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Abstract: The transition from a chaotic to a periodic state in the Duffing chaotic oscillator detection
system is crucial in detecting weak signals. However, accurately determining the critical threshold
for this transition remains a challenging problem. Traditional methods such as Melnikov theory, the
Poincaré section quantitative discrimination method, and experimental analyses based on phase
diagram segmentation have limitations in accuracy and efficiency. In addition, they require large
computational data and complex algorithms while having slow convergence. Improved permutation
entropy incorporates signal amplitude information on the basis of permutation entropy and has better
noise resistance. According to the characteristics of improved permutation entropy, a threshold deter-
mination method for the Duffing chaotic oscillator detection system based on improved permutation
entropy (IPE) and Poincaré mapping (PM) is proposed. This new metric is called Poincaré mapping
improved permutation entropy (PMIPE). The simulation results and the verification results of real
underwater acoustic signals indicate that our proposed method outperforms traditional methods in
terms of accuracy, simplicity, and stability.

Keywords: Duffing system; improved permutation entropy; Poincaré mapping; weak signal detection

1. Introduction

In recent years, the study of signal detection methods based on the Duffing chaotic
oscillator has gained significant attention in the field of weak signal detection [1-4]. This
approach leverages the sensitivity of the chaotic oscillator to extremely weak periodic
signals and its immunity to noise. The Duffing oscillator detection system can be expressed
as d?x(t)/dt? + y - dx(t)/dt + ax + bx® = rcos(wt), where i, a, b, r are the parameters
that can influence the characteristics of the system. Prior to utilizing the Duffing system for
target signal detection, a driving force r with the same frequency as the target signal is preset
in the system, and the amplitude of the driving force is adjusted to bring the system to the
critical chaotic state. Let s() be the signal to be detected, when s(t) is input into the Duffing
system, the equation transforms to d?x(t) /dt? + u - dx(t)/dt + ax + bx® = r cos(wt) + s(t).
The presence of the target signal is established by examining the system’s state before and
after the signal is introduced. If the system remains in a chaotic state, it signifies that the
signal under test lacks a target signal. On the other hand, if the system transitions to a
periodic state, it indicates the existence of the target signal [5]. The size of the driving force
added to the Duffing chaotic oscillator system directly determines whether the system
is in a chaotic or periodic state. Thus, the threshold of the driving force in the Duffing
chaotic oscillator is a crucial parameter that significantly impacts the efficiency of detecting
weak signals, and its solution is an essential prerequisite for chaos oscillator detection [6-9].
However, as what will be discussed in Section 2, this threshold that leads the system to
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the critical chaotic state is varied owing to the influence of noise and the frequency to
be detected. Hence, it is of great importance to determine this parameter quickly and
accurately. It is noteworthy that the issue of determining the threshold for the Duffing
system is not equivalent to the problem of chaos identification. Near the threshold, the
system undergoes a transition from a critical chaotic state to a periodic state and remains
invariant thereafter. Therefore, the key to confirming the threshold lies in identifying when
the system state undergoes a transition and remains stable.

Several scholars have investigated threshold determination methods, including Mel-
nikov analysis [10], phase diagram method [11], power spectrum method [12], Poincaré
section method [13-15], and 0-1 test [16]. However, these methods have their limitations.
The Melnikov theory analysis method has a low solution accuracy and a high implementa-
tion difficulty, while the phase diagram method has a poor computational accuracy and
lacks adaptability. The power spectrum analysis method is unable to distinguish between
periodic, random noise and chaotic signals effectively, and the Poincaré section method is
subjective and not suitable for automatic recognition by computers. According to [17], the
weakness of the abovementioned methods are listed in Table 1.

Table 1. Weakness of traditional threshold determination methods.

Methods Weakness
Melnikov analysis High implementation difficulty
Phase diagram method Poor computational accuracy
Power spectrum method Unable to distinguish between periodic and chaotic dynamics
Poincaré section method Subjective
0-1 test Poor computational accuracy

Entropy is commonly used to measure the complexity of a signal, with higher entropy
values indicating greater chaos [18,19]. There are several popular entropy algorithms, in-
cluding approximate entropy [20,21], sample entropy [22], and permutation entropy [23,24].
However, these algorithms have limitations, such as the high computational complexity
of the sample entropy algorithm and the low signal resolution of the permutation entropy
algorithm [25-27]. To address these issues, Chen et al. proposed an Improved Permutation
Entropy (IPE) algorithm in 2019, which considers both the amplitude and order information
of signals and has good anti-noise performance [28].

