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Abstract: In this work, we suggest a quantum-like simulator concept to study social processes related
to the solution of NP-hard problems. The simulator is based on the solaser model recently proposed
by us in the framework of information cascade growth and echo chamber formation in social network
communities. The simulator is connected with the random laser approach that we examine in the
A and D-class (superradiant) laser limits. Novel network-enforced cooperativity parameters of
decision-making agents, which may be measured as a result of the solaser simulation, are introduced
and justified for social systems. The innovation diffusion in complex networks is discussed as one of
the possible impacts of our proposal.
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1. Introduction

Recently, growing interest has evoked the creation of quantum-inspired algorithms for
solving NP-complete problems in economics, business, and finances [1]. Mathematically,
they are related to the Karp’s 21 NP-complete problems [2]. As a rule, these problems
are based on the QUBO (quadratic unconstrained binary optimization) procedure that
requires finding a global minimum of some objective function [3]. At the physical level,
such a function directly relates to the interaction Hamiltonian, onto which the QUBO
mathematical problem defined on some graph can be mapped. In particular, for these
purposes, various Ising Hamiltonians, which are described by the interaction of simple
quantum-like two-level or 1/2-spin-like systems, are suitable [4].

Thus, it is possible to simulate some rather complex optimization processes in the field
of economics, logistics, finances, etc. on a relatively simple physical (analog) information
processing device that is currently called the (coherent) Ising machine (IM).

Physically, IMs represent gain-dissipative devices, c.f. [5]. From a technical point of
view, IMs can be designed on the basis of photonic, electronic, and other platforms by using
well-developed optoelectronic, semiconductor, and silicon technologies [6]. Notably, in
many cases (quantum) spin properties may be realized by binary phases of optical signal
processing, some properties of FPGA, CMOS, etc. [7]. In this regard, such devices may not
have a quantum advantage, which is still an actual and yet unresolved practical problem.
However, they are able to solve NP-hard (QUBO) problems much faster than conventional
processors, since they can use well-established optical interference effects and possess
vanishing overhead [8].

Moreover, various Ising machines are already commercially available; the main task for
engineers and physicists is to increase the number of spins, N, for information processing,
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which is currently in the realm of tens of thousands or more, cf. [9]. Strictly speaking, at the
same time, its operation raises questions that are not only practical but also fundamental.

One of the fundamental issues is the possibility of creating simulators, which may take
into account decision-making (DM) processes occurring with the agents of natural (NIA)
(humans) and/or artificial (AIA) intelligence cf. [10]. Notably, DM problems represent
an important part of behavioral economics, management, and finance at a “microscopic”
level approach to the problems, which remain in the focus of optimization tasks, cf. [11].
The “microscopic” level presumes the online information exchange between DM agents
within some networks. However, the current mathematical formalization of optimization
problems includes “tracing out” the information field itself, which plays a significant role
in DM processes. This means that QUBO tasks are based on the efficient market hypothesis
that deals with some rational DM agents’ activities, cf. [12,13]. In this framework, statistical
(thermodynamically equilibrium) Ising models are widely exploited for the description
and simulation of some (social) network features [14–18]. Therefore, Ising-like models
presuming coupling between spin-like (effectively two-level) systems may be used to study
collective opinion formation and social impact [19,20], for epidemic, information, and
rumor spread in the network environment [21–23]. Nevertheless, such models are not
enough to describe real-life social, cognitive information-driving processes occurring with
DM agents in a network.

Studying DM problems for NIAs in the presence of their interaction with each other
and with AIAs (chatbots, avatars, etc.) traditionally represents a hot topic in the ap-
plied mathematics, artificial intelligence, and control theory and may be resolved in the
framework of agent-based modeling; see, e.g., [24–26]. However, the situation sometimes
becomes more complex and diverse for real-life problems. Usually, agents communicate
with each other in the framework of social, professional, and other networks, which can
affect (rational) decision-making processes. Even in the case of simple rules (with binary
preferences) of the DM agent behavior, the solution of a mathematical problem that accounts
for the network environment (which introduces some uncertainties) becomes complicated
and requires a certain interpretation, cf. [10].

In this regard, it makes sense to model DM agents by simple physical two-level or spin
systems, whose behavior is ruled by the universal (in nature) quantum theory approach.
More precisely, we are talking about socially oriented simulators, which can help in finding
optimized macroscopic features of DM agents from their behavior at the microscopic level of
interaction within various complex networks. Since agents can cooperate by exchanging
information or receiving it from the outside, such simulators are dissipative-driven open
systems; therefore, the information may be significantly weakened or amplified. To solve
such an optimization problem, a physical simulator may be developed on the principles of
interaction of the quantized field with a spin system [27].

Notably, the idea of describing self-organization processes in complex systems far from
thermal equilibrium and inspired by laser theory was proposed a long time ago, cf. [28–30].
These works stimulated the development of the theory of social lasers (solaser) as a part of
quantum-like modeling of biological, cognitive, social, and political processes [27,31–34].
Such modeling explores the mathematical formalism and methodology of quantum theory
outside of physics without offering genuine quantum physical processes. Quantum-like
systems are treated as information processors and the quantum information theory is
in use [35–37]. However, the question of what the active medium that reproduces laser
features beyond physics and simulates social activity is in the real world remains open.

