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Abstract: A discrete version of opinion dynamics systems, based on the Biswas–Chatterjee–Sen
(BChS) model, has been studied on Barabási–Albert networks (BANs). In this model, depending
on a pre-defined noise parameter, the mutual affinities can assign either positive or negative values.
By employing extensive computer simulations with Monte Carlo algorithms, allied with finite-size
scaling hypothesis, second-order phase transitions have been observed. The corresponding critical
noise and the usual ratios of the critical exponents have been computed, in the thermodynamic limit,
as a function of the average connectivity. The effective dimension of the system, defined through a
hyper-scaling relation, is close to one, and it turns out to be connectivity-independent. The results
also indicate that the discrete BChS model has a similar behavior on directed Barabási–Albert networks
(DBANs), as well as on Erdös–Rènyi random graphs (ERRGs) and directed ERRGs random graphs
(DERRGs). However, unlike the model on ERRGs and DERRGs, which has the same critical behavior
for the average connectivity going to infinity, the model on BANs is in a different universality class to
its DBANs counterpart in the whole range of the studied connectivities.

Keywords: opinion dynamics systems; Biswas–Chatterjee–Sen model; finite-size-scaling hypothesis;
universality class; second-order phase transitions

1. Introduction

The interest in sociophysics has greatly increased in the past two decades, mainly when
considering the dynamics that are present in social systems or networks [1–8]. Stauffer [5]
and Galam [9], who proposed models that use local majority rule arguments, are considered
the predecessors of the sociophysics emerging field, also termed as “the dynamics of
opinions”. In fact, the dynamics of opinions are treated in the same way that researchers
treat the usual real world [10]. As a result, opinion-dynamics systems have turned out to
be one of the most studied subjects in sociophysics [7,11–14].

Biswas, Chatterjee, and Sen [8] proposed a continuous opinion dynamics model that is
nowadays called the BChS model. This non-equilibrium system has pair interactions that
can be either positive or negative, modeled by a single noise parameter q, that represents
the fraction of negative interactions. The continuous version, on fully connected networks,
has been studied through numerical simulations. It has been shown that a continuous phase
transition takes place at a critical value q = qc with mean-field critical exponents [8]. On the
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other hand, this same model has been treated on regular lattices in two and three dimensions
by using Monte Carlo (MC) simulations [15]. Although a continuous phase transition is also
obtained, the criticality is now the same as the Ising model in the same dimensions.

The BChS model can also be defined on a discrete version and it has been studied by
using Monte Carlo simulations on several scale-free networks and random graphs. The
discrete model undergoes a second-order phase transition and, from the results that have
been reported in the literature, we can say that: (i) its critical behavior is the same as the
continuous version on fully connected networks and on regular two- and three-dimensional
lattices [8,15]; (ii) on Apollonian networks (ANs), the critical behavior is different from the
Ising model on regular lattices [16]; (iii) on directed Barabási–Albert networks (DBANs),
the critical exponent ratios change with the connectivity of the networks [17], but the model
belongs to the same universality class as the majority vote model (MVM) [18] on the same
DBANs; (iv) on Erdös–Rènyi random graphs (ERRGs) and directed ERRGs random graphs
(DERRGs) the critical exponents are different from the Ising model and also the MVM
model on the same random graphs [19]. For additional details on the related MVM see, for
instance, Refs. [20–23]

It is then well understood that it is not possible to know, a priori, whether a given
model, on a particular scale-free network, will present a phase transition and, if a second-
order phase transition occurs, what will be its universality class. For this reason, it will then
be quite interesting to understand what should be the behavior of the discrete BChS model,
when defined on BANs and, at the same time, compare the new behavior with the previous
results of the model on other networks (and also with the MVM). Moreover, except for
the Voronoi–Delaunay random lattices, the BANs seem to be the lacking most common
scale-free topology to be studied within the context of the discrete BChS model [24]. In fact,
as we will see below, there are some quite different and unexpected critical behaviors of the
discrete BChS model on BANs, when compared to the DBANs and also the same model on
other random network topologies.

Thus, in this work, the social consensus formation in the non-equilibrium discrete
version of the Biswas–Chatterjee–Sen dynamic system on BANs, for several values of the
noise parameter q, has been studied through Monte Carlo simulations. The scope of the
paper is as follows. The next section presents the model, the MC simulations that have been
employed, together with the evolution of the physical quantities from which the transition
has been characterized. In Section 3, the obtained results are discussed and, in the last
section, conclusions and some final remarks are addressed.

