochastic regret and best stochastic regret of the considered algorithms over five
runs for different environments: non-linearly separable (Circle) and linearly separable (Linear), both
static and dynamic. The highest results are highlighted in bold while the second highest results are
marked in italic.

LINEAR CIRCLE
STATIC DYNAMIC STATIC DYNAMIC

Experiment
Average

Stochastic
Regret

Best
Stocastic
Regret

Average
Stochastic

Regret

Best
Stocastic
Regret

Average
Stochastic

Regret

Best
Stocastic
Regret

Average
Stochastic

Regret

Best
Stocastic
Regret

EBM 551 ± 123 450 3275 ± 59 3194 987 ± 402 613 3307 ± 71 3208
NN HMC 2229 ± 100 2080 3578 ± 88 3502 2074 ± 254 1642 3572 ± 42 3532

NN Discrete 1166 ± 98 1046 3720 ± 75 3627 991 ± 66 879 3645 ± 37 3616
UCB1 3721 ± 66 3675 4508 ± 127 4319 3683 ± 68 3608 4002 ± 63 3900

TS 3552 ± 87 3480 4868 ± 65 4808 3619 ± 24 3583 4760 ± 65 4656
linUCB 1196 ± 632 633 3822 ± 497 3134 4446 ± 558 3955 4933 ± 66 4842
linTS 558 ± 47 481 3447 ± 50 3375 4473 ± 56 4413 5012 ± 53 4952

Across most of the experiments, the EBM algorithm performed the best, showing a
good ability to adapt to both linear and non-linear contexts, along with some adaptability
to dynamic environments. The main difficulties with the EBM algorithm came from
instabilities in training, which could occasionally lead to a bad performance. This resulted
in the large standard deviation in the regret for the static Circle environment.

The NN Discrete algorithm also performed well, especially with non-linear contexts,
but had less flexibility to deal with dynamic environments. In these cases, the ability to
carry out continuous action sampling brought an advantage to NN HMC. However, the
continuous action sampling was less competitive in static environments. This could likely
be improved by further tuning the sample step size, reducing it in environments with
less variability.

The UCB1 and TS algorithms, which do not take the context into account, were not
able to compete with the algorithms that did. However, they did provide a useful baseline
for tuning the other algorithms. The linUCB and the linTS algorithms, which do take the
contexts into account, were competitive in the linearly separable environments, but could
not deal with the non-linearly separable environment.

5. Conclusions

We have introduced algorithms to solve contextual bandits in both continuous and
discrete action spaces, making use of maximum entropy exploration. These algorithms
are based on neural networks and work either by estimating the reward given a particular
action and context, or by modelling the best action probability with an energy function.

Overall, the EBM algorithm performed best in a series of simulation experiments,
showing good potential for applications to contextual bandit problems with continuous ac-
tion spaces. In discrete action spaces, the NN Discrete algorithm also performed comparably
well in the non-linear case and suffered from fewer training instabilities.

In future work, it would be useful to research other techniques to reduce the instability
of training the EBM as in [53]. It would also be worth investigating more intelligent
cold-start policies to improve algorithm performances in the initial steps such as linUCB,
linTS or even NN Discrete.

Entropy 2023, 25, 188 12 of 13

Author Contributions: Conceptualization, A.E., M.L. and A.M.; methodology, A.E. and M.L.; soft-
ware, A.E. and M.L.; validation, A.E., M.L., A.M. and A.R.; formal analysis, A.E., M.L., A.M. and
A.R.; investigation, A.E., M.L., A.M. and A.R.; writing—original draft preparation, A.E., M.L., A.M.
and A.R.; writing—review and editing, A.E., M.L., A.M. and A.R.; visualization, A.E. and M.L.;
supervision, A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in GitHub at
https://github.com/aelwood/contextual-bandit-playground.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

2. Portugal, I.; Alencar, P.; Cowan, D. The use of machine learning algorithms in recommender systems: A systematic review. Expert
Syst. Appl. 2018, 97, 205–227. [CrossRef]

3. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.
[CrossRef] [PubMed]

4. Bouneffouf, D.; Rish, I.; Aggarwal, C. Survey on applications of multi-armed and contextual bandits. In Proceedings of the 2020
IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

5. Trovò, F.; Paladino, S.; Restelli, M.; Gatti, N. Improving multi-armed bandit algorithms in online pricing settings. Int. J. Approx.
Reason. 2018, 98, 196–235. [CrossRef]

6. Xu, X.; Dong, F.; Li, Y.; He, S.; Li, X. Contextual-bandit based personalized recommendation with time-varying user interests. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6518–6525.

7. Nuara, A.; Trovo, F.; Gatti, N.; Restelli, M. A combinatorial-bandit algorithm for the online joint bid/budget optimization of
pay-per-click advertising campaigns. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018, Volume 32.

8. Gatti, N.; Lazaric, A.; Trovo, F. A truthful learning mechanism for contextual multi-slot sponsored search auctions with
externalities. In Proceedings of the 13th ACM Conference on Electronic Commerce, Valencia, Spain, 4–8 June 2012; pp. 605–622.