In 2020, Huang Ze-hui proposed a threshold determination method based on multi-
scale entropy to overcome the limitations of the Duffing system’s current method [29].
This approach leverages the differences in the multi-scale entropy of the Duffing system in
different states. However, this method requires a repeated calculation of the sequence’s
entropy value to find the most complex sub-sequence and its corresponding multiscale
entropy value, resulting in significant computational complexity and its not being suitable
for the real-time detection of the system.

This paper proposes a method for determining the threshold and state of a Duffing
chaotic oscillator detection system based on Improved Permutation Entropy and Poincaré
section theory using the PMIPE approach. The goal is to address the problem of threshold
determination in Duffing systems. This method involves adding different driving forces
to a Duffing oscillator system with predetermined frequencies and parameters in a weak
signal detection system, using the IPE algorithm to calculate the complexity of the Poincaré
section sequence under different driving forces, and comparing entropy values to determine
whether the system is in a periodic or chaotic state This process enables the determination
of the threshold of the Duffing chaotic oscillator detection system. Compared to the method
based on multi-scale entropy, this approach is simpler, more efficient, and suitable for
real-time signal detection. Unlike the multi-scale entropy method, it does not require
the calculation of the entropy value for the entire sequence or the determination of the
maximum entropy value of the system.
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2. Duffing Chaotic Oscillator Detection System
2.1. Duffing Oscillator System

The Duffing oscillator, a widely studied chaotic oscillator renowned for its intricate
dynamics, is defined by a nonlinear term in its equation. Initially derived from the nonlinear
dynamical equation describing the forced oscillations of a damped pendulum, the Duffing
oscillator model is a result of considering a damped and periodically driven elastic system
with high-order powers disregarded. The equation of motion for the undamped and
undriven elastic system is given as:

d?x/dt® +ax +bx® =0 1)

After the inclusion of damping and periodic driving forces, the Duffing equation
is obtained:
d*x/dt* + p-dx/dt + ax + bx® = r cos(wt) )

Here, j represents the damping ratio, and ax + bx> denotes the nonlinear term, with a
and b being positive real-number system parameters. The amplitude of the driving force
is denoted by r, while w refers to the circular frequency of the periodic driving force. In
this study, 4 = 0.5, a = 1, b = 1 were used, respectively. Moreover, all experiments in this
study were conducted on a computer with an Intel(R) Core(TM) i7-10510U CPU.

By adjusting the amplitude of the driving force, the Duffing system traverses a range of
states, including the initial state, homo-clinic orbit state, bifurcation state, chaotic state, and
periodic state. Equation (2) is a simple deterministic equation with a unique solution x(t), but
the presence of the nonlinear term in the equation gives rise to complex dynamical properties,
such as chaotic behavior. Numerical methods, such as the fourth-order Runge-Kutta algorithm,
are required to simulate and solve the nonlinear differential equation and obtain a solution.

2.2. Impact of Noise on Duffing Oscillator System

In weak signal detection, target signals are often accompanied by noise, which can
affect the system itself. By adding a noise signal to Equation (2), the Duffing equation can
be written as follows:

d?x(t)/dt? + - dx(t) /dt + ax + bx® = r cos(wt) + An(t), ©)]

where An(t) denotes the noise signal with a variance of A.

Different variance noise signals are added to the Duffing oscillator system in Equation (3);
let w = 27T x 20, the system outcomes are shown in Figures 1-3. It is seen that the variance
of noise directly influences the dynamics of outcome of the system. When r = 0.826 and
A = 0.001, the system is in a periodic state. As A increases to 0.04, the system is in a
chaotic state. The system will go back to a periodic state if the driving force is improved to
0.827. Therefore, the system requires a larger driving force value to enter the periodic state
when there is more noise. As noise increases, the degree of disorder in the system increases.
To transition from disorder to order, the ordered components within the system must be
strengthened to overcome the increasing disorder. Furthermore, the enhancement of external
noise leads to an increase in the chaotic critical threshold.