2. Model and Simulation

In order to study the BChS model [8,16,17,19] defined on Barabási–Albert networks,
we will closely follow the procedure outlined in Ref. [19]. However, for questions of com-
pleteness, the model and simulations will be shortly summarized below.

Agents (or individuals) are set on each i node of a BAN with N sites. At time step t,
the agents have opinion variables oi(t), which can assume three different values say −1, 0,
or +1 . The rules for updating oi(t) according to the BChS model are as follows:

(i) The initial configuration is constructed by randomly assigning one of the three opinion
states for each site i of the BAN;

(ii) A site i is then randomly select to be updated;
(iii) One bound of the site i is also randomly selected and an affinity µij is given for this

bond (j is the corresponding site sharing the bond with site i). This affinity parameter
is another discrete variable that assumes a value +1, but can be turned negative
with a probability q. The parameter q acts, in fact, as an external noise, modeling
local discordances;

(iv) The opinion variable of both sites sharing the selected bond are now updated following
the rules

oi(t + 1) = oi(t) + µijoj(t) , (1)

oj(t + 1) = oj(t) + µijoi(t) , (2)
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where oi(t) and oj(t) are the opinion states at time t, while oi(t + 1) and oj(t + 1) are
the updated opinion states of the two sites i and j, respectively;

(v) When the opinion state is out of the interval [−1,+1], for example being larger than
+1, it is automatically made equal to +1. The same happens when the opinion state is
smaller than −1, when it is made equal to −1.

An order parameter O for this dynamical system can be defined by averaging the
opinion variables oi(t) over all individuals, i.e.,

O =

∣∣∣∣∣ N

∑
i

oi

∣∣∣∣∣/N, (3)

where t is large enough for the system reaching the stationary state. In the thermodynamic
limit (infinite size networks), there is a critical value q = qc, where for q < qc an ordered
phase with O 6= 0 is present, while for q > qc one has a disordered phase with O = 0
instead. Exactly at q = qc, both ordered and disordered phases become equal at a second-
order phase transition. It is interesting that, in this case, rather than a thermal driven critical
behavior as in usual magnetic systems, one has indeed a kind of a random configuration
driven phase transition.

This dynamic order–disorder transition can be studied, via MC simulations, using
similar magnetic-like variables, so common at second-order phase transitions. For instance,
for a given value of q, Equation (3) gives us a natural order parameter O(q). The fluctuation
of the order parameter, O f (q), is in this way the analogous to the magnetic susceptibility.
We can even define the equivalent of the reduced Binder cumulant of the order parameter,
namely O4(q). These quantities are easily computed from MC simulations as

O(q) =

[
〈O〉t

]
av

, (4)

O f (q) = N
[
〈O2〉t − 〈O〉2t

]
av

, (5)

O4(q) = 1−
[ 〈O4〉t

3〈O2〉2t

]
av

, (6)

where 〈· · · 〉t stands for time averages, that are computed after the system has reached the
stationary state, and 〈· · · 〉av means the averages over different initial configurations. Some
details of the simulations are described below.

In this work, the above quantities, as a function of q, have been computed through
extensive MC simulations on BANs of finite sizes ranging from N = 250, 500, 1000, 2000,
4000, 8000, up to 16, 000. In order to let the system reach its stationary state, the initial
105 MC steps (MCS) have been discarded. The corresponding time averages have then be
computed by taking the next 2× 105 MCS. Here, one MCS consists of randomly choosing N
sites of the network, as described above. For each set of network size N and parameter q, 103

to 104 different configurations have been considered to obtain the configurational averages.
Now, close to the critical noise parameter q = qc, and for large system sizes, quantities

(4), (5) and (6) should have a power-law behavior of the form (for further details see, for
instance, Ref. [25])

O(q) = N−β/ν fO(x), (7)

O f (q) = Nγ/ν fO f (x), (8)

O4(q) = fO4(x), (9)

qc(N) = qc + cN−1/ν, (10)

where c is a non-universal constant and qc the corresponding critical noise for an infinite
size graph. The critical exponents β, ν, and γ come from the behavior of the order parameter,
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correlation length, and fluctuation of the order parameter, respectively, when taken as a
function of the noise parameter q close to qc. In the above equations, however, we have
the size behavior instead, where fk(x), with x = N1/ν(q− qc) and k = {O, O f , O4}, are
scaling functions. As we shall see below, for each finite graph of N sites, we can estimate
its pseudo-critical noise parameter qc(N) by looking, e.q., at the peak presented by the
fluctuation of the order parameter as a function of q.

