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Abstract: The representation of arbitrary data in a biological system is one of the most elusive elements
of biological information processing. The often logarithmic nature of information in amplitude and
frequency presented to biosystems prevents simple encapsulation of the information contained in
the input. Criticality Analysis (CA) is a bio-inspired method of information representation within
a controlled Self-Organised Critical system that allows scale-free representation. This is based on
the concept of a reservoir of dynamic behaviour in which self-similar data will create dynamic
nonlinear representations. This unique projection of data preserves the similarity of data within a
multidimensional neighbourhood. The input can be reduced dimensionally to a projection output
that retains the features of the overall data, yet has a much simpler dynamic response. The method
depends only on the Rate Control of Chaos applied to the underlying controlled models, which allows
the encoding of arbitrary data and promises optimal encoding of data given biologically relevant
networks of oscillators. The CA method allows for a biologically relevant encoding mechanism
of arbitrary input to biosystems, creating a suitable model for information processing in varying
complexity of organisms and scale-free data representation for machine learning.

Keywords: bio-inspired computing; machine learning; self-organised criticality

1. Introduction

One of the aims of methodologies applied to feature extraction for machine learning
is to find separation boundaries within the datasets such that categorisation algorithms
can readily classify the samples. Different methods rely on specific approaches, based
on probabilistic or deterministic principles. In general, the most effective approaches are
those that emphasise the common features shared within the class, understate features that
separate class members, and ideally perform the opposite for between-class comparisons [1].
Most commonly, these problems form part of some regression where multimodal input
is reduced to a few representative variables [2]. Here, it is proposed that these types of
problems are common in biological systems and that a bio-inspired approach based on
simple connected networks of nonlinear controlled biochemical oscillators is capable of
creating nonlinear representation spaces that facilitate classification greatly. The network
is based on individual units from biochemical origins that are nonlinear and can exhibit
chaotic behaviour. These units are then controlled using the Rate Control of Chaos (RCC)
method devised by [3], which can stabilise the dynamic behaviour into steady state or
periodic orbits. The method ensures that each individual unit can maintain stability even
when perturbed externally. The cumulative effect of the total network shows stable dynamic
behaviour that shares properties with Self-Organised Critical systems [4].

The concept of Self-Organised Criticality is the notion that a nonlinear dynamic system
can be at an equilibrium or critical point such that a small perturbation may cause it to
transition from one state to another state. The underlying dynamic behaviour of the
elements that form such a system is based on local dynamic behaviour that contributes
to global stable states. Such a mechanism has previously been conjectured to underlie
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biological dynamic behaviour by [5,6]. This requires, however, a control method that
is capable of ensuring the dynamic stability of those units; even if they are perturbed
externally. These units would, without such a control method, result in unstable dynamic
behaviours, such as is the case in spatiotemporal chaos. The use of RCC allows such
a network to maintain regularity even when perturbed, and from this network, it has
the emergent property that contains all three key features of a Self-Organised Critical
system, namely non-trivial scaling due to external perturbation, spatiotemporal power-
law correlation with respect to the total behaviour of the network, and self-tuning to a
critical point [7]. The concept of stability and SOC despite external perturbations allows a
representation of input resulting in a uniquely dynamic consistent representation which
forms the basis of the Criticality Analysis method.

The resulting network of oscillators is adaptive, and dynamically stable, allowing a
system that is therefore suited to act as a deterministic reservoir of oscillators, capable of
receiving input in a deterministic and consistent manner that can be apparently scale-free.
This reservoir of oscillators is, even in its most basic representation, capable of uniquely
creating a stable and consistent representation of input, especially if this is in itself dynamic.

Two approaches that share similarity with the CA method are the Liquid State Machine
(LSM) [8] and the Echo State Network (ESN) [9], which represent the use of a network of
artificial neurons with random connections, perturbed by external data. These networks are
then readout by an output layer of neurons that requires training using a suitable learning
rule, which can be efficient [10]. Such a representation depends much on the randomised
connectivity for a trainable response, may not produce uniquely represented datasets, can
create spurious states, and, due to the decorrelation rules applied during training to ensure
non-overlapping output, may lose information contained in the data [11]. The approach
used for ESN may provide efficient representation at the edge of criticality [12]; however,
this is still based on a Recurrent Neural Network approximation of the dynamic system to
be represented. Furthermore, existing correlations are not guaranteed to be retained close
to the edge and extensive tuning is required to drive the ESN to this edge.

The advantage of the Critically Analysis method is that the network states are deter-
ministic, in the sense that the resulting states are consistent with the presented input, and
each input will result in the same state. Furthermore, similar input will result in nearby
states in the dynamic sense, where the representation spaces are dynamically separated
into spatial domains. The CA method will also provide the ability to change the dynamic
behaviour of the network in frequency or other dynamic properties. Additionally, unlike in
the case of an echo state machine or reservoir-computing approach [9], the number of units
is fairly small, and the number of oscillators and their connectivity affects the dynamic
response, but not so much the representation, allowing scale-free consistent representations,
as will be shown in the results.