Recently, in [38], we showed that a complex network may be recognized as a laser
medium, containing simple two-level (spin-like) DM agents. In the framework of the
social atom concept (see, e.g., [39]), these (mental) levels characterize two (“spin-up” and
“spin-down”) mutually exclusive states of the agent in decision making. In the presence
of information exchange and an external (information) strong pump field, DM agents
absorb and emit so-called socially actual s-photons (which are short messages, e-mails,
tweets, etc.), as happens with quantum two-level systems in conventional lasers. In fact,
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the spontaneous and stimulated behavior of DM agents removes the question of their
rationality. As we showed in [38], simple rules based on the quantum theory approach
can be attributed to DM agents; see, e.g., [37,40]. These rules can explain the information
diffusion in networks as well as the growth in information cascades [41]. This approach
to social phenomena description and determination matches the aforementioned solaser
model due to its ability to enhance information spreading that occurs as a result of complex
network peculiarities. A simplified quantum-like two-level (spin) DM agents model may
be used in this case; DM agents represent so-called social atoms [39]. However, in [38], the
problem of which parameters could be experimentally observed for the solaser remained
unsolved. This problem is complex enough since it directly relates to measurements in
large social systems.

In this work, we discuss the ways of solving the aforementioned problems. We propose
a social laser simulator as a part of a more general decision-making supporting system. The
measurement of the cooperativity parameter, which characterizes open quantum systems,
and is well known in quantum physics [42], allows us to estimate the behavior and degree
of cooperation of DM agents operating in the original social network environment.

Notice that the solaser concept is broad enough and may be applied to diverse problems
occurring in social sciences, management, logistics, and finance, where the network environ-
ment plays a significant role in the agent’s decision-making problem. For example, we refer
here to the innovation diffusion problem that considerably changed in recent decades due to
the agents’ interaction and communication within social networks; see, e.g., [43].

The paper is arranged as follows. In Section 2, we represent the key features of
networks and some important ideas on how we can create a solaser simulator. We examine
regular and probabilistic networks obeying the power-law degree distribution (PLDD).
In Section 2, we also discuss various types of lasers, which may be characterized by
so-called cooperativity parameters of matter–field interaction and potentially could be
interesting for the solaser simulator design. This section aims to analyze lasers, which
exploit “bad” cavities or use some other physical effects for photon localization within the
gain environment. In Section 3, we establish the model of a solaser simulator. We analyze
this model in the framework of A- and D-class (superradiant) lasers relevant to the field
diffusion, which exhibit field amplification in two different limits of spontaneous emission
and dephasing rates. We specify the key features of superradiant laser characterized
by the establishment of macroscopic polarization in the spin system due to the spin–
spin correlations provided by the photonic field. In Section 4, we summarize our results
establishing the key dependence for the normalized field amplitude, collective polarization,
and population imbalance for the networks with two-level systems. We also discuss the
application of our proposal for innovation diffusion specification and forecasting.

2. Materials and Methods
2.1. Network Architectures

In the literature, different approaches explain the real-world network topology [16,44].
Typically, real-world networks possess a large number of nodes, N � 1, that admit
exploiting continuous degree distribution p(k), where k is the node degree variable. First,
we examine regular networks when p(k) = δ(k− k0), where k0 is constant. Second, for our
purposes, we use networks that obey the power-law degree distribution (PLDD) with p(k)
established as

p(k) =
(η − 1)kη−1

min
kη , (1)



Entropy 2023, 25, 1601 4 of 19

where η is the degree exponent; kmin is the smallest node degree for which Equation (1)
holds. p(k) obeys the normalization condition

+∞∫
kmin

p(k)dk = 1. (2)

Notably, such networks possess the preferential attachment phenomenon, which results in
the hub’s appearance. The largest hub is described by degree kmax called a natural cutoff.
The condition

+∞∫
kmax

p(k)dk =
1
N

(3)

can be used if the network with N nodes possesses more than one node with k > kmax.

From (2) and (3), we immediately obtain kmax = kminN
1

η−1 .
The behavior of PLDD networks essentially depends on power degree η within al-

lowed region 1 < η < +∞, which covers the anomalous (1 < η < 2), scale-free (2 < η < 3),
and random (η > 3) regimes, cf. [45]. The properties of scale-free networks possessing
distribution (1) for η = 2 and η = 3 should be calculated separately.

In Figure 1a–c, we plot networks under examination in this work. Figure 1a demon-
strates a regular network with all-to-all node coupling. The real-world networks are mostly
characterized by degree exponent η > 2. In Figure 1b,c, we represent such networks with
η = 2.3 and η = 4, respectively. The probability distribution function (1) plotted in a
logarithm scale for these networks is shown in Figure 1d.

An important feature of PLDD networks is the existence of hubs, nodes with maximal
node degree [45]. In Figure 1d, the hubs are clearly recognized by the set of dots located in
the right corner of the distribution function p(k). The largest hub is described by degree
kmax. Notably, the number of hubs and their size significantly grow when η → 1.