We can now follow the standard procedure to obtain, numerically, the phase transition
properties of the model in the thermodynamic limit. For a second-order phase transition,
which will be the present case, the reduced Binder cumulant O4, in Equation (9), should
be independent of the system sizes for |x| << 1 (in fact, for large systems and close to qc).
This means that the crossing points of O4, as a function of q and for different values of N,
will give a good estimate of the critical noise parameter qc [25]. With qc in hands, and using
Equations (7) and (8), one can compute the exponents ratio β/ν and γ/ν, respectively. Now,
by locating the value of the noise parameter qc(N), where the maximum of O f occurs as a
function of q, we can explore Equation (10) and further obtain an estimate of the critical
exponent 1/ν.

Within this scheme, the main critical behavior of the system can be quantitatively
specified. In addition, using the hyper-scaling hypothesis [26]

2β/ν + γ/ν = Deff (11)

it is also possible to compute the effective dimension Deff.

3. Results and Discussion

The dependence of the reduced Binder cumulant O4 on the noise parameter q, for
several finite sizes N, is shown in Figure 1a, for the smallest connectivity z = 2, and in
Figure 1b, for a quite higher value z = 100. From these figures, one can see that: (i) the
cumulant crossings attest indeed that we have a second-order phase transition in the system,
where qc = 0.173(1) for z = 2 and qc = 0.248(2) for z = 100; (ii) from these values of qc, we
can see that the critical noise parameter is dependent on the connectivity z. Similar results
are obtained for different connectivities and one can thus compute qc for several values z.
Table 1 gives the results so obtained for other selected connectivities.
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Figure 1. (color online) Reduced Binder cumulant O4, plotted as function of the noise q, for connec-
tivities z = 2 in (a), and z = 100 in (b). The sizes of the BANs N are specified in the legends. In these
cases, the crossings occur, respectively, at qc = 0.173(1) and qc = 0.248(2).
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Table 1. Critical parameter qc, critical exponent ratios 1/ν, β/ν, γ/ν, and effective dimension De f f of
the BChS model on BANs. The selected values of the connectivity z are specified in the first column.
Error bars are statistical only.

z qc 1/ν β/ν γ/ν(qc) γ/ν(qmax
c ) De f f

2 0.173(1) 0.459(31) 0.181(4) 0.644(2) 0.638(9) 1.006(2)
4 0.214(1) 0.459(25) 0.186(3) 0.620(1) 0.608(6) 0.992(2)
6 0.227(2) 0.422(11) 0.208(2) 0.591(1) 0.599(4) 0.998(5)
8 0.233(2) 0.422(11) 0.212(1) 0.593(6) 0.595(3) 1.017(6)

10 0.236(1) 0.448(23) 0.202(1) 0.591(2) 0.591(3) 0.995(5)
20 0.243(2) 0.441(25) 0.203(1) 0.573(2) 0.574(2) 0.979(5)
50 0.247(1) 0.430(19) 0.210(1) 0.562(3) 0.563(4) 0.982(7)
70 0.248(1) 0.437(23) 0.201(3) 0.545(6) 0.551(5) 0.947(6)

100 0.248(2) 0.411(18) 0.183(1) 0.551(8) 0.542(9) 0.917(12)

With qc in hand for different connectivities z, we can now compute the critical exponent
ratios from the power-law relations of Equations (7), (8), and (10). The log–log plot of
the quantities defined in Equations (4)–(6) and (10), as a function of N, on BANs with
different connectivities z, are shown in Figure 2. All quantities have been computed at the
extrapolated infinite network critical value qc for the corresponding connectivity z. The
alignment of the data in those figures strongly corroborates the transition being indeed of
second order, with the slope from a linear fit giving the desired critical exponent ratio. The
critical exponent ratios so obtained are given in the legend of Figure 2 and also in Table 1,
together with additional values of the connectivity z.
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Figure 2: (color online) Log-log plot of the quantities defined in the text, as a function of N , on BANs with
several values of the connectivity z. All quantities are computed at the extrapolated critical noise parameter
qc for the corresponding connectivity z. (a) order parameter O(qc); (b) order parameter fluctuation Of (qc);
(c) magnitude of the displacement qc(N) − qc; and (d) maximum amplitude Of (qmaxc ). In all figures, the
ratio of the critical exponents, that are obtained from the linear fits to the data (full lines), are given in the
legends. The error bars are smaller than the symbol sizes.