The proposed Criticality Analysis method can be recognised as a nonlinear mapping
of the feature space into a lower dimensional representation space. This is somewhat
comparable to the approach used in Principle Component Analysis, where a feature space
is linearly mapped into one spanned by the principle components ordered by variance
dimension. The highest eigenvalues of the feature vectors contribute to the transformation
matrix based on the corresponding eigenvectors. The product of the transformation matrix
with the feature vectors will then produce a linear map that is representative of the data
emphasising the largest variance components and can also be used for dimensionality
reduction [2] (Section 12.1).

The relevance of the CA approach for machine learning is that such a method will
allow suitable representation of both static and dynamic data for classification, although
the nature and number of oscillators needed to represent any given dataset is still very
much under study. It is clearly the case that no arbitrary dataset is ideally suited specifically
for any given network of oscillators, for which idealised classifiers can be defined, but
it will allow a universal approach to the data, which is not possible without the CA
representation. The CA representation permits static, dynamic and multimodal data to
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be directly represented alongside each other, independently from their range or variance.
As will be shown, the CA approach also allows scale-free representation and regressed
representation of complex data, on which classification may readily be performed. The
approach is in itself not a classifier, although it shares similarities to some clustering
methods, but permits consistent and deterministic representations on which a classifier can
be applied. Existing methods for regularisation focus on the reduction in outliers, such as
irregular, or low-frequency occurring data values. The CA method does not seem to require
this, as the resulting representation is by its nature regularised into the stable deterministic
oscillation or steady state.

The relevance of this approach to biological representation should also be emphasised.
The problem of any given biosystem of receiving data with high variance and logarithmic
scales into a limited representation capable system of receptors or biochemical dynamic
systems should not be underestimated. It has been known that a biosystem is required
to be able to deal with such problems in a deterministic and reproducible manner [6].
The proposed mechanism of a network with Self-Organised Criticality properties with
consistent scale-free representation based on relatively simple biochemical oscillators would
allow even the smallest nontrivial biosystem to receive external input perturbation such
that its own integrity and regularity are not affected, and it is able to respond in a consistent
and scaled manner to those inputs.

2. Methods

The Criticality Analysis method is based on a network of Rate Control of Chaos (RCC)
controlled nonlinear oscillators [3]. These oscillators are, in effect, stable oscillators due
to the RCC method. However, the parameter space of the oscillators is in the chaotic
domain. The oscillators are still weakly chaotic, i.e., when perturbed they will return to a
periodic state, but not necessarily to the same orbit as before the perturbation due to the
control. Because the RCC oscillator is deterministic, it will always go to the same orbit
with the same perturbations, and the perturbation that is somewhat similar will result in
a nearby, but uniquely different orbit. The network can be effectively controlled by these
perturbations for this reason. It has already been shown that a network of such controlled
oscillators is capable of stabilising chaotic and noisy oscillators, even when the instability
is due to complexity, such as is the case in spatiotemporal chaos [3]. The RCC method
adapts the local nonlinear behaviour of the system. It is conjectured that this adaptation
causes small adjustments to equilibria. Such equilibrium points are moulded by the control
into hyperbolic ones, if they are not already hyperbolic, and therefore acquire the associ-
ated characteristics, such as the applicability of the Hartman–Grobman Theorem [13,14]
that asserts that the behaviour in a domain containing a hyperbolic equilibrium point
is topologically equivalent to that of its linearization. Furthermore, a network of these
RCC-controlled oscillators shows scale-free behaviour, emerging as higher-order relations
between the perturbations and the total system response. This depends on the domain of
control of the oscillators, and their connectivity, as would be expected [4].

In this paper, a model of a bienzymatic oscillation is used developed by Berry [15],
which is described by (4) to (7). This model, which is subsequently referred to as the Berry
model, has previously been shown to be controllable using the Rate Control of Chaos (RCC)
method [4]. The model describes two enzymes that control the formation of extracellular
matrix m from soluble filaments f . The proteinase p transforms the matrix into filaments,
and conversely, transglutaminase g converts the filaments into the matrix. The extracellular
matrix is also produced rim at a constant rate, and each protein decays proportionally to p.
rim is the bifurcation parameter that causes the system to be chaotic within specific domains.
By applying the Rate Control of Chaos, which is described by the quotient q f (1), and the
two control functions σp (2), and σg (3), the system remains in controlled stable orbits for a
wide range of values of the bifurcation parameter. Within the subsequent simulations, the
model is usually shown as a time series of the main variables m and f or as phase space
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plots of f (x-axis) versus m (y-axis). Additionally, the total summed behaviour of the main
variables will be referred to as M and F (capitalised).

q f =
f

f + µ f
(1)

σp(q f ) = fp e(ξp q f ) (2)

σg(q f ) = fg e(ξg q f ) (3)

d m
d t

= kg
f g

KG + f
− m p

1 + m
+ rim (4)

d f
d t

= −kg
f g

KG + f
+

m p
1 + m

− f p
1 + f

(5)

d p
d t

= σp(q f )γ
f n

Kn
R + f n − ka p2 (6)

d g
d t

= σg(q f )β
f l

Kl
S + f l

− kdeg
g p

Kdeg + g
(7)

The Berry model parameters are as follows: γ = 0.026, β = 0.00075, KR = 4.5, KS = 1,