9. Gasparini, M.; Nuara, A.; Trovò, F.; Gatti, N.; Restelli, M. Targeting optimization for internet advertising by learning from logged
bandit feedback. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil,
8–13 July 2018; pp. 1–8.

10. Thompson, W.R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.
Biometrika 1933, 25, 285–294. [CrossRef]

11. Agrawal, S.; Goyal, N. Thompson sampling for contextual bandits with linear payoffs. In Proceedings of the International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 127–135.

12. Gopalan, A.; Mannor, S.; Mansour, Y. Thompson Sampling for Complex Online Problems. In Proceedings of the 31st International
Conference on Machine Learning, Beijing, China, 21–26 June 2014; Proceedings of Machine Learning Research; Xing, E.P., Jebara,
T., Eds.; PMLR: Bejing, China, 2014; Volume 32, pp. 100–108.

13. Friston, K.; Kilner, J.; Harrison, L. A free energy principle for the brain. J. Physiol. Paris 2006, 100, 70–87. [CrossRef]
14. Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [CrossRef]
15. Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [CrossRef]
16. Brown, H.; Friston, K. Free-Energy and Illusions: The Cornsweet Effect. Front. Psychol. 2012, 3, 43. [CrossRef]
17. Adams, R.A.; Shipp, S.; Friston, K.J. Predictions not commands: Active inference in the motor system. Brain Struct. Funct. 2013,

218, 611–643. [CrossRef]
18. Schwartenbeck, P.; FitzGerald, T.; Dolan, R.; Friston, K. Exploration, novelty, surprise, and free energy minimization. Front.

Psychol. 2013, 4, 710. [CrossRef] [PubMed]
19. Marković, D.; Stojić, H.; Schwöbel, S.; Kiebel, S.J. An empirical evaluation of active inference in multi-armed bandits. Neural

Netw. 2021, 144, 229–246. [CrossRef] [PubMed]
20. Smith, R.; Friston, K.J.; Whyte, C.J. A step-by-step tutorial on active inference and its application to empirical data. J. Math.

Psychol. 2022, 107, 102632. [CrossRef] [PubMed]
21. Lee, K.; Choy, J.; Choi, Y.; Kee, H.; Oh, S. No-Regret Shannon Entropy Regularized Neural Contextual Bandit Online Learning

for Robotic Grasping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 24 October–24 January 2020; pp. 9620–9625.

22. Levine, S. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv 2018, arXiv:1805.00909.
23. Haarnoja, T.; Tang, H.; Abbeel, P.; Levine, S. Reinforcement learning with deep energy-based policies. In Proceedings of the

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1352–1361.

https://github.com/aelwood/contextual-bandit-playground
http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1016/j.eswa.2017.12.020
http://dx.doi.org/10.1007/s42979-021-00592-x
http://www.ncbi.nlm.nih.gov/pubmed/33778771
http://dx.doi.org/10.1016/j.ijar.2018.04.006
http://dx.doi.org/10.1093/biomet/25.3-4.285
http://dx.doi.org/10.1016/j.jphysparis.2006.10.001
http://dx.doi.org/10.1016/j.tics.2009.04.005
http://dx.doi.org/10.1038/nrn2787
http://dx.doi.org/10.3389/fpsyg.2012.00043
http://dx.doi.org/10.1007/s00429-012-0475-5
http://dx.doi.org/10.3389/fpsyg.2013.00710
http://www.ncbi.nlm.nih.gov/pubmed/24109469
http://dx.doi.org/10.1016/j.neunet.2021.08.018
http://www.ncbi.nlm.nih.gov/pubmed/34507043
http://dx.doi.org/10.1016/j.jmp.2021.102632
http://www.ncbi.nlm.nih.gov/pubmed/35340847

Entropy 2023, 25, 188 13 of 13

24. Du, Y.; Lin, T.; Mordatch, I. Model Based Planning with Energy Based Models. arXiv 2019, arXiv:1909.06878.
25. Bietti, A.; Agarwal, A.; Langford, J. A Contextual Bandit Bake-off. J. Mach. Learn. Res. 2021, 22, 1–49.
26. Cavenaghi, E.; Sottocornola, G.; Stella, F.; Zanker, M. Non stationary multi-armed bandit: Empirical evaluation of a new concept

drift-aware algorithm. Entropy 2021, 23, 380. [CrossRef]
27. Abbasi-Yadkori, Y.; Pál, D.; Szepesvári, C. Improved algorithms for linear stochastic bandits. In Proceedings of the Advances in

Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24.
28. Lai, T.L.; Robbins, H. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 1985, 6, 4–22. [CrossRef]
29. Riquelme, C.; Tucker, G.; Snoek, J. Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for

thompson sampling. arXiv 2018, arXiv:1802.09127.
30. Zhou, D.; Li, L.; Gu, Q. Neural contextual bandits with ucb-based exploration. In Proceedings of the International Conference on

Machine Learning, Virtual, 13–18 July 2020; pp. 11492–11502.
31. Zhang, W.; Zhou, D.; Li, L.; Gu, Q. Neural thompson sampling. arXiv 2020, arXiv:2010.00827.
32. Kassraie, P.; Krause, A. Neural contextual bandits without regret. In Proceedings of the International Conference on Artificial