at qmaxc for each BANs size N , can also be used in Eq. (8) to get an additional estimate of
the critical exponent ratio γ/ν. Proceeding in this way, we obtain exponent ratios that are
similar to those obtained from the same scaling relation using the previously computed qc,
for all values of z. This is clearly seen in Table 1 by comparing the numbers in the fifth and
sixth columns, and also by inspecting Figs. 2 (b) and (d).

Regarding the γ/ν quantity, it is worthwhile to stress that on DBANs [17], for all values
of z, a different critical exponent ratio is obtained when considering the corresponding
maximum value of the fluctuation of the order parameter Of (q

max
c ). This can be seen in the

fifth and sixth columns on Table 2, that reproduces the previous data of the same model on
DBANs from Ref [17].

From Table 1 and Table 2, it is also possible to have a numerical comparison between
the present results on BANs and those earlier obtained on DBANs, for several connectivities
z. However, a global view of the data conveyed in Tables 1 and 2 is better seen in the left

January 10, 2023

Figure 2. (color online) Log–log plot of the quantities defined in the text, as a function of N, on BANs
with several values of the connectivity z. All quantities are computed at the extrapolated critical noise
parameter qc for the corresponding connectivity z. (a) order parameter O(qc); (b) order parameter
fluctuation O f (qc); (c) magnitude of the displacement qc(N) − qc; and (d) maximum amplitude
O f (qmax

c ). In all figures, the ratio of the critical exponents, that are obtained from the linear fits to the
data (full lines), are given in the legends. The error bars are smaller than the symbol sizes.

At this point, the universal behavior of the present finite-size-scaling functions, which
are given in Equations (7)–(9), can be further tested in a still wider range of q. Note that
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we have, up to now, been working only with noises in the region close to the transition qc.
Figure 3 depicts the collapse of the present data of the scaled order parameter ONβ/ν (a),
the scaled fluctuation of the order parameter O f N−γ/ν (b), and the scaled reduced Binder
cumulant O4 (c), as a function of the scaled displacement (q− qc)N1/ν for the particular
connectivity z = 20. We can see from the collapse of the data that we are not only dealing
with a second-order phase transition, but also the computed critical exponents from the
simulations seem to be indeed accurate.
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Figure 3. (color online) Collapse of the data of the scaled order parameter ONβ/ν (a), scaled fluctua-
tion of the order parameter O f N−γ/ν (b), and scaled reduced Binder cumulant O4 (c), as a function
of the scaled displacement (q− qc)N1/ν for the connectivity z = 20. The network sizes N are listed in
the legend of panel (a) and also applies to panels (b,c).

The fluctuation of the order parameter O f (q) has a clear peak close to the connectivity
transition, as is depicted in Figure 3b for z = 20. The value of this peak O f (qmax

c ), located at
qmax

c for each BANs size N, can also be used in Equation (8) to obtain an additional estimate
of the critical exponent ratio γ/ν. Proceeding in this way, we obtain exponent ratios that
are similar to those obtained from the same scaling relation using the previously computed
qc, for all values of z. This is clearly seen in Table 1 by comparing the numbers in the fifth
and sixth columns, and also by inspecting Figure 2b,d.

Regarding the γ/ν quantity, it is worthwhile to stress that on DBANs [17], for all values
of z, a different critical exponent ratio is obtained when considering the corresponding
maximum value of the fluctuation of the order parameter O f (qmax

c ). This can be seen in the
fifth and sixth columns on Table 2, that reproduce the previous data of the same model on
DBANs from Ref [17].

From Tables 1 and 2, it is also possible to have a numerical comparison between the
present results on BANs and those earlier obtained on DBANs, for several connectivities
z. However, a global view of the data conveyed in Tables 1 and 2 is better seen in the left
panels of Figure 4. They plot the effective dimension De f f , and the ratios β/ν and γ/ν, for
the selected values of the connectivity z, on BANs (full circles) and on DBANs (open circles).
From those plots we see that: (i) the effective dimension value De f f ≈ 1.0 for all z on both
networks; (ii) after a slight variation for small values of z, the critical exponents become
almost constant for z > 20 on both networks; (iii) the critical exponent ratios on BANs are
different from those on DBANs, meaning that they belong to different universal classes.