KG = 0.1, Kdeg = 1.1, kg = kdeg = 0.05, ka =
kdeg
Kdeg

= 0.0455 and the Hill numbers l = n = 4.
For different values of the bifurcation parameter rim in (4), the model exhibits a wide
range of dynamic behaviour, including periodic cycles, bistability and chaos [15], if left
uncontrolled. The RCC control may be tuned for different amounts of control, in most
cases (unless otherwise stated), the control parameters are µ f = 2, fp = 1, fg = 1, ξp = −3,
ξg = −3. Deterministic external input ε is added to the rim parameter as in Equation (8),
and it is also used to connect the different oscillators together using a scaled relative
contribution from the other n− 1 oscillators (without self-connections):

ri
im =

n

∑
k=1,k 6=i

wk mk + ε (8)

where wk the connectivity strength for the oscillator which is fixed for this simulation, and
importantly, remains within the chaotic domain. ε is a variable that represents the external
data input and matches different attributes of the data provided to the input oscillators.
These perturbations are fixed for a number of time steps of the evolution of the total system
to allow the system to stabilise into a new orbit due to the new data presented. It should be
made clear that the system will remain in the new stable orbit until the input is changed
again when it will move to yet another orbit.

The Rate Control of Chaos method is furthermore used to provide dynamic scaling of
the input variables. This can be employed to ensure that the input data are normalised and
relies on the relative change in the input ε to perturb the input oscillator proportionally,
which is indicated by εi for each input variable in the range {εi, . . . , εn} for any n attributes
of the data. This dynamic normalisation is described by the following equations.

qi
ε =

εi

εi + µi
ε

(9)

σi
ε = f i

εe(θi
ε qi

ε qi) (10)

ri
im =

n

∑
k=1,k 6=i

wk mk + σi
εεi (11)

where εi is the external input that represents a data point, µi
ε is the maximal value of the

data (which is predetermined and constant), f i
ε is a constant scalar, and θi

ε is the RCC
control variable as described before, with mostly f i

ε = 1 and θi
ε = −3. qi is the proportional

RCC scaling for oscillator i to which the input is presented (cf. (1)); this allows the input to
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be scaled in relation to the oscillator and also makes static data (such as a constant value) a
dynamic variable. The RCC control is finally used to scale the input variable εi itself and is
added to the rim parameter of oscillator i.

The dynamic Hebbian learning rule is used for the simulations where the network
is adjusted based on the cross-correlation of their activities [16]. The rule is based on the
relative fraction of filament contribution for each oscillator across a connection. The weights
are then described by the following equation.

wij = θie(
αi q fi q f j sgn(q f j−q fi)) (12)

where the quotients q fi and q f j represent the proportion of filament as in Equation (1) for
the respective oscillators i and j, and the weight projecting from i to j is adjusted according
to (12) which strengthens the connection if the difference in these quotients is positive
(i.e., the target is stronger than the source) and reduces the strength when this is not the
case. Because the values of fi and f j may change over time, the weights may adapt to the
changing behaviour of the system. Typical values for the learning parameters are αi = −1
and θi = 1.

The second model used is a four-dimensional extension of the classical three-dimensional
Lorenz model that incorporates an additional feedback loop in [17]. The model can exhibit
chaos and hyperchaos and is described by Equations (20)–(23):

qx =
x

x + µx
(13)

qy =
y

y + µy
(14)

qz =
z

z + µz
(15)

σx = e(ξx qx qz) (16)

σy = e(ξy qx qz) (17)

σz = e(ξz qx qy) (18)

σw = e(ξw qy qz+ω) (19)
d x
d t

= a(y− x) + eσxyz + kw + Dx (20)

d y
d t

= (cx− dy− σyxz) + Dy (21)

d z
d t

= (σzxy− bz) + Dz (22)

d w
d t

= (ρy + f σwyz) + Dw (23)

where a = 56, b = 16, c = 49, d = 9, e = 30, f = 40, k = 8, r = −600 for the sys-
tem parameters [17] (Section 3.1), and µx = 1000, µy = 100, µz = 100, µw = 3000,
ξx = −1.5, ξy = −1, ξz = −1, ξw = −1.5, ω = 0.055 for the RCC parameters in the
RCC Equations (13)–(19). The external input to the oscillators is provided by ρ = −100ε
with ε as the perturbation value representing data for each oscillator. Additionally, the
n oscillators are connected to each other using the diffusion terms Dx, Dy, Dz, Dw where
each term is simply the weighted sum of the corresponding variables for the oscillators,
e.g., Dx = ∑n

k=1 wkxk, with optional weighting term wk. Note that the bifurcation parameter
r is chosen in the hyperchaotic domain; see Figure 1 in [17].
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The models were simulated using the EuNeurone, version 2.3 numerical integra-
tion software, which is available on Zenodo [18]. The results can nevertheless be readily
simulated using other fixed-step numerical integration tools. The numerical integrators
used were the standard fixed step integration Runge–Kutta RK4, and Fehlberg RK algo-
rithms [19] (pages 363–366). Results were then exported into Hierarchical Data Format 5
(HDF5), subsequently analysed, and plotted using Matlab.