Further, we exploit the average node degree parameter or simply the average degree,

〈k〉 =
kmax∫

kmin

kp(k)dk, (4)

that determines the statistical properties of the network within the mean-field approxima-
tion. In particular, 〈k〉 indicates the number of connections on average available for an
arbitrarily chosen node in the network. From (1)–(3), we can easily find the average degree
〈k〉 for the PLDD network within domains η > 1, η 6= 2, and η 6= 3 in the form of

〈k〉 = kmin
η − 1
2− η

(
N

2−η
η−1 − 1

)
, (5)

where N � 1 is the number of nodes. At η = 2 and η = 3, for average degree 〈k〉, we
obtain 〈k〉 = kmin ln N and 〈k〉 = 2kmin, respectively. As clearly seen from Figure 1d,
〈k〉 significantly increases with η → 1. A regular network implies a constant number of
connections between the nodes. It is maximal for the complete graph with N nodes and
〈k〉 = k0 = N − 1.
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Figure 1. (a) Complete and PLDD graphs with N = 50 and N = 200 nodes, respectively, for
(b) η = 2.3 and (c) η = 4. (d) PLDDs in a logarithmic scale for the networks given in (b,c). The
dependence of 〈k〉 on power degree η is shown in the inset; kmin = 3.

2.2. What Lasers Do We Need for the Solaser Simulator?

One of the interesting and intriguing problems that appear in the framework of solaser
simulator design is how we can provide the cavity effect for social network simulation
without an external cavity?

2.2.1. Random Lasers

Current social networks serve versatile technical facilities in the information exchange
and dissemination for DM agents and promote so-called echo chamber formation [46].
An echo chamber may be recognized as a rather new social phenomenon that occurs in a
relatively close social network community, which provides selection and support of some
contextual information preventing it from negation, other opinions, etc. The information
localized within some part of the network circulates and reinforces primarily in a close
community. As a result, the echo chamber effect in social communities evokes a social
polarization of the DM agents who make their decisions in agreement with the information
circulated in the echo chamber, cf. [47].

Clearly, the role of echo chambers in current networks is reminiscent of the role of a
cavity that provides feedback in common lasers. Although current photonic technologies
supply various cavities for photon trapping and localization (see, e.g., [48]), it may be
challenging to develop a network structure using them. Thus, we need to obtain the cavity
effect in the solaser simulator without an external cavity, if it is possible.
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Fortunately, in modern photonics there exists a special class of lasers without external
cavities at all; see, e.g., [49]. They are so-called random lasers where an electromagnetic
(EM) field propagates through a disordered medium possessing the gain [50]. Technically,
for random lasers, we can exploit a number of disordered materials, which provide light
diffusion and amplification; see, e.g., [51]. In Figure 2, we represent a sketch of a random
laser operating in two physically well-distinguished limits. The first regime in Figure 2a
corresponds to the so-called diffusive limit of weak photon scattering when condition
λ < Lph < L is fulfilled; λ is the wavelength, Lph is the mean free path of the photon in the
medium, and L is its length. In this regime, the field spectrum exhibits inhomogeneous
broadening that hides separate photonic modes.

Figure 2. (a) Diffusive and (b) localized (Anderson) regimes of light scattering in random lasers that
possess two-level (spin) systems. In random lasers, the angle between incident and outgoing light
beams (not shown here) is small enough.

The other, Anderson photon localization regime, is schematically shown in Figure 2b.
It obeys a chain of inequalities Lph < λ < L and is relevant to the strong scattering regime
with coherent feedback [49]. In this limit, photons after multiple scattering provide a closed-
loop path that also includes a coherent (resonant) backscattering, which participates in
constructive interference. Coherent lasing results from the combination of light amplifica-
tion and interference along different loops. Intensity measurement demonstrates speckle
patterns that establish the picture of various closed loops. Notably, although the chosen
pattern forms accidentally average over a large number of realizations, we can obtain a
quite clear picture of the processes of coherent laser field generation and amplification
in the diffusive gain medium. In other words, we can recognize a random laser in the
Anderson localization regime as a randomly distributed feedback laser where coherent
(resonant) feedback is realized by diffusive elements.

Such a picture is quite close to the formation of echo chambers in the social network
environment. Indeed, we can recognize Figure 2b in another way. It can be assumed that
photons scatter along the paths that form random graphs. Recently, in [52], we offered
a 2D material for the random laser that exhibits randomly formed networks with nodes
that contain two-level systems (atoms, quantum dots, etc.). The network edges represent
channels (waveguides) that provide coupling between the nodes. We studied low-threshold
conditions for random lasing phenomenon, diffusion, and localization of radiation modes
effects depending on the probability of couplings between arbitrary nodes. Thus, such a
laser may be considered for the solaser simulator model.

2.2.2. Superradiant Lasers

Another important effect that may be observed without any laser cavity is superradi-
ance initially proposed by Dicke in his famous work [53]. In particular, Dicke showed that a
collective of inverted two-level atoms can spontaneously transfer to the ground state within
time τc inversely proportional to the number of atoms N, i.e., τc = τs/N, where τs is the
spontaneous emission time in vacuum. As a result, the intensity of spontaneous emission
of the atom ensemble is proportional to N2. Physically, the superradiance phenomenon
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occurs due to the establishment of quantum correlations between the ensemble of TLSs or
spins via collective interaction with the quantized EM field.