Although the effective dimension is close to one, the model has indeed a clear phase
transition, in contrast to the same model on regular one-dimensional lattice, where no
transition is observed. Nevertheless, we have to keep in mind that on these networks there
are longer-range interactions, and not only short-range finite interactions that allows us to
prove that one-dimensional classical models are free from any phase transition.
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Table 2. Results of the model on DBANs according to Ref. [17]. The legend of Table 1 also applies in
this case, with the exception of the column regarding the exponent 1/ν, which has not been computed
in [17].

z qc β/ν γ/ν(qc) γ/ν(qmax
c ) De f f

2 0.439(3) 0.475(2) 0.066(1) 0.775(12) 1.016(4)
4 0.452(3) 0.473(1) 0.052(1) 0.829(10) 0.995(5)
6 0.448(3) 0.470(1) 0.055(2) 0.845(9) 0.995(6)
8 0.447(3) 0.468(1) 0.058(1) 0.860(9) 0.994(5)
10 0.443(3) 0.459(1) 0.076(1) 0.909(8) 0.994(3)
20 0.428(3) 0.437(1) 0.128(5) 0.890(10) 1.002(3)
50 0.408(2) 0.399(2) 0.194(6) 0.861(14) 0.992(9)
70 0.404(2) 0.382(2) 0.221(9) 0.850(2) 0.982(7)

100 0.388(4) 0.367(3) 0.237(8) 0.832(20) 0.971(31)

It is also interesting to compare the critical behavior of the discrete BChS model on
BANs and DBANs to the critical behavior of the model previously studied on ERRGs and
DERRGs [19] by using similar MC simulations. To make such comparison, we have the
same quantities on ERRGs and DERRGs from Ref. [19] in the right panels of Figure 4. One
can see that, on ERRGs and DERRGs, after an oscillatory behavior of the critical exponents
for small values of z, the exponents are almost the same in both graphs, even in the limit of
z→ ∞. This is due to the fact that in this limit, ERRGs and DERRGs have the same small
world networks behavior, which does not happen to be the case on BANs and DBANs.
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Figure 4. (color online) Effective dimension De f f (top panels), critical exponent ratios β/ν (middle
panels) and γ/ν (bottom panels), as a function of the connectivity z. The left panels are the present
results for the BChS model on BANs (full circles) and from Ref. [17] on DBANs (open circles). The
right panels are, respectively, the results from Ref. [19] on ERRGs and DERRGs. The solid and dashed
lines are, in all cases, only a guide to the eyes.

Finally, from the data of Table 1, one can notice that the value of the critical noise
parameter increases with the connectivity, and approaches a limiting value as z→ ∞. This
behavior is better seen in the phase diagram depicted in Figure 5 for the model on BANs.
We also note, from Tables 1 and 2, that qc, for large values of z, is different for both networks.
This is due to the fact that, unlike the ERRGs and DERRGs, in the limit z→ ∞ the BANs
and DBANs do not have the same behavior as the small-world lattice. However, as for
the model on ERRGs and DERRGs, the critical transition line does obey a similar inverse
power law of the form

qc = A + B/z, (12)

where A and B are non-universal constants. The inverse power-law of the transition line can
be clearly seen in Figure 5b. From a linear fit to the data we obtain the constant values given
in Figure 5b, from which we have the critical noise in the z→ ∞ limit as qc = 0.2488(1). It
is also useful to have Equation (12), since one can now estimate the critical noise qc for any
value of z.
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Figure 5. (color online) Phase diagram of the BChS model on BANs in the critical noise parameter qc

versus connectivity z plane in (a), and its inverse 1/z in (b). The lines in (a) are just guide to the eyes,
while in (b) they correspond to the best linear fit with the parameters given in the legend. In all cases,
the error bars are smaller than the symbol sizes.

4. Concluding Remarks

The non-equilibrium BChS model, in its discrete version and defined on BANs, has been
studied through Monte Carlo simulations for several values of the local consensus controlling
parameter q. The results show that the model undergoes a second-order phase transition
with critical exponents in a different universality class as the same model on regular two-
and three-dimensional lattices [15], ERRGs and DERRGs [19], as well as on DBANs [17].
Despite of belonging to another universality class, the hyper-scaling [26] relation is always
valid, independent of the connectivity z, and provides an effective dimension close to 1.0. It
should be stressed that the critical exponents of the discrete BChS model on BANs are not
the mean-field ones, as in the continuous version of the model on the same BANs [27].