The results above indicate a slight impact of noise on the threshold, with a marginal
increase observed as the noise level rises. It is important to note that considering noise in
threshold calculations is applicable only when the noise is stationary and its characteristics
are known. This involves calculating the threshold using Equation (3). However, if the
noise is non-stationary or its characteristics are unknown, it is advisable to disregard the
influence of noise in threshold calculations, and the threshold can be determined using
Equation (2).
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r=0.826with noise var=0.001
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Figure 1. The system is in a periodic state when the variance of noise signal is 0.001 and the power
amplitude r = 0.826.

r=0.826with noise var=0.04

_2 1 1 1 1 1 1 1 1 1
10 102 104 106 10.8 1 1.2 14 116 118 12
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Figure 2. The system is in a chaotic state when the variance of noise signal is 0.04 and the power
amplitude r = 0.826.
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r=0.827with noise var=0.04
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Figure 3. The system is in a periodic state when the variance of noise signal is 0.04 and the power
amplitude r = 0.827.

3. Poincaré Mapping Improved Permutation Entropy
3.1. Poincaré Mapping

The Poincaré section is a geometric method proposed by the renowned physicist
Poincaré in the late 19th century. It selects a suitable section in the multi-dimensional phase
space and analyzes the properties of nonlinear systems by observing the distribution of
intersection points between the section and the system trajectory. This method replaces the
N-order continuous system flow with an N-1 order discrete system and reduces the system
order while ensuring that the limit set of the discrete system corresponds to the limit set of
the continuous system flow.

In the n-dimensional phase space (x1, dx1/dt, xo, dxp/dt, - - -, x, dx, /dt), a section
is chosen appropriately, and a Poincaré section is defined by fixing a pair of conjugate
variables (x;, dx;/dt) at a certain value on this section. As the Poincaré section intersects
with the system trajectory, it maps the continuous trajectory in the original phase space
to a series of discrete points on the section, represented as P, 11 = TP, (with T being the
Poincaré map). The Poincaré section exhibits the following patterns:

(1) When there is a fixed point or a few discrete points on the Poincaré section, the motion
trajectory is periodic;

(2) When the Poincaré section consists of dense points with self-similar structures, the
motion trajectory is chaotic.

Figure 4 illustrates the intersection points between the Duffing system and the Poincaré
section in different states. The three-dimensional and two-dimensional plots of the intersec-
tion points in the chaotic state of the Duffing system and the Poincaré section are shown in
(a), respectively. Similarly, (b) present the plots of the intersection points in the periodic
state of the Duffing system and the Poincaré section, respectively. The red dots represent the
intersection points between the Poincaré section and the chaotic oscillator. Evidently, when
the Duffing system is in a chaotic state, the values of the Poincaré section demonstrate a
high degree of randomness. Conversely, when the Duffing system is in a periodic state, the
values of the Poincaré section exhibit minimal fluctuations. By definition, entropy measures
the complexity of a system, and the entropy value of the motion trajectory is higher in the



Entropy 2023, 25, 1654 6 of 22

chaotic state than in the periodic state. Therefore, the entropy value of the Poincaré section
can be used to distinguish between chaotic and periodic states of the system.

(b)

Figure 4. Intersection diagram of Duffing system and Poincaré section in different states. The *
represent the intersection point of the Duffing system and Poincaré cross-section; The colored lines
represent the phase trajectory of a duffing system. (a) Three-dimensional diagram of the intersection
of chaotic states and Poincaré sections of Duffing system; (b) three-dimensional diagram of the
intersection of periodic states and Poincaré sections of Duffing system.
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3.2. Improved Permutation Entropy Algorithm

The Improved Permutation Entropy Algorithm (IPE) improves upon the traditional
Permutation Entropy Algorithm (PE) by addressing the issue of missing amplitude in-
formation [28]. This algorithm is capable of extracting more information from complex
sequences while reducing computational complexity and enhancing signal resolution. The
algorithmic flow is as follows:

(1) Normalize the time series {x1,x2,-- -, xy} through the cumulative distribution
function shown in the following equation, where y and ¢ represent the mean and variance
of the time series, respectively.

1 X (=2
yi= / e 22 dt 4)
oV2m/ -

(2) Phase space reconstruction.

Yi= []/i/]/HTr' o f]/i+(m—1)r] 1<i<N-m+1 ©®)

(3) Symbolize the first column Y (:, 1) of the phase space Y using the Uniform Quantifi-
cation Operator (UQO) and calculate the corresponding symbolization result for the first
column S(:, 1) of the phase space S.