The datasets used in these experiments are the standard, unmodified versions of
the classic Iris dataset (3 classes, 4 attributes, 120 samples, numerical), the Wine dataset
(3 classes, 13 attributes, 178 samples, multivariate), and the Bonemarrow dataset (unclas-
sified, 36 attributes, 172 samples) from the UCI Machine Learning Repository [20]. The
order of the samples was randomised before input to the oscillators, and the category labels
were not presented to the networks; these were only used to determine the class after the
simulations. With the Bonemarrow dataset, all incomplete samples were excluded, and
three of the attributes were unused. The main aim of this dataset is to test for possible
relations between some attributes and survival [21]. It is important to note that the data
in these models are used to generate the nonlinear representation spaces, not primarily to
provide categorisation directly. These models are shown to allow a biologically relevant
mechanism to represent dynamically changing, as well as static, data to be represented in a
manner that facilitates categorisation and is insensitive to scale, but sensitive to variability
within the sample dataset.

3. Results

Let us first consider the simplest representation case, where the four-dimensional Iris
dataset is projected onto a small network of four Berry oscillators. We will then explore the
effect of Hebbian learning, reservoir computing, normalisation and the persistence of the
generated representations.

3.1. Simply Perturbed Berry Model

The four oscillators are RCC controlled, as previously described, and have mutual
weights of wk = 0.0005, and the Iris data is scaled by 0.00025 when added to Equation (8)
as the parameter ε. Figure 1A shows the first twelve data points of the Iris datasets as the
four values presented to the network. Each data point is clamped to the input for 50,000
evolution time steps where the step size is 0.1. In the next panel, Figure 1B shows the
dynamic response of the network of those twelve data points, as the total amount of M
of the four oscillators, colour-coded to the correct class. The class type itself is not used
by the network as such. Panel C shows the resulting dynamic response due to the data
perturbation of the entire Iris dataset as a phase space representation of the total F versus
M. Here, the blue class (Iris setosa) causes the largest perturbations, followed by the red
class (Iris virginica) and finally the green class (Iris versicolour). Note that the last two are the
classes that require nonlinear separation boundaries to classify [20]. To allow for readily
classification, although the aim here is to create dynamic representation spaces, not to
optimise for classification, the maxima of each of the total oscillations are plotted in panel
D. It should be clear that the representation is not perfectly separable given the data, but
that even a simple perceptron classifier can be readily trained to perform reasonably well
on this representation using two simple linear boundaries. This representation of the Iris
data is due to the dynamic response of the network to the perturbations that represent the
data points and is emphasised by the criticality properties of the controlled chaotic system.
Additionally, this dynamic response requires only relevant input, and no training for the
representation is necessary.

To demonstrate this interesting property of criticality in response to deterministic
perturbations, the network is extended to 64 RCC-controlled Berry oscillators. The Iris data
are presented to the network as input to only the first four oscillators with a scaling of 0.005,
and the network weights are reduced to wk = 0.00005. Apart from the reduction in overall
connectivity strength and the number of oscillators, the model remains the same. Due to
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the critical response, i.e., the ability to change state from one orbit to another due to small
perturbations (in this case the data), the network response is qualitatively similar to the
small network of four oscillators, as can be seen in Figure 1E, where the phase space plot
of the orbits colour coded to the categories is shown. Subsequently, Figure 1F shows the
maxima of these orbits on which a classifier can readily be trained.

A

0 1 2 3 4 5 6

Evolution 10
5

0

1

2

3

4

5

6

7

8

Ir
is

B

0 1 2 3 4 5 6

Evolution 10
5

0

5

10

15

20

25

30

35

40

45

50

M

C D

8 8.5 9 9.5 10 10.5

max(F)

36

37

38

39

40

41

42

43

44

45

m
a

x(
M

)

E F

145 150 155 160 165 170 175 180 185 190

max(F)

520

540

560

580

600

620

640

660

680

700

m
a

x(
M

)

Figure 1: A First 12 samples of the Iris data set as presented to the 4 oscillator network. B
Total M resulting from the perturbations caused by the Iris dataset of the network. C Total
F versus M of the 4 oscillator Iris perturbed network showing different dynamic domains
representing categories. D Maxima of F versus M of the figure in panel C demonstrating
possible linear separation bounderies. E Iris perturbed phase space plot of F versus M of
the 64 oscillator network, showing size independent constant representation of the data. F
Phase space plot of the maxima of the 64 oscillator Iris perturbed network, showing consistent
representation of the data.

18

Figure 1. (A) First 12 samples of the Iris dataset as presented to the 4-oscillator network. (B) Total M
resulting from the perturbations caused by the Iris dataset of the network. (C) Total F versus M of
the 4-oscillator Iris perturbed network showing different dynamic domains representing categories.
(D) Maxima of F versus M of the figure in panel (C) demonstrating possible linear separation
boundaries. (E) Iris perturbed phase space plot of F versus M of the 64-oscillator network, showing
size-independent constant representation of the data. (F) Phase space plot of the maxima of the
64-oscillator Iris perturbed network, showing consistent representation of the data.
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3.2. Oscillators with Dynamic Hebbian Learning