Unlike the model on DBANs, the critical exponent on BANs, coming from the peak
of the fluctuation of the order parameter, is comparable to the exponent directly obtained
from the critical noise parameter. In addition, in the z→ ∞ limit, the results on BANs are
different from those on DBANs, a result of the non-equivalence of both networks for large
values of the connectivity. We believe that the present results on the BANs, in some sense
complete the study of the discrete BChS model on scale-free networks and random graphs.
Table 3 has a summary of the universality class of the BChS model on several networks and
regular lattices.

Table 3. Summary of the universality class of the discrete BChS model on several networks. All
transitions are second order and the class of its own means that we are not aware yet of another
member sharing the same critical exponents.

Discrete Biswas–Chatterjee–Sen Model

network/lattice universality reference
fully connected mean field [8]

regular d-dimensional d-dimensional Ising [15]
Apollonian class of its own [16]

Barabási–Albert class of its own z dependent exponents this work
directed Barabási–Albert majority vote model z dependent exponents [18]

Erdös–Rènyi class of its own z dependent exponents [19]
directed Erdös–Rènyi class of its own z dependent exponents raquel

small world z→ ∞ either of Erdös–Rènyi graphs [19]
Continuum Biswas–Chatterjee–Sen model

fully connected mean field [8]
regular d-dimensional d-dimensional Ising [15]



Entropy 2023, 25, 183 9 of 10

Author Contributions: Conceptualization, T.F.A.A.; Methodology, D.S.M.A. and F.W.S.L.; Validation,
D.S.M.A.; Formal analysis, G.A.A., A.M.-F., R.S.F., F.W.S.L. and J.A.P.; Investigation, D.S.M.A.,
T.F.A.A., A.M.-F. and R.S.F.; Writing—original draft, F.W.S.L.; Writing—review & editing, T.F.A.A.,
G.A.A., A.M.-F., R.S.F. and J.A.P.; Supervision, G.A.A. and J.A.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been supported by the Brazilian agencies CNPq, CAPES, FAPEMIG
and FUNCAP. Computational support by the system SGI Altix 1350, the CENAPAD.UNICAMP-USP
computational park, Campinas, São Paulo - BRAZIL, is also gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chakrabarti, B.K.; Chakraborti, A.; Chatterjee, A. (Eds.) Econophysics and Sociophysics: Trends and Perspectives; Wiley-VCH: Weinheim,

Germany, 2006.
2. Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591. [CrossRef]
3. Helbing, D. Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes, 2nd ed.; Springer: Berlin,

Germany, 2010.
4. Galam, S. Sociophysics; Springer: Heidelberg, Germany, 2012.
5. Stauffer, D. A Biased Review of Sociophysics. J. Stat. Phys. 2013, 151, 9. [CrossRef]
6. Sen, P.; Chakrabarti, B.K. Sociophysics: An introduction; Oxford University Press: New York, NY, USA, 2014.
7. Noorazar, H. Recent advances in opinion propagation dynamics: A 2020 survey. Eur. Phys. J. Plus 2020, 135, 521. [CrossRef]
8. Biswas, S.; Chatterjee, A.; Sen, P. Disorder induced phase transition in kinetic models of opinion dynamics. Phys. A 2012, 391, 3257.

[CrossRef]
9. Galam, S.; Mod, I.J. The Trump phenomenon: An explanation from sociophysics. Phys. B 2017, 31, 1742015. [CrossRef]
10. Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer: Berlin/Heidelberg, Germany, 2012.
11. Galam, S.; Mod, I.J. Sociophysics: A Review of Galam models. Phys. C 2008, 19, 409. [CrossRef]
12. Biswas, S. Mean-field solutions of kinetic-exchange opinion models. Phys. Rev. E 2011, 84, 056106. [CrossRef] [PubMed]
13. Gimenez, M.C.; Reinaudi, L.; Paz-García, A.P.; Centres, P.M.; Ramirez-Pastor, A.J. Opinion evolution in the presence of constant

propaganda: Homogeneous and localized cases. Eur. Phys. J. B 2021, 94, 35. [CrossRef]
14. de Arruda, H.F.; Cardoso, F.M.; de Arruda, G.F.; Hernández, A.R.; da Fontoura Costa, L.; Moreno, Y. Modelling how social

network algorithms can influence opinion polarization. Inf. Sci. 2022, 588, 265. [CrossRef]
15. Mukherjee, S.; Chatterjee, A. Disorder-induced phase transition in an opinion dynamics model: Results in two and three dimensions.