The practical realization of superradiance is to fulfill the following conditions. Initially,
a short enough pump pulse incoherently creates the inversion in the two-level system,
which then decays. Thus, the necessary conditions for the establishment of quantum
correlations are

τc � τs, Tp, (6)

where Tp is the characteristic depolarization (dephasing) time for the TLS ensemble. In
other words, condition (6) implies that collective processes should be much faster than
individual relaxation processes, and we require a large number of atoms.

Up to now, superradiance has been extensively studied in theory and experiment;
see, e.g., [54–56]. Recently, superradiance was demonstrated in trapped atoms [57], NV
centers [58], quantum dots [59], etc. Currently, to study superradiance phase transition,
investigations are used for the Dicke model under the condition of thermal equilibrium
and small enough photon number, which may be recognized within the formal limit of
τs, Tp → ∞; see (6) and (12), [60]. In [61], we showed that the equilibrium superradiant
phase transition may be obtained in complex network structures that we discuss in this
work, cf. Figure 1b–d. We showed that the effective Rabi splitting may be enhanced√
〈k〉. In this regard, it seems to be important to establish a clear link between lasing and

superradiant regimes in such a system beyond thermal equilibrium. Notably, in lasers,
we can achieve the condition opposite to (12). We believe that it is useful to establish
the physics of crossover from superradiance to laser. In this regard, one can assume that
two-level systems are placed in the cavity as it occurs in the usual laser.

Recently, in [62], the authors demonstrated spontaneous synchronization of about 106

atomic dipoles in the cavity that contains less than 0.2 photons on average. The steady-
state superradiance was shown in the bad cavity limit, which implies a low lifetime (high
optical losses) for intracavity photons. The practical realization of superradiance in this
experiment is to fulfill a number of conditions. To elucidate such conditions, we introduce
the cooperativity parameter

C0 ≡
g2

κγD
, (7)

which usually characterizes the interaction of a single two-level system with a quantized
field within various problems of quantum optics, cf. [42]. In (7), g is the single-photon Rabi
frequency; κ, γD ' 1/τs are the cavity decay and spontaneous emission rates, respectively.

Collective effects in the decay of the upper level occur with rate γc ' C0γD. Thus, the
superradiant state needs γP much larger than γD and depolarization rate Γ. More generally,
the following inequality is to be fulfilled:

Nγc � γD, (8)

which, in fact, represent some version of (6) at a steady state, cf. [63]. Notably, Equation (8)
presumes a large value of the cooperativity parameter

CN = NC0 =
g2

N
κγD

� 1, (9)

where gN ≡ g
√

N is the collective Rabi splitting parameter. In addition, it is instructive to
introduce critical (intracavity) average photon (Nph,c) and TLS (Nc) numbers (cf. [42])

Nc =
κγD

g2 , Nph,c =
γ2

D
g2 (10)
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that specify critical quantum effects in collective matter–field interaction, which become
important if conditions

Nc, Nph,c � 1 (11)

are experimentally accessible. Equation (11) admits a simple interpretation: a single TLS
and/or single photon may significantly alter the properties of the whole system. For
common lasers in a classical regime, Nph,c � 1, cf. [28].

Notably, for the superradiant state, the average number of photons Nph is smaller than
the number of TLSs, i.e., condition

Nph < N (12)

is fulfilled. From (10)–(12), one can find relation

γD � κ (13)

which implies the bad cavity limit when the photon decay rate κ is large enough.
In practice, common lasers as well as superradiant systems may be described in the

framework of different laser classes. In this case, as we will see below, inequality (13)
corresponds to the D-class lasers [64]; the opposite condition characterizes the A-class
lasers. Thus, our main objective now is to show that both of these limits may be realized
within some complex network structure due to the multimode regime of light–matter
coupling; the transition from superradiant to usual, the A-class laser may be observed in
this case.

3. Results
3.1. Mean-Field Equations for Solaser Simulators

We suppose that the solaser simulator may be represented as effectively 2D material
that possesses a network interface shown in Figure 1. Strictly speaking, we can use 3D
materials that provide required couplings between the nodes, cf. [65]. These couplings
appear as network edges that represent projections onto the plane; see Figure 1. We also
assume that TLSs have |g〉i (ground) and |e〉i (excited) states and occupy nodes of the
complex network as shown in Figure 3. TLSs interact with quantized EM field by a set
of waveguides, which represent edges of the graph and are described by annihilation
(creation) âj(âj

†) operators. The control field, R, is a weak classical injection field (it is not
shown in Figure 3). Practically, such a field may be realized by the interaction of TLSs with
the classical (dressed) field, as it occurs in the framework of the dressed-state laser problem,
cf. [66]. Thus, we represent the Hamiltonian of matter–field interaction in the form:

Ĥ =
1
2

N

∑
i=1

ω0,iσ̂
z
i + ωph

M

∑
i=1

â†
i âi + g

N

∑
i=1

〈k〉

∑
j=1

(
â†

j σ̂−i + âjσ̂
+
i

)
+ iR

N

∑
i=1

(
â†

i − âi

)
, (14)

where σ̂z
i = |e〉ii〈e| − |g〉ii〈g| is the operator of the population inversion for i-th TLS

(i = 1, . . . , N); σ̂−i = |g〉ii〈e|, σ̂+
i = (σ̂−i )† are the ladder operators; ω0,i is the resonant

frequency of the transition of i-th TLS from ground state |g〉i to excited one |e〉i; g (Rabi
frequency) represents the strength of interaction of a single TLS with a photonic mode of
frequency ωph. The number of modes is M ' N〈k〉, where 〈k〉 is the average node degree
of the network structure. Hereafter, we use units with Planck constant h̄ = 1.