It is well understood that the connectivity weights in a network of oscillators can affect
the behaviour of the system, and to explore this property, a subsequent set of experiments
was devised. A network of four oscillators is adapted with the dynamic Hebbian learning
rule according to Equation (12). The weights respond to the changing behaviour of each
oscillator from i to j where the latter is the target and the former is the source. The external
data input is provided as in the previous models, but with enhanced input strength of 0.005
as described before. The learning parameters are αi = −1 and θi = 1 for all connections in
this experiment. The results are shown in Figure 2A, where twelve orbits of the total M are
shown over time. Panel B shows the phase space plot of F versus M of the entire Iris dataset.
In panel C, the maxima of these two variables are shown. At first glance, it may appear
that the representation in this manner makes it harder to classify; however, as can be seen
from the first panel in Figure 2A, the shape of the oscillation has changed rather than the
amplitudes. This shows that the connectivity of the critical network of oscillators affects the
dynamic behaviour of the system, rather than the individual amplitudes or peaks of each
of the periods. To classify such dynamic behaviour, in a meaningful biologically relevant
sense, would require the subsequent classifier to be able to receive the dynamic input of
the representation and separate them as different evolutions over time. To illustrate this
further, the median frequency of each total oscillation for the total value of F was estimated
and plotted against the maxima of the total value of M. This is shown in panel D, where the
adjusted mean frequency estimate can be used in combination with the maxima to separate
the classes, in a non-optimal but suitable manner. The importance is not the efficacy of the
classifier, but the ability to represent complex data in different ways that are meaningful for
continuous dynamic systems such as biosystems to permit classification in the first place.
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Figure 2: A Evolution in time of 12 samples from the Iris data set input to a network of
oscillators with dynamic Hebbian learning. B Phase space plot of the total F versus M of
all the Iris samples, showing changes in dynamic response due to the perturbations causing
adaptive learning. C Maxima of total F versus M of all the Iris samples in the network,
showing poor separation on amplitude. D Median frequency of the total F versus the maximal
M showing that separation is possible due to the changing dynamics of the orbits, as is shown
in panel A.

19

Figure 2. (A) Evolution over time of 12 samples from the Iris dataset input to a network of oscil-
lators with dynamic Hebbian learning. (B) Phase space plot of the total F versus M of all the Iris
samples, showing changes in dynamic response due to the perturbations causing adaptive learning.
(C) Maxima of total F versus M of all the Iris samples in the network, showing poor separation on
amplitude. (D) Median frequency of the total F versus the maximal M showing that separation is
possible due to the changing dynamics of the orbits, as is shown in panel (A).
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3.3. Deterministic Reservoir Computing

The property of changing dynamics based on external perturbation may be exploited
in a different manner, as part of a representative state based on these perturbations. Such
a reservoir of dynamic behaviour requires a readout layer for categorisation. To explore
this aspect, another network was devised that contained six Berry-type oscillators with
two additional external oscillators that may act as readout units. These two external oscil-
lators are configured similarly to the six reservoir units. In this simulation, the network of
six oscillators that form the reservoir does not contain any learning, similar to the four units
in the first model, but the learning rule is only applied to the connections of all six units
to the readout units [10]. The data are provided to four of the six reservoir units in
Equation (8). The input to readout units 7 and 8 is given by

r7
im = φ7

n=6

∑
k=1

wk F + m8 (24)

r8
im = φ8

n=6

∑
k=1

wk M + m7 (25)

where F and M are the summed values of the six f and m variables, respectively, and
φ7 = φ8 = 0.00015 as scalars. wk represents the weight from each of the six units to
unit 7 and 8 in each equation and is determined by the dynamic Hebbian learning rule (12).
In other words, the input to each unit here is the summed weight in proportion to the total
value of F of the reservoir for unit 7, and in proportion to the total value of M for 8. In
addition, the value of m8 is added to unit 7 and vice versa to reflect the effect the units have
on each other. The parameter values are the same as in the previous models, except that
the external input is scaled to 0.00225, and the fixed connections in the reservoir are 0.0002.
The learning parameters are αi = −3 and θi = 3 for the two readout units.

The result of presenting this reservoir with the Iris dataset is shown in Figure 3. Panels
A to C show five arbitrarily chosen dynamic responses to each of the three categories as
observed by readout unit 7 over time. Because the connectivity strength is higher than in the
first experiment, the network responds with different oscillations due to the perturbations
of each data point. As can be seen, there are significant differences in these responses, and
although some points are not easily defined, they are each recognisably representative of
their class. Panel D shows the maxima of all these oscillations for the Iris dataset, which
can be compared to the single orbit oscillations that characterised the first model (described
in Figure 1). Furthermore, by comparing the individual readout units 7 and 8 in Figure 4, it
is clear that these units independently show different aspects of the reservoir behaviour.
Panel A shows the maxima of unit 7, and C the maxima of unit 8. The first shows the
same characteristic behaviour as the overall reservoir (compared to Figure 3D), and panel
D shows the characteristic behaviour as comparable to the original model in Figure 1D.
It can therefore be concluded that the readout units show a dynamically reduced but
characteristic behaviour of the entire reservoir, i.e., each individual oscillator shows the
same behaviour for which the entire network is required to produce. The exact nature of
the properties of the classifier required to actually separate these classes using either of the
readout units (or both) is not essential for this argument, but it is clearly much easier to
classify on one oscillator’s behaviour rather than a network, or indeed the data itself. To
complete the comparison of this reservoir computing approach, the median frequencies of
the two readout oscillators are also determined and shown in Figure 4B for unit 7 and in D
for unit 8, showing that the median frequency versus the maxima of f7 and f8, respectively.
These are different again from the previous model experiment (in Figure 2) due to the lack
of adaptation in connections and the overall readout of the network.
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Figure 3: A Orbits of 5 samples of the first class in the Iris data set as represented by the
read-out unit 7 in time. B Orbits of 5 samples of the second class in the Iris data set as
represented by unit 7 in time. C Same as previous panels, but for the third class. D Phase
space plot of the maxima of total F and M of the six reservoir units (i.e. excluding the
read-out units, 7 and 8).
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Figure 3. (A) Orbits of 5 samples of the first class in the Iris dataset as represented by the readout
unit 7 over time. (B) Orbits of 5 samples of the second class in the Iris dataset as represented by unit 7
over time. (C) Same as previous panels, but for the third class. (D) Phase space plot of the maxima of
total F and M of the six reservoir units (i.e., excluding the readout units 7 and 8).