Phys. Rev. E 2016, 94, 062317. [CrossRef] [PubMed]
16. Lima, F.W.S.; Sumour, M.A.; Moreira, A.A.; Araújo, A.D. Majority Vote and BCS model on Complex Networks. Phys. A 2021,

571, 125834. [CrossRef]
17. Lima, F.W.S.; Plascak, J.A. Kinetic Models of Discrete Opinion Dynamics on Directed Barabási—Albert Networks. Entropy 2019,

21, 942. [CrossRef]
18. Oliveira, M.J. Isotropic majority-vote model on a square lattice. J. Stat. Phys. 1992, 66, 273. [CrossRef]
19. Raquel, M.T.S.A.; Lima, F.W.S.; Alves, T.F.A.; Alves, G.A.; Macedo-Filho, A.; Plascak, J.A. Non-equilibrium kinetic Biswas–Chatterjee–

Sen model on complex networks. Phys. A 2022, 603, 127825. [CrossRef]
20. Vilela, A.L.M.; Moreira, F.G.B. Majority-vote model with a bimodal distribution of noises. Phys. A 2009, 388, 4171. [CrossRef]
21. Vilela, A.L.M.; de Souza, A.J.F. Majority-vote model with a bimodal distribution of noises in small-world networks. Phys. A 2017,

488, 216. [CrossRef]
22. Vilela, A.L.M.; Zubillaga, B.J.; Wang, M.; Du, R.; Dongand, G.; Stanley, H.E. Three-State Majority-vote Model on Scale-Free

Networks and the Unitary Relation for Critical Exponents. Sci. Rep. 2020, 10, 2. [CrossRef] [PubMed]
23. Granha, M.F.B.; Vilela, A.L.M.; Wang, C.; Nelson, K.P.; Stanley, H.E. Opinion dynamics in financial markets via random networks.

Proc. Natl. Acad. Sci. USA 2022, 49, 119. [CrossRef] [PubMed]
24. Lima, F.W.S.; Plascak, J.A. Magnetic models on various topologies. J. Phys. Conf. Ser. 2014, 487, 012011. [CrossRef]
25. Binder, K.; Heermann, D. W. Monte Carlo Simulation in Statistical Phyics; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 1988.

http://doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1007/s10955-012-0604-9
http://dx.doi.org/10.1140/epjp/s13360-020-00541-2
http://dx.doi.org/10.1016/j.physa.2012.01.046
http://dx.doi.org/10.1142/S0217979217420152
http://dx.doi.org/10.1142/S0129183108012297
http://dx.doi.org/10.1103/PhysRevE.84.056106
http://www.ncbi.nlm.nih.gov/pubmed/22181472
http://dx.doi.org/10.1140/epjb/s10051-021-00047-5
http://dx.doi.org/10.1016/j.ins.2021.12.069
http://dx.doi.org/10.1103/PhysRevE.94.062317
http://www.ncbi.nlm.nih.gov/pubmed/28085482
http://dx.doi.org/10.1016/j.physa.2021.125834
http://dx.doi.org/10.3390/e21100942
http://dx.doi.org/10.1007/BF01060069
http://dx.doi.org/10.1016/j.physa.2022.127825
http://dx.doi.org/10.1016/j.physa.2009.06.046
http://dx.doi.org/10.1016/j.physa.2017.06.029
http://dx.doi.org/10.1038/s41598-020-63929-1
http://www.ncbi.nlm.nih.gov/pubmed/32427868
http://dx.doi.org/10.1073/pnas.2201573119
http://www.ncbi.nlm.nih.gov/pubmed/36445969
http://dx.doi.org/10.1088/1742-6596/487/1/012011


Entropy 2023, 25, 183 10 of 10

26. Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Tailor & Francis: London, UK, 1985.
27. Alves, T.F.A.; Alves, G.A.; Lima, F.W.S.; Macedo-Filho, A. Phase diagram of a continuous opinion dynamics on Barabasi–Albert

networks. J. Stat. Mech. 2020, 2020, 033203. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1742-5468/ab75e7

	Introduction
	Model and Simulation
	 Results and Discussion
	Concluding Remarks
	References