0 ymm§”§A+ymin
1 ymin+A§u§2A+ymin

UuQO(u) = (6)

L—1 Ymax — A < u < Ymax

Here, L denotes a predetermined discretization parameter; A represents the discrete
interval and meets A = (Vmax — Ymin)/L; Ymax and ymin represent the maximum and
minimum values of the sub-sequence y, respectively.

(4) The corresponding symbolization result S(:, k) for the k column Y (:, k) (2 < k < m)
of the phase space Y is obtained using the following formula:

S(j,k) = S(j,1) + floor[(Y(j,k) — Y(j,1))/A]1 <i < N-m+1 @)

where floor indicates rounding down.

(5) With reference to the symbol patterns’ definition in the Permutation Entropy
Algorithm, the improved permutation entropy (IPE) regards every row of the symbolized
phase space S as a “pattern” 71;, 1 <[ < L™ and utilizes the term Symbol Pattern (SP) in
the algorithm. Calculate the probability p; of each SP in the symbol phase space; according
to the definition of Shannon entropy, the improved permutation entropy can finally be

expressed as:
Lnl

IPE(m,L) = =Y _ p/Inp 8)
I=1

When only one element in the probability distribution of the SP is 1 and the other
elements are 0, IPE takes the minimum value 0. When the probability distribution follows
a uniform distribution, IPE takes the maximum value In(L™). Therefore, IPE can be
normalized. In this study, normalized entropy values were used.

3.3. Threshold Determination Method for Duffing System Based on PMIPE

In this paper, a threshold determination method for the Duffing system based on PMIPE
is proposed by combining Poincaré map and IPE. The calculation steps are as follows:

(1) Determine the frequency and other parameters of the Duffing oscillator system based
on the signal to be detected by the weak signal detection system.



Entropy 2023, 25, 1654

8 of 22

Duffing oscillator
system in different
states

~

J

(2) Impose distinct driving forces on the Duffing oscillator system to induce periodic and
chaotic states, respectively.

(38) Calculate the Poincareé section sequences of the Duffing oscillator system, in chaotic
and periodic states, correspondingly, to obtain a set of Poincaré section sequences in
varied states.

(4) Use the IPE algorithm to calculate the complexity of this set of Poincaré section
sequences and obtain the curve of complexity as a function of driving force.

(5) Using entropy = 0.15 as a critical standard, if entropy < 0.15, it is considered that the
system is in a stable periodic state, with entropy values exceeding 0.15 defined as
non-periodic entropy.

(6) Determine the threshold of the duffing detection system as the maximum driving
force that has a non-periodic entropy.

In practical applications, the signal to be detected typically contains noise. As dis-
cussed in Section 2.2, the impact of noise on the determination of the threshold can be
neglected if the noise is non-stationary or its characteristics are unknown.

This research approach is illustrated in the flowchart presented in Figure 5.

| | IPE parameter setting ||
\

[ I
I Embedded |
| dimension |
. |
Cal.cu]ate the Pomc? N :| Calculate the Duffing system threshold
section sequences of the and analyze the algorithm performance
Duffing oscillator system Length of data Y g P

J

Figure 5. The flowchart of threshold determination method based on PMIPE.

4. Results and Discussion
4.1. Influence of Different Parameters on Improved Permutation Entropy

When utilizing the improved permutation entropy to solve the threshold of the Duffing
system, it is necessary to select appropriate parameters such as embedding dimension,
data length, and time delay so that the IPE of the Poincaré section sequence of the Duffing
system can differentiate the sample entropy of chaotic and periodic states.

(1) Influence of Embedding Dimension on IPE

To investigate how embedding dimension m influences improved permutation en-
tropy, we set the power frequency of the Duffing system as 10 Hz, sampling interval as
0.001 s, and sampling time as 10 s. Additionally, we set different power values r = 0.838
and r = 0.80, respectively, to put the Duffing system in periodic and chaotic states. We
used the IPE algorithm to calculate the Poincaré section sequences of the aforementioned
Dulffing system, and the results are shown in Figure 6. It can be observed that when the
embedding dimension is between 1 and 5, the entropy values exhibit significant disparities.
As the embedding dimension increases, the entropy values of both types of Poincaré section
sequences diminish, with the entropy value of the chaotic sequence plummeting at a faster
rate. Consequently, when computing the Poincaré section entropy value using improved
permutation entropy, this investigation suggests selecting an embedding dimension of
1<m<5.
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Figure 6. The influence of embedding dimension on IPE algorithm.