A

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

max(f
7
)

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

m
a
x(

m
7
)

B

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

max(f
7
)

3.1

3.2

3.3

3.4

3.5

3.6

m
e
d
fr

e
q
(m

7
)

10-8

C

2 2.1 2.2 2.3 2.4 2.5 2.6

max(f
8
)

2.4

2.5

2.6

2.7

2.8

2.9

3

m
a
x(

m
8
)

D

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
max(f

8
)

3.125

3.13

3.135

3.14

3.145

3.15

3.155

3.16

3.165

3.17

3.175

m
e
d
fr

e
q
(m

8
)

10-8

Figure 4: A Phase space plot of the maximal f and m from the read out unit 7. B Phase
space plot of the maximal f versus the median frequency of m of unit 7. C Phase space
plot of the maximal f and m of the read out unit 8. D Phase space plot of unit 8, showing
maximal f versus the median frequency of m.

21

Figure 4. (A) Phase space plot of the maximal f and m from the readout unit 7. (B) Phase space plot
of the maximal f versus the median frequency of m of unit 7. (C) Phase space plot of the maximal f
and m of the readout unit 8. (D) Phase space plot of unit 8, showing maximal f versus the median
frequency of m.
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3.4. Simply Perturbed Wu Model

The previous experiments may give the impression that the choice of the Berry model
is essential to these results, but apart from the requirement of the RCC control to provide the
critical state, different models can be used. As an illustration, the Iris data were presented to
a network of Wu models. These oscillators are an extended version of the classical Lorenz
model. The parameters are described in the Methods section, and the results can be seen in
Figure 5. Panel A shows W (the summed value of the four w variables of the four models)
over time for 20 samples, colour-coded for each category. Notice that the system is now
not oscillating, but moves to representative controlled steady states. Panel B shows the
phase space plot of the maxima of Z versus W (after transients have been removed), in
effect showing the steady state points. The relative location of these points is comparable
to the ones produced by the Berry model due to the fact that the perturbations cause
somewhat similar dynamic responses, even if the quantitative response is very different.
That this is the case for a specific perturbation and made visible for a specific projection of
the representation space can be seen in panel C, where the phase space plot of the maxima
of three of the four system variables is shown, with the relative representation clearly
visible. The simple perturbed model approach is appropriate for the Iris dataset and would
allow readily categorisation based on the network response. It is worth noting here that
nonlinear models may be devised to fit arbitrary limit cycle shapes [22], but perturbing
networks of such models would not provide similar results due to the SOC properties of
the RCC-controlled network not present in the former network of models.
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Figure 5: A Network of four Wu oscillators with Iris data input, showing the evolution of
20 samples with total W of the network. The network does not oscillated and converges to
steady states, as shown in the plot where the transients end at a specific value of total W .
B Phase space representation of the maximal total Z versus W showing the steady state
representations in two dimensions allowing separation. C Three dimensional representation
of the maxima of total Y , Z and W , with the Iris data presented to the four Wu oscillator
network, showing different representation in multiple dimensions.
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Figure 5. (A) Network of four Wu oscillators with Iris data input, showing the evolution of 20 samples
with total W of the network. The network does not oscillate and converges to steady states, as shown
in the plot where the transients end at a specific value of total W. (B) Phase space representation of
the maximal total Z versus W showing the steady state representations in two dimensions allowing
separation. (C) Three-dimensional representation of the maxima of total Y, Z and W, with the Iris data
presented to the four Wu oscillator network, showing different representation in multiple dimensions.
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3.5. Dynamic Normalisation