Current quantum technologies provide a variety of facilities to realize 2D materials
with network interface plotted in Figure 3. First, we can exploit two-level atoms trapped at
the surface of a 2D structure by the Casimir–Polder effect leading to the attractive van der
Waals forces, cf. [67]. Second, we can consider a photonic crystal membrane that possesses
waveguides and contains a single layer of quantum dots arranged randomly at the network
nodes [68]. Third, we can consider a network structure consisting of micropillars [69]. Each



Entropy 2023, 25, 1601 9 of 19

micropillar may be recognized as a TLS. Thus, we can broadly vary the material parameters
of TLS networks depending on particular realization.

Figure 3. Sketch of the solaser simulator that represents an ensemble of two-level (spin) systems
located within a complex network. In general, the network edges may represent projections of
photon-guiding channels in the plane. All the system occupies an area of linear size L ≤ λ in the
presence of a classical pump beam (pink cylinder).

The operators defined in (14) obey usual commutation relations:

[âi, â†
j ] = δij, (15)

[σ̂z
i , σ̂±j ] = ±2δijσ̂

±
i , (16)

[σ̂+
i , σ̂−j ] = δijσ̂

z
i (17)

Without loss of generally, the system described by Hamiltonian (14) implies a set of Heisen-
berg equations:

dÊ
dt

= −iωphÊ− igK

N

∑
i=1

σ̂−i +
√
〈k〉R, (18)

dσ̂−i
dt

= −iω0,iσ̂
−
i + igKσ̂z

i Ê, (19)

dσ̂z
i

dt
= 2igK(Ê†σ̂−i − Êσ̂+

i ), (20)

Ê =
1√
〈k〉

〈k〉

∑
j=1

âj, (21)

that obey bosonic commutation relation (15). In (18)–(20), parameter

gK = g
√
〈k〉 (22)

characterizes the collective interaction of photonic field Ê with a single TLS. Equation (22)
exhibits an important feature of the structure in Figures 1 and 3: the collective (multimode)
Rabi splitting may be enhanced

√
〈k〉 times in comparison to the single mode case. We

exploit (22) in (14) in the framework of the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) master equation that looks like (c.f. [70])

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+ L̂p[ρ̂] + L̂D[ρ̂] + L̂ph[ρ̂] + L̂pump[ρ̂], (23)
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where operators L̂j characterize various decoherence processes and may be represented as

L̂ph[ρ̂] =
κ

2
(
2Êρ̂Ê† − ρ̂Ê†Ê− Ê†Êρ̂

)
, (24)

L̂D[ρ̂] =
γD
2 ∑

i

(
2σ̂−i ρ̂σ̂+

i − σ̂+
i σ̂−i ρ̂− ρ̂σ̂+

i σ̂−i
)
, (25)

L̂p[ρ̂] =
Γ2

2 ∑
i

(
σ̂z

i ρ̂σ̂z
i − ρ̂

)
, (26)

L̂pump[ρ̂] =
γP
2 ∑

i

(
2σ̂+

i ρ̂σ̂−i − σ̂−i σ̂+
i ρ̂− ρ̂σ̂−i σ̂+

i
)
, (27)

where κ denotes the rate of photon losses in the structure in Figure 3; Γ2 is the dephasing
rate inherent to inhomogeneous broadening that occurs in the spectrum; γP is the TLS
incoherent pumping rate.

In this work, we propose a mean-field approach for Equations (21)–(27) solution that
exploits factorization procedure for averages: 〈σ̂z

i Ê〉 ' 〈σ̂z
i 〉〈Ê〉, 〈σ̂

+
i Ê〉 ' 〈σ̂+

i 〉〈Ê〉. Such an
approach presumes neglecting quantum correlations between the field and TLSs. With the
help of (14) and (21)–(27), we obtain

Ė = −
(
iωph +

κ

2
)
E− igK NJ− +

√
〈k〉R, (28)

J̇− = −
(
iω0,i +

Γ
2
)

J− + igKDE (29)

Ḋ = (γP − γD)− (γP + γD)D + 2igK(E∗ J− − EJ+), (30)

where dots denote derivatives with respect to time, and

Γ ≡ γP + γD + 2Γ2, (31)

is the total depolarization rate for the system shown in Figure 3. For further analysis, it is
useful to introduce the cooperativity parameter

C0 ≡
g2

κΓ
, (32)

which, in fact, represents generalization of Equations (7) for A- and D-class lasers ana-
lyzed below.

