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Abstract: We investigated the impact of nonequilibrium conditions on the transmission and recovery
of information through noisy channels. By measuring the recoverability of messages from an informa-
tion source, we demonstrate that the ability to recover information is connected to the nonequilibrium
behavior of the information flow, particularly in terms of sequential information transfer. We dis-
covered that the mathematical equivalence of information recoverability and entropy production
characterizes the dissipative nature of information transfer. Our findings show that both entropy pro-
duction (or recoverability) and mutual information increase monotonically with the nonequilibrium
strength of information dynamics. These results suggest that the nonequilibrium dissipation cost can
enhance the recoverability of noise messages and improve the quality of information transfer. Finally,
we propose a simple model to test our conclusions and found that the numerical results support
our findings.
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1. Introduction

The transfer of information is a crucial topic in physics, psychology, and human society,
making it an important area of study for both science and technology [1–5]. Specifically,
information theory has proven to be essential in biology, with Shannon’s pioneering work
being applied to many biological systems across various scales [6–8]. Our central challenge
is to understand how organisms can extract and represent useful information optimally
from noisy channels, given physical constraints. However, the issues related to information
transformation are not limited to biological systems and should be examined across a
wide range of systems in physics, chemistry, and engineering. It is, therefore, essential to
consider the information transfer in a more-fundamental way.

During the transmission of information, messages are frequently conveyed through
noisy channels, where the noise can alter the useful information carried by the mes-
sages. Consequently, information recovery becomes a critical issue in practice [9–11].
Although there has been considerable research on the performance analysis of specific
information recovery techniques in various fields [12–16], there is still a lack of a general
theory on the recoverability of useful information. The quantification of recoverability
should depend on the information source and the channel’s characteristics, irrespective of
the specific information recovery methodologies, such as the maximum likelihood [17–19]
or maximum a posteriori probability [20–22].

In [23], a classical measurement model was developed to investigate nonequilibrium
behavior resulting from energy and information exchange between the environment and
system. The study revealed that the Markov dynamics for sequential measurements is
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governed by the information driving force, which can be decomposed into two parts:
the equilibrium component, which preserves time reversibility, and the nonequilibrium
component, which violates time reversibility. In this work, we considered the information
dynamics of noisy channels based on this nonequilibrium setup. From the perspective
of nonequilibrium dynamics and thermodynamics, the information source and channel,
along with their complexity, are not isolated events, but rather should be regarded as open
systems [24,25]. The environment, which can exchange energy and information with these
systems, can significantly influence the information transfer and its recoverability. Due
to the complexity and environmental impacts, often manifesting as the stochasticity and
randomness of noisy received messages, sequential information transfer should be viewed
as a nonequilibrium process, leading to nonequilibrium behavior in the corresponding
information dynamics. Intuitively, there must be an underlying relationship between the
nonequilibrium nature and information recoverability.

This study aimed to quantify the recoverability of messages transmitted through a
channel. With appropriate physical settings, we show that the randomness of the infor-
mation transfer can arise from the interactions between the information receiver and the
information source and from the influences of the environmental noise. This randomness
can be characterized by the steady state distributions or transition probabilities of the
received messages given by the receiver under different potential profiles exerted by the
source, which are identified as the information driving force of the measurement dynam-
ics [12,23]. In the sequential information transfer, the source messages randomly appear
in time sequences. As a result, the receiver will change the interactions with the source
messages in time. This leads to the switchings among the potential profiles and among the
corresponding steady state distributions of the received messages. Then, the nonequilib-
rium can arise when the receiver switches its potential profiles in the sequential information
transfer. We identified the nonequilibrium of the information transfer as the nonequilib-
rium strength, given by the difference between the information driving forces (based on
the steady state transition probabilities) of the information transfer dynamics.

The main novel contributions of this work are three-fold. First, we introduce a new
metric, called recoverability, to quantify the ability to recover the source messages through
noisy channels. Recoverability is measured by the averaged log ratio of channel transition
probabilities. Second, we demonstrate the mathematical equivalence between recover-
ability and entropy production [4,26–29] in nonequilibrium information dynamics. This
reveals the intrinsic connection between information recoverability and thermodynamic
dissipation costs. Finally, We prove that both recoverability and mutual information [30]
monotonically increase with the nonequilibrium strength. This elucidates how driving a
system further from equilibrium can boost information transfer quality. To our knowledge,
these quantitative relationships between recoverability, entropy production, and nonequi-
librium strengths have not been fully established in prior work. Our framework and
analysis provide novel theoretical insights into