(2) Influence of Data Length on IPE

We set the Duffing system as in Step (1) in this Section and calculated the entropy
values of the periodic and chaotic states for 100 to 10,000 Poincaré section points. Figure 7a
depicts the influence of diverse data lengths on the IPE algorithm, while Figure 7b offers
a local zoom-in. Notably, for data lengths above 500, the entropy values for periodic and
chaotic states attain a stable tendency. Such tendencies facilitate differentiating system
states based on entropy values.
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Figure 7. Influence of data length on IPE algorithm. (a) Full view; (b) partial magnification view.

(3) Influence of time delay on IPE

We set the Duffing system as in Step (1) in this Section and calculated the entropy
values of the periodic and chaotic states for time delays ranging from 1 to 8 points. Figure 8
depicts the impact of time delay on the IPE algorithm. When the time delay is between 1
and 4 points, the entropy values have significant differences. As the time delay increases,
the entropy value of the Poincaré section sequence of the chaotic system also rises, tending
toward stability. Comparatively, the entropy value of the periodic sequence experiences
faster growth. Notably, prolonged time delays lead to a loss of the periodic sequence’s
characteristic information. Therefore, this study recommends selecting a small time delay,



Entropy 2023, 25, 1654

10 of 22

preferably not exceeding 4 points, when calculating Poincaré section entropy values using
improved permutation entropy.
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Figure 8. The influence of time delay on IPE algorithm.

4.2. Simulation of Threshold Determination for Duffing Oscillator System with Different
Frequency and Driving Forces

Sinusoidal driving forces with varying frequencies and amplitudes were applied to the
system with a sampling time ranging from 10 to 30 s and a sampling interval of 0.001 s. The
system was subjected to driving forces with a range from 0.824 to 0.827 with an interval of
0.001. Notably, we also consider a larger range of 7, please see Appendix A for detailed results.
Based on the conclusion in Section 4.1, the embedding dimension m was set to 4 and the time
delay set to 1 point, and the data length was greater than 500. The improved permutation
entropy of the system is analyzed with respect to the amplitude of a 10 Hz sinusoidal signal,
as shown in Figure 9. The analysis shows that the improved permutation entropy decreases
and then stabilizes after the driving force amplitude exceeds 0.8257. The system state when
r = 0.8257 is shown in Figure 10. The critical threshold of the system is determined to be
r = 0.8257 using the IPE-Poincaré method. Figure 11 shows that the system is in a periodic
state when r = 0.8258, which proves that the threshold should be 0.8257.
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Figure 9. The entropy change of the 10 Hz signal detection system.
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Figure 10. When f = 10 Hz and r = 0.8257, the system is in a chaotic state.
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Figure 11. When f = 10 Hz and r = 0.8258, the system is in a periodic state.

The improved permutation entropy of a 20 Hz sinusoidal signal detection system is
analyzed with respect to the driving force amplitude, as shown in Figure 12. The analysis
indicates that the improved permutation entropy decreases and then stabilizes after the driving
force amplitude exceeds 0.8254. The system state when r = 0.8254 is shown in Figure 13, where
a chaotic state can be easily found. Hence, the critical threshold of the system is determined to
be r = 0.8254 using the IPE-Poincaré method. Figure 14 shows that the system is in a periodic
state when r = 0.8255, which proves that the threshold should be 0.8255.
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Figure 13. When f =20 Hz and r = 0.8254, the system is in a chaotic state.
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Figure 14. When f = 20 Hz and r = 0.8255, the system is in a periodic state.
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Similarly, the improved permutation entropy of a 100 Hz sinusoidal signal detection
system is analyzed with respect to the driving force amplitude, as shown in Figure 15. The
analysis shows that the improved permutation entropy decreases and then stabilizes after
the driving force amplitude exceeds 0.8248. The system state when r= 0.8248 is shown
in Figure 16. Therefore, the critical threshold of the system is determined to be r= 0.8248
using the IPE-Poincaré method. Figure 17 shows that the system is in a periodic state when
r= 0.8249, which proves that the threshold should be 0.8248. Table 2 compares the true
thresholds with the results obtained from Figures 9-17; it can be seen that, for all three
cases mentioned above, our method provides a very accurate evaluation.
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Figure 15. The entropy change of the 100 Hz signal detection system.
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Figure 16. When f = 100 Hz and r = 0.8248, the system is in a chaotic state.

Table 2. Comparison of true thresholds with the results obtained by our method.