In (28)–(30), we introduce the collective mean-field variables:

E = 〈Ê〉, J± =
1
N

N

∑
i=1
〈σ̂±i 〉, D =

1
N

N

∑
i=1
〈σ̂z

i 〉. (33)

Let us also transfer into (28)–(30) new variables by the rule E→ Ee−itω0,i , J− → J−e−itω0,i

and R→ Re−itω0,i :

Ė = −
(
i∆i +

κ

2
)
E− igK NJ− +

√
〈k〉R, (34)

J̇− = −Γ
2

J− + igKDE, (35)

Ḋ = (γP − γD)− (γP + γD)D + 2igK(E∗ J− − EJ+), (36)

where ∆i = ωph −ω0,i is the detuning. Equations (34)–(36) are the subject of our analysis
in this work.
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3.2. A-Class Laser Simulator

Set of Equations (34)–(36) may be considered in the framework of various laser classes
relevant to different ratios between key parameters of the system: κ, Γ2, γD,P, and ∆i. For
the A-class lasers, we suppose that the solution of (34)–(36) obeys condition

Γ ' 2Γ2 � κ, g, γD, γP, |∆i|. (37)

In particular, in (37), we assume that the depolarization rate is large enough due to dephas-
ing parameter Γ2; see (31). We eliminate polarization and population imbalance variables
in this limit setting J̇− = Ḋ = 0. At the same time, we suppose field E to be a real variable
assuming ∆i = 0. From (34)–(36), we obtain

Ė = −κ

2
E− igK NJ− +

√
〈k〉R, (38)

J− =
2igK

Γ
DE, (39)

D = D0 +
2igK

(γP + γD)
(J− − J+)E, (40)

where we introduce steady-state population imbalance

D0 =
γP − γD
γP + γD

. (41)

Solution of (34)–(36) and (38)–(40) for the A-class lasers may be performed in the framework
of perturbation theory, cf. [28]. At the first-order perturbation level, we assume that the
population imbalance is fixed, D ' D0. Substituting it into (39) for polarization of the
medium we obtain

J− =
2igK

Γ
D0E, (42)

Inserting (42) into (40), we can find the next approximation that characterizes corrections
for the population imbalance:

D ' D0

(
1−

8g2
K

Γ(γP + γD)
E2
)

. (43)

Next, inserting (43) into (39) and then into (38), we obtain

Ψ̇ =

(
2g2

K ND0

Γ
− κ

2

)
Ψ−

16g4
K N2D0

Γ2(γP + γD)
Ψ3 + r, (44)

where we introduce normalized field amplitude

Ψ ≡ E√
N

=

√
Nph

N
, (45)

that simply depends on the ratio of average photon number Nph and number of TLSs N.
In (44), we also define effective control field parameter r =

√
〈k〉R/

√
N for the simplicity

of notation.
Equation (44) is the mean-field equation characterizing field diffusion in the framework

of (random) lasers with the network interface in the presence of control field r at r = 0,
relating to supercritical pitchfork bifurcation [71]. In our case, all network peculiarities are
encoded in average node degree 〈k〉. The nonlinear term proportional to Ψ3 plays an
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important role in the non-equilibrium phase transition occurring in the solaser. Therefore,
for the steady-state solution of (44), Ψ̇ = 0, we obtain

0 = AΨ− BΨ3 + r. (46)

In (46), we define

A =
2g2

K N
Γ

D0 −
κ

2
=

κ

2

(
CΓD0 − 1

)
, (47)

B =
16g4

K N2D0

Γ2(γP + γD)
=

C2
Γκ2D0

(γP + γD)
, (48)

where

CΓ ≡
4g2

K N
Γκ

= 4C0N〈k〉 ≡ 4CN〈k〉 (49)

may be recognized as a total network enforced cooperativity (NEC) parameter that includes
depolarization/dephasing rate Γ; CN ≡ C0N, cf. [42] and (7) and (9).

Figure 4 demonstrates the principal dependence of normalized NEC parameter
CΓ/4C0 on particle number N inherent to the network system. For comparison, we repre-
sent the red line that corresponds to the case when the ensemble of TLSs interacts with a
single-mode field; in this limit, we formally set 〈k〉 = 1 in (49). Significant enhancement of
CΓ occurs for the PLDD network when power degree η decreases. It happens due to the
enhancement of communication between TLSs. CΓ takes its largest value in the network
that represents a complete graph; see the green line in Figure 4. In this limit, the NEC
parameter CΓ ∝ N2.

Figure 4. Dependence of the decimal logarithm of normalized NEC parameter CΓ/4C0 on the number
of TLSs (equal to the number of nodes) N for the complete graph and various PLDD networks with
kmin = 3.

Equations (46)–(49) define the second order phase transition to lasing for real order
parameter Ψ. The critical value of the parameters in (47)–(48) at r = 0 obeys the equation

CΓD0 = 1. (50)

Practically, we can choose population imbalance D0,c = 1/CΓ that implies the creation
of initial inversion in the TLS network, or we can define the critical value of NEC parameter
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CΓ,c that obeys Equation (50). In the latter case, we can choose the network parameter
combination µ = 〈k〉N as

µc = 〈k〉cNc =
Γκ

4g2D0
. (51)

For the networks obeying condition µ ≥ µc, the normalized laser field amplitude looks like

Ψ =

√
A
B

∝ Ψ0

√
µ

µc
− 1, (52)

where

Ψ0 =

√
γP − γD

2κ
(53)

is the normalized field amplitude in the vicinity of phase transition point µ = µc.
Equation (53) is a very simple interpretation: the order parameter amplitude is nonzero
when pumping rate γP exceeds spontaneous emission rate γD.