Normalisation is often used to ensure that the data with large variations is within
the boundaries of the representation space. It allows the data to be scaled and repre-
sented as uniformly as possible for the training of a classifier. Here it is shown that
the use of a dynamic normalisation method has the same effect as it would have for a
normal n-dimensional representation space. The standard Wine dataset with 3 classes
and 13 attributes is used to show that normalisation, using the method described by
Equations (9)–(11), improves the ability of the network to create a nonlinear representation
space for subsequent classification. This dataset has large variations between attributes,
and this can skew the ability of a classifier, which is why it tends to be normalised before
processing anyway. Figure 6 shows the input of Wine data into the 64 Berry oscillator
network. Panel A and B show the data as unscaled input, i.e., as is, with scalars of 0.001 for
the first 12 attributes, and 0.0001 for the last attribute, which is about two orders of mag-
nitude larger than the other attributes. Additionally, the network connectivity is initially
randomised around a mean of 0.000035 with a variance of 0.00001, and it is subsequently
kept at the same value. This shows that the network connectivity changes the behaviour but
not the dynamic response to individual data attributes. The figures show that the system
behaves similarly to the Iris data (that has only four attributes), but is not readily classifiable
on the amplitudes. Using the dynamic normalisation on top of the same approach (as
described in the Methods section), but with everything else kept the same (including initial
random connectivity strengths), the result shows that now the network can represent these
data points as nonlinear orbits (panel C), whose maxima could conceivable be classified
(panel D).
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Figure 6: A Network of 64 Berry oscillators with unmodified, scaled input from the 13 at-
tribute Wine data showing phase space of all samples as total F versus M . B Maximal F
versus M of all the Wine samples, showing poor inherent separation based on amplitude.
C Same 64 oscillator network, but with dynamic normalisation function to adjust the input
representation to the network, showing the phase space of total F versus M . Note that the
position of the samples in the nonlinear representation has changed. D Maximal F versus M
of the dynamic normalised Wine data of all samples, showing that the normalised input has
improved the dynamic nonlinear representation such that some separation will be possible.
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Figure 6. (A) Network of 64 Berry oscillators with unmodified, scaled input from the 13-attribute
Wine data showing phase space of all samples as total F versus M. (B) Maximal F versus M of all
the Wine samples, showing poor inherent separation based on amplitude. (C) Same 64-oscillator
network, but with a dynamic normalisation function to adjust the input representation to the network,
showing the phase space of total F versus M. Note that the position of the samples in the nonlinear
representation has changed. (D) Maximal F versus M of the dynamic normalised Wine data of all
samples, showing that the normalised input has improved the dynamic nonlinear representation
such that some separation will be possible.
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3.6. Representational Persistence

After addressing the nonlinear representation available using Criticality Analysis for
classification tasks, the manner in which CA behaves with respect to unknown relations
within the data needs to be considered. To this end, a simulation was performed using
a non-categorical dataset to demonstrate that the resulting dynamic behaviour is still
consistent with the input and that the representation of known shared feature relations
persists in the CA representation.

Figure 7 shows the nonlinear Criticality Analysis representation of 142 individuals
from the Bonemarrow dataset [21]. This was made using the 64 Berry oscillator network
with normalisation of the 34 input features using scalars of 0.0001 and network connectivity
strength of 0.00005. The dataset is not specifically designed for classification or regression,
but to determine if some of the features increase the likelihood of survival or quality of
health. Specifically, the increased dosage of CD34+ cells per kg may extend survival. The
survival status is shown in panel A, where no clear pattern emerges, which is consistent
with the original results. The representation should show if any of the features are similar to
shared features within the dataset. If the feature is persistently responsible for a nonlinear
representation state, this would show as a grouping within the nonlinear representation. In
the absence of such recognisable groups, or the inability to define such groups with possible
separation boundaries, the data may not contain the required information to allow this, or
there is too much variability (possibly due to noise). In this case, comparing the features
with the representation shows that none of the features show any relation to the categories
that these represent, apart from the two age-related features. It is known that both the
age of the donor and the age of the recipient are factors that exist persistently within the
data representation [21]. Therefore, the resulting Criticality Analysis representation should
show these relations. Panel C shows the representation of the donor age showing clustering
between the two classes (donors younger than 35 years, and older). Additionally, panel
D shows the two age classes associated with recipients of the two age groups (recipients
younger than 10 years, and older). The age relations are categorisable and demonstrate that
their relations persist within the CA representation even though the other features do not.
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Figure 7: A A network of normalised input of the Bonemarrow data colour coded to survival
of 64 Berry oscillators showing little relation between the two categories. B Same network
coded to the aimed relation to the relative increase in CD34+ cells/kg showing also little
relations between individuals. C Same network coded to the known relation with the bone
marrow donor age (blue < 35, green ≥ 35 years old). D Network with colour coding to the
also known relation with bone marrow recipients age (blue < 10, green ≥ 10 years old). The
last two figures show clear grouping expressing the persistence of the age relation within the
CA nonlinear representation.

24

Figure 7. (A) A network of normalised input of the Bonemarrow data colour-coded to survival of
64 Berry oscillators showing little relation between the two categories. (B) Same network coded to
the aimed relation to the relative increase in CD34+ cells/kg showing also little relations between
individuals. (C) Same network coded to the known relation with the bone marrow donor age
(blue < 35, green ≥ 35 years old). (D) Network with colour coding to the also known relation with
bone marrow recipients age (blue < 10, green ≥ 10 years old). The last two figures show clear
grouping expressing the persistence of the age relation within the CA nonlinear representation.
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4. Discussion

One of the issues with categorisation problems is that the representation of data
should be in a manner such that the categorisation method requires minimal effort to train.
Commonly, a large amount of effort is required to optimise this process. For many datasets,
this is not readily possible, due to the temporal and dynamic nature of the data, and the
static nature of the learning process. Although highly optimised algorithms can be devised
for specific datasets, and some significant improvement has been made to allow forms of
adaptive learning, these methods are not generally applicable to dynamic data.