Frequency True Threshold Evaluated Threshold by Our Method
10 Hz 0.8257 0.8257
20 Hz 0.8254 0.8254

100 Hz 0.8248 0.8248
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Figure 17. When f = 100 Hz and r = 0.8249, the system is in a periodic state.

4.3. Comparison and Analysis of Different Methods

For the 10 Hz sinusoidal signal detection system, the maximum multi-scale entropy
method from literature [19] and the PMIPE method proposed in this paper were used
to calculate the system threshold, with a Duffing sequence length of 400,000. For the
maximum multi-scale entropy method, the length of each sub-sequence was set to 30,000,
the initial number of chromosomes to six, and the crossover point to a random number.
The calculation outcomes are presented in Figure 18. It is noteworthy that both methods
can correctly determine the critical threshold of the system. However, the maximum
multi-scale entropy method required 573.95 s to calculate, while the IPE-Poincaré method
took only 30.69 s. Thus, the IPE-Poincaré method significantly reduces the computational
complexity, rendering it more suitable for real-time computations. For comparison, we
also use the 0-1 test method and Lyapunov exponents to evaluate the threshold; results
are given in Figure 19. Obviously, the 0-1 test value becomes constant after r = 0.8253,
meaning that its threshold evaluation result is 0.8253, which is not very accurate. As for
the Lyapunov exponent method, it assigns higher values to chaotic states and smaller
values to periodic states. However, it is hard to determine an accurate threshold. This may
because of the inappropriate parameter selection; therefore, the calculation of Lyapunov
exponents can be easily influenced by parameter selection. Table 3 compares the results
of the abovementioned four methods. It can be seen that the proposed method and MSE
achieve the highest evaluation accuracy, followed by the 0-1 test and Lyapunov exponent.
Notice that our method only takes 30.69 s to complete this experiment while all of the other
methods require more than 500 s. Hence, our method outperforms traditional algorithms
in both accuracy and computation cost.

Table 3. Comparison of traditional threshold determination methods with our method.

Methods Frequency True Threshold Evaluated Threshold =~ Computation Time (s)
MSE 10 Hz 0.8257 0.8257 573.95
0-1 test 10 Hz 0.8257 0.8253 598.38
Lyapunov 10 Hz 0.8257 \ 561.57
Our method 10 Hz 0.8257 0.8257 30.69
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Figure 19. Results of threshold calculation by 0-1 test and Lyapunov exponents. (a) 0-1 test;
(b) Lyapunov exponents.

4.4. Verification of the Real Underwater Acoustic Signal

To verify the effectiveness of the threshold determination method based on PMIPE
in solving real underwater acoustic detection systems, a set of measured ship signals and
ambient noise was selected as sample data. The waveform of the measured data is shown
in Figure 20, and its frequency domain waveform is shown in Figure 21. It can be seen that
the measured underwater acoustic ship signal contains a sinusoidal signal with a frequency
of 50.27 Hz. Using the same method as in this paper, we set the frequency of 50.27 Hz in

the duffing oscillator system. The system threshold can be obtained as r = 0.825, as shown
in Figure 22.
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Figure 21. Spectrum of real underwater acoustic signals. (a) Ship signals; (b) ambient noise.
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We adjusted the driving force amplitude r to 0.825 so that the system was in a critical
chaotic state, and then we added the real underwater acoustic signal to the detection system.
When we added the ship signals to the system, the system phase diagram transitioned from
the chaotic state shown in Figure 23a to the periodic state shown in Figure 23b. When we
added the ambient noise to the system, the system phase diagram transitioned from the
chaotic state shown in Figure 23a to the periodic state shown in Figure 23c. Comparing
Figure 23b,c shows that the system realized the detection of target signals among real
underwater acoustic signals. Therefore, the PMIPE method can accurately calculate the
system threshold.

15

05

xV-s™!

-05

-0.5 0 0.5 1 1.5 2

(0

Figure 23. Detecting real underwater acoustic signals. (a) The duffing system did not add a real
underwater acoustic signal; (b) the duffing system adds the ship signals; (c) the duffing system adds
ambient noise.