Notice that the critical value of the average node degree, 〈k〉c, also depends on the
number of nodes N for various types of networks. For the complete network, 〈k〉 ' N and
µc ' N2

c . In the vicinity of critical value µc for r 6= 0, from (46), we obtain

Ψ =
(

2r′Ψ2
0

)1/3
, (54)

where r′ = r/κ is the dimensionless control field amplitude.
At large enough NEC parameter CΓ � 1, coefficient A in (47) is essentially positive,

and we can obtain significant amplification of macroscopic field within the network struc-
ture that is proportional to CΓκD0/2 ∝ 〈k〉N. In this limit, for the laser average photon
number from (45) and (52), we obtain

Nph =
(γP + γD)ΓNph,c

8γ2
D〈k〉

, (55)

where the photon number Nph,c is defined in (10). Thus, for the complex network structure
obeying condition 〈k〉 � 1 (see the inset in Figure 1d), it is possible to achieve the purely
quantum limit determined in (11).

3.3. D-Class Superradiant Laser Simulator

Now, let us examine the superradiant state formation for the 2D system described
in Figure 3. Although the superradiant state is relevant to quantum features of TLS
polarizations (dipoles), some vital properties may be elucidated in the framework of
Equations (34)–(36).

In this limit, we consider the bad cavity limit described by inequalities

κ � Γ, g, γD, |∆i|. (56)

Condition (56) enables elimination of EM field amplitude and control field from (34)–(36)
setting Ė = 0 and ∆i = 0, R = 0. In turn, a weak photon field provides spontaneous
synchronization of the TLS dipoles, and from (34)–(36), we obtain

E = −2i
κ

gK NJ−, (57)

J̇− = −Γ
2

J− + igKDE, (58)

Ḋ = (γP − γD)− (γP + γD)D + 2igK(E∗ J− − EJ+). (59)
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First, consider the steady-state supposing J̇− = Ḋ = 0 in (57)–(59). Strictly speaking, E is
complex now, while J− is real. In this case, from Equations (57) and (58) for population
imbalance D, we obtain D = 1/CΓ. Substituting it into (59) by using (57) and (58), we find
the normalized field amplitude dependence:

|Ψ| =
√

γD
2κ

√
γ− 1− (γ + 1)(γ + 1 + G) 1

Cγ
, (60)

where we introduce dimensionless pumping (γ ≡ γP/γD) and dephasing (G ≡ 2Γ2/γD)
rates. In (60), we define another NEC parameter

Cγ ≡
4g2

K N
κγD

, (61)

that characterizes cooperative effects for superradiance in a complex network structure,
cf. (49).

From (60), it is clear that normalized field amplitude |Ψ| persists the superradiant
steady-state under condition

γ− 1− (γ + 1)(γ + 1 + G) 1
Cγ
≥ 0. (62)

To obtain critical values of pumping rate relevant to the edges of domain (62), we set
|Ψ| = 0 in (62) and obtain

γ1,2 = −1 +
1
2
(
Cγ − G

)
∓ 1

2

√(
Cγ − G

)2 − 8Cγ. (63)

Equation (63) specifies the domain of the pumping field

γ1 ≤ γ ≤ γ2, (64)

where lasing is allowed.
In (63), it is clearly seen that, apart from the A-class lasing regime (see (50)), the

pumping rate possesses two thresholds. Assume

Cγ � 1,G; (65)

in the limit of (65) from (63) we obtain

γ1 ' 1, (66)

γ2 ' Cγ. (67)

The first threshold, γ1, characterizes the phase transition to laser when the pumping
field compensates for spontaneous emission. The second, much higher threshold, γ2,
corresponds to the establishment of correlations between the spins. In this limit, γP � γD,
and from (67) and (56), we obtain

|Ψ| '
√

γP
2κ

=
√

2
gK
√

N
κ

. (68)

Equation (68) implies the normalized field amplitude features in the presence of superradi-
ance formation. Further, it is useful to analyze two limits of (68).

Traditionally, the superradiant state is associated with the limit, when the number of
average photons is less than the number of TLSs [54]. This limit corresponds to condition

g
√
〈k〉N <

κ√
2

. (69)
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In the opposite case of |Ψ| > 1 (g
√
〈k〉N > κ/

√
2), we deal with the superradiant laser

limit that implies a large photon number, as it takes place in a usual (A-class) laser. The
crossover occurs at

g
√
〈k〉N =

κ√
2

. (70)

Thus, the experimental verification of condition (69) for network systems (see Figure 3)
represents a challenging and non-trivial task, in particular for complete networks 〈k〉 ' N
and Ψ ∝ gN.