Biosystems need to solve problems at every level of existence, from local low-level
biochemical behaviour to high-level human thought. The overall idea of nonlinear critical
data representation is that it allows different levels to function reliably. The method of
Criticality Analysis aims to provide a much-reduced mechanism for data representation
that is robust and biologically relevant, as it is based on simple oscillators that can exhibit
a consistent and deterministic representation of the input. The main requirement is the
applicability of Rate Control of Chaos on a dynamic nonlinear system such that it can
exhibit criticality. Here, criticality has been defined as the property of a dynamic system to
change state due to small perturbations. When these perturbations are deterministic, as
they represent data points, the result should therefore be deterministic behaviour as well,
as can be seen in the results presented previously.

It should be clear that the network of dynamic oscillators does not require training
to create any representation. There is some need for tuning, where a minimum level of
connectivity is required to ensure that the total behaviour is critical, and there is a maximal
connectivity level that would destabilise the network’s behaviour. This level depends on
the total input of multiple oscillators, and the scalar used for the input data, which were
determined experimentally. However, as can be seen in Figures 2–4, training may allow the
creation of representations on which a categorisation algorithm can more readily be trained.
This would permit an arbitrary dataset to be presented to the network, and then a given
learning algorithm may be able to cause the best representation to achieve categorisation.
This does not necessarily lead to optimal representations or best categorisation, but as can
be seen from the examples shown of the networks based on the Berry and Wu models, a
straightforward representation can produce acceptable results with little effort.

Furthermore, the training of the reservoir can also allow the reduced representation
of a more complex dataset. The algorithm used for training could readily be based on
backpropagation or a similar standard neural network approach. It can therefore be argued
that Criticality Analysis, if based on an adaptive suitable set of oscillators, would allow the
learning of complex data to become possible even for a relatively simple organism, just by
adjusting the weighting of the input of biochemical oscillators.

The data provided to the network need to be scaled to ensure that the total input
is not destabilising the network, in a similar manner as the connectivity. The input data
act as the perturbation to the other oscillators, which explains the deterministic nature
of the perturbation, as each acts as a constant input to the RCC that stabilises the critical
system within each individual controlled oscillator. If the input is too strong or too weak,
the network will simply not be in a critical state. The use of the normalisation approach
may help here, but possibly at the price of a loss of information that may exist in the
relative differences between attributes. The performance of the CA approach depends on
the number of oscillators used to represent the data, the numerical complexity of each
oscillator, and the duration of each perturbation when presenting the network with a data
sample for the system to stabilise into a steady state or orbit. For example, a more biological
extensive representation of a chemical oscillator may require more numerical integration
steps for each oscillator to calculate its evolution, which then needs to be calculated for
every oscillator in the network. A parallel computational implementation of the software is
under development and will improve performance.
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Features that are persistent within the dataset are preserved within the Criticality
Analysis representation. The existence of hidden or convoluted correlations is therefore not
affected using the method, although it does not aid in identifying those especially.

To demonstrate the utility of the CA method for dynamic biological data, we have
recently shown in a proof of concept experiment using IMU sensors that the method can
be used to recognise impaired gait from the raw gait data alone [23]. Subsequently, we
extend this proof to a large gait dataset of healthy normal volunteers to show correct
high-performance classification using CA with SVM classifiers. Additionally, we have
measured gait in children has been used in combination with CA to assess improvements
in health due to clinical treatment [24].

Lastly, the method described in this paper may be considered to be some form of a
clustering algorithm. However, that would neglect the uniqueness of the representation,
and the deterministic nature of the method. The relation between the data properties
and the critical representation is still under investigation. It should be recognised that
not any given dataset can be best represented by any given critical model, in which case,
only one model would fit all datasets. Determining which is the most critical model for
a specific data representation, as well as the development of further models that have
suitable properties for this type of analysis, is still underway.

5. Conclusions

The results show that the nonlinear representation using Criticality Analysis does not
by itself represent underlying correlations, but allows arbitrary data to be categorised using
an appropriate set of oscillators with a suitable categorisation method. It should be clear
that there is no fundamental reason that these oscillators are specifically useful to represent
the attached data, nor are they especially suited for these datasets. The aim is to show that
it is firstly possible to represent data in a dynamic and biologically relevant manner, which
can also be used as a reservoir computing approach, that allows dimensional reduction
without loss of representational behaviour. Secondly, the data can be categorised without
any learning in the best cases in which a simple categoriser (such as a perceptron) can
readily be trained. Thirdly, dynamically changing data are the norm within biological
systems, and the proposed mechanism may be one of the ways in which biological data
may be represented in a size-independent but consistent manner due to the critical nature of
the network of oscillators. The Criticality Analysis method can be used to create a suitable
representation of complex, dynamic data for further optimised categorisation approaches,
but may also shine a light on one of the most fundamental problems in biosystems, that of
reliable, deterministic, and scale-free data representation.
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