4.5. Analysis of Anti-Noise Performance of Threshold Determination Methods

For the 20 Hz sine signal Duffing oscillator detection system, with the driving force
amplitude set to v = 0.8254, a same-frequency signal with an amplitude of 0.001 V was
added to the system as the detected signal, which put the system in a periodic state. We
then added noise signals with different signal-to-noise ratios (SNRs) to the detected signal
and calculated the IPE-Poincaré value to assess the change in IPE under different SNRs in
both chaotic and periodic states. The results are shown in Figure 24. It can be observed that
when the SNR is greater than 20 dB, noise has little influence on the IPE-Poincaré value.
As the SNR decreases, the critical threshold for chaos increases due to the amplification of
external noise. Despite this, the system remains in a chaotic state due to the small amplitude
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of the driving force signal. It has a similar entropy value to that of a system with only
noise signals but no same-frequency signals. Therefore, when the SNR is greater than
—20 dB, the periodic state of the system can be effectively determined, achieving the goal
of signal detection.

0.55 T T T T T T T T T

0.5 8
4
0.45 |- g

IPE

—+H&— with noise and signal
—%— with only noise

-30 -25 -20 -15 -10 -5 0 5 10 15 20
SNR(dB)

Figure 24. IPE results of chaotic state and periodic state under different SNRs.

5. Conclusions

The problem addressed in this paper revolves around the challenging task of determin-
ing the threshold in the Duffing system. Emphasis is placed on leveraging the substantial
distinctions between the Poincaré section values in both periodic and chaotic states of the
Duffing system. An advanced permutation entropy of the Poincaré section composition
sequence is employed to establish a correlation between the driving force amplitude and
the improved permutation entropy. The utilization of a PMIPE-based threshold determina-
tion technique is then introduced, and this algorithm is applied to the detection system of
sinusoidal signals with different frequencies. A comparative analysis is conducted with
the maximum multiscale entropy, 0-1 test, and Lyapunov exponent methods to gauge
the efficacy of the proposed technique. The results of our investigation illustrate that the
algorithm we propose exhibits a remarkable accuracy to determine the system’s threshold.
Moreover, our method needs much less computational cost compared with the traditional
methods, and our algorithm also performs well under noisy conditions. In summary, our
study provides an innovative and effective resolution to the intricate challenge of threshold
determination in the Duffing system, showcasing the potential of the proposed algorithm
in addressing this pertinent issue.
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Appendix A

In this section, we extend the range of the driving force amplitude. A comprehensive
analysis of the system output is undertaken for each distinct driving force amplitude condition.

Figures A1-A3 show how the IPE varies across a broader range of the driving force for
signal detection systems operating at frequencies of 10 Hz, 20 Hz, and 100 Hz, respectively.
The step-length is set as 0.001. For all three cases, our method consistently yields higher
IPE values when the driving force is less than 0.82, indicating a heightened complexity in
the dynamics within this range. As the value of r increases, a notable abrupt decline in
IPE occurs, signifying a transition of the system from a critical chaotic state to a periodic
state. Subsequently, the IPE stabilizes at a lower constant level. According to our threshold
determination strategy, the recommended thresholds for the signal detection systems
operating at frequencies of 10 Hz, 20 Hz, and 100 Hz are determined to be 0.8257, 0.8254,
and 0.8248, respectively. Notably, these values align seamlessly with the results expounded
upon in Section 4.2 of this paper.

Figure A4 compares the results of threshold evaluations from various methods applied
to a signal detection system operating at 10 Hz. Once again, these findings corroborate
those detailed in Section 4.3 of this paper. Notably, both MSE and our algorithm converge
on a threshold value of 0.8257, while the 0-1 test yields a slightly different assessment at
0.8253. The application of the Lyapunov exponent method proves challenging in threshold
determination, possibly attributed to the sensitivity of the results to parameter selection.
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Figure A1. The entropy change of the 10 Hz signal detection system. The driving force ranges from
0.7 to 0.9, with a step length of 0.001.

0.7

06
05F a A j
R I
1 I
04f o* 5*? | *
¥ % | 1
O 3l !
03r i; i X 0.8254
i 1Y 0.215115
02f h v
]
\
\
0.1F . =
0 |

0.7 0.75 0.8 0.85 0.9
r

Figure A2. The entropy change of the 20 Hz signal detection system. The driving force ranges from
0.7 to 0.9, with a step length of 0.001.
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Figure A3. The entropy change of the 100 Hz signal detection system. The driving force ranges from
0.7 to 0.9, with a step length of 0.001.
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Figure A4. Threshold evaluation results by different methods for signal detection system operating at

10 Hz: (a) results of MSE and our algorithm; (b) results of 0-1 test; (c) results of Lyapunov exponent.
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