Intelligence and Statistics, Virtual , 28–30 March 2022; pp. 240–278.
33. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
34. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
35. Kuleshov, V.; Precup, D. Algorithms for multi-armed bandit problems. arXiv 2014, arXiv:1402.6028.
36. LeCun, Y.; Chopra, S.; Hadsell, R.; Ranzato, M.; Huang, F. A tutorial on energy-based learning. In Predicting Structured Data; MIT

Press: Cambridge, MA, USA, 2006; Volume 1.
37. Grathwohl, W.; Wang, K.C.; Jacobsen, J.H.; Duvenaud, D.; Norouzi, M.; Swersky, K. Your classifier is secretly an energy based

model and you should treat it like one. arXiv 2019, arXiv:1912.03263.
38. Heess, N.; Silver, D.; Teh, Y.W. Actor-Critic Reinforcement Learning with Energy-Based Policies. In Proceedings of the Tenth

European Workshop on Reinforcement Learning, Edinburgh, Scotland, 30 June–1 July 2012; Proceedings of Machine Learning
Research; Deisenroth, M.P., Szepesvári, C., Peters, J., Eds.; PMLR: Edinburgh, UK, 2013; Volume 24, pp. 45–58.

39. Cesa-Bianchi, N.; Gentile, C.; Lugosi, G.; Neu, G. Boltzmann exploration done right. In Proceedings of the Advances in Neural
Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

40. Degris, T.; Pilarski, P.M.; Sutton, R.S. Model-free reinforcement learning with continuous action in practice. In Proceedings of the
2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 2177–2182.

41. Neal, R.M.; et al. MCMC using Hamiltonian dynamics. Handb. Markov Chain. Monte Carlo 2011, 2, 2.
42. Betancourt, M.; Girolami, M. Hamiltonian Monte Carlo for hierarchical models. Curr. Trends Bayesian Methodol. Appl. 2015,

79, 2–4.
43. Delyon, B.; Lavielle, M.; Moulines, E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 1999,

27, 94–128. [CrossRef]
44. Dillon, J.V.; Langmore, I.; Tran, D.; Brevdo, E.; Vasudevan, S.; Moore, D.; Patton, B.; Alemi, A.; Hoffman, M.; Saurous, R.A.

Tensorflow distributions. arXiv 2017, arXiv:1711.10604.
45. Moerland, T.M.; Broekens, J.; Jonker, C.M. Model-based reinforcement learning: A survey. arXiv 2020, arXiv:2006.16712.
46. Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Campbell, R.H.; Czechowski, K.; Erhan, D.; Finn, C.; Kozakowski, P.; Levine, S.;

et al. Model-based reinforcement learning for atari. arXiv 2019, arXiv:1903.00374.
47. Boney, R.; Kannala, J.; Ilin, A. Regularizing model-based planning with energy-based models. In Proceedings of the Conference

on Robot Learning, Virtual, 16–18 November 2020; pp. 182–191.
48. Du, Y.; Mordatch, I. Implicit generation and generalization in energy-based models. arXiv 2019, arXiv:1903.08689.
49. Song, Y.; Ermon, S. Generative modeling by estimating gradients of the data distribution. In Proceedings of the Advances in

Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.
50. Xie, J.; Lu, Y.; Zhu, S.C.; Wu, Y. A theory of generative convnet. In Proceedings of the International Conference on Machine

Learning, New York, NY, USA, 19 June–24 June 2016; pp. 2635–2644.
51. Lippe, P. Tutorial 8: Deep Energy-Based Generative Models. Available online: https://uvadlc-notebooks.readthedocs.io/en/

latest/tutorial_notebooks/tutorial8/Deep_Energy_Models.html (accessed on 22 July 2022).
52. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
53. Duvenaud, D.; Kelly, J.; Swersky, K.; Hashemi, M.; Norouzi, M.; Grathwohl, W. No MCMC for Me: Amortized Samplers for Fast

and Stable Training of Energy-Based Models. arXiv 2021, arXiv:2010.04230v3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/e23030380
http://dx.doi.org/10.1016/0196-8858(85)90002-8
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1214/aos/1018031103
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial8/Deep_Energy_Models.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial8/Deep_Energy_Models.html

	Introduction
	Related Work
	Entropy Based Exploration in Contextual Bandits
	Energy Based Models in Reinforcement Learning

	Algorithms to Solve Contextual Bandit Problems with Maximum Entropy Exploration
	Contextual Bandit Problem Formulation
	Maximum Entropy Exploration
	Maximum Entropy Exploration with Neural Networks Modelling Reward
	Discrete Action Sampling
	Continuous Action Sampling

	Maximum Entropy Exploration with Energy Based Models (EBMs)
	Training EBMs to Solve Contextual Bandit Problems
	Architectures for EBMs
	Evolution of the Energy Distribution with Dataset Size

	Experiments
	The Simulation Environments
	Experimental Setup
	Baseline Algorithms
	Specific Configurations of the Algorithms
	Results

	Conclusions
	References