Finally, let us examine the dynamical properties of superradiance within bad cavity
limit (56) and condition (65), respectively. Supposing Ḋ = 0 in (57)–(59), one can derive
(cf. (44))

J̇− =
γD
2
(
Cγ − γ

)
J− −

γDC2
γ

γ
J3
−. (71)

From Equation (71), it is clear that for the superradiant laser, it is more suitable to
consider macroscopic polarization J− as the order parameter instead of field Ψ. At Cγ < γ
macroscopic polarization of TLSs coherently decay. Dynamical phase transition to the
lasing occurs at Cγ = γ, cf. (66). For normalized pumping rate γ, which obeys inequality
Cγ > γ, one can obtain a laser-like enhancement of collective polarization J−.

4. Discussion

Let us summarize the results obtained. In Figure 5, we plot time dependent normalized
field amplitude |Ψ|, collective polarization of TLSs |J−|, and their population imbalance D,
by solving Equations (44) and (71), respectively. The insert to Figure 5b clearly demonstrates
collective decay of of polarization |J−| below the threshold Cγ = γ; see (71). All other curves
in Figure 5 are plotted above the threshold values. As clearly seen, |Ψ| and |J−| demonstrate
familiar S-shaped curve behavior. It is important that these curves are starting from small
initial values. In particular, Figure 5b demonstrates small polarization |J−| = 10−3 at t = 0
that we use as a initial condition. Physically, such a polarization (and relevant photonic
field) occurs in laser and/or superradiant systems due to quantum microscopic processes
(quantum noise) that mean-field theory cannot fully describe. Simultaneously, population
imbalance D (the dotted curves in Figure 5) decreases from its value D0 = 1, which we can
create via the pump field.

Figure 5. Mean-field dependence of normalized field amplitude |Ψ| (the solid lines), TLS polarization
|J−| (the dashed lines), and population imbalance D (the dotted lines) on dimensionless time t for
(a) A-class and (b) D-class (superradiant) lasers, respectively. The control field is normalized as
r′ ≡ r/κ, ∆i = 0, D0 = 1. The other parameters are κ/(γP + γD) = 0.5; κ/Γ = 0.1 for (a) and γ = 10;
γD/κ = 0.01; r′ = 0 for (b). Dependence of |J−| vs. γDt below the threshold is shown in the insert
to (b).
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The curves in Figure 5a,b exhibit the important difference between A- and D-class
lasers. TLS polarization |J−| follows normalized field amplitude |Ψ| and D behavior. On
the contrary, in Figure 5b normalized field amplitude |Ψ| follows TLS polarization |J−|.
For A-class lasers, the dephasing rate of TLSs plays an essential role, while the sponta-
neous emission rate defines crucial properties of the superradiant laser. As a result, the
dynamic processes in these two limits are determined by different cooperativity parameters
(cf. (49) and (61)) and occur at various time scales shown on the abscissa axes in Figure 5a
and Figure 5b, respectively.

Notably, all curves in Figure 5a grow faster if cooperativity parameter CΓ increases;
see the red lines in Figure 5a. Macroscopic polarization possesses some maxima with a
further increase in CΓ. Such a behavior directly results from the cooperativity parameter
enhancement due to the network peculiarities, cf. Figure 4. Similar behavior of TLS’s vital
parameters occurs with the increasing of control field r; see the blue curves in Figure 5a.
However, in this limit, the amplitude of the order parameter becomes much larger. Simul-
taneously, population imbalance may be negative, which indicates the lack of inversion.
Notice that for the large control field our model is non-valid.

The curves in Figure 5 possess an important practical impact for socially mediated pro-
cess studies. For example, we can consider the simulation of innovation diffusion, cf. [25].
In this case, the curves in Figure 5 may be connected with a number of consumers having
adopted by time t and the bell curve of new adoptions. Notably, parameter estimation
for diffusion models has represented a primary interest for a long time; see, e.g., [72]. It
becomes especially crucial in the presence of a network environment [73]. Current theories
and daily practice emphasize the importance of cooperative partnership and correlations
of agents; see, e.g., [74,75]. In particular, our model of the simulator establishes a clear
link between the macroscopic innovation diffusion model parameters and a number of the
microscopic ones by DM agents’ NEC parameters CΓ or Cγ. Existing mathematical tools
allow measuring an average node degree for a given social network estimating an average
number of agents N; see, e.g., [45]. Thus, for a given innovation process, it is possible to
infer information about one of the NEC parameters by the proposed random laser simu-
lator. This circumstance makes it possible to comprehensively investigate social aspects
of the innovation process and, perhaps, predict the likeliest scenarios of its development,
depending on the microscopic parameter variation.

Notably, complex network peculiarities allow obtaining quantum regimes for the
solaser simulator that we do not consider in this work due to the mean-field approximation
that we exploit, cf. (55). In this sense, an intriguing problem occurs with the interpretation
of the quantum limit for social systems possessing a large number of DM agents and coop-
erativity parameters (7), which obey conditions (11). Here, we suggest several hypotheses
in analogy with quantum physics. We can recognize two possible realizations for the
quantum limit of a social system. First, we can meet a limit when the average number
of s-quanta (short messages, emails, etc.) is small enough and a few single messages can
significantly manipulate the social system. Second, we can recognize the quantum limit for
social systems as some limit when individual DM agents can have a significant influence
on the behavior of other agents. Evidently, the proposed hypotheses may have a fairly
broad interpretation in current social studies; their verification and refinement can open the
way to new opportunities for research and forecasting the behavior of social communities
affiliated with networks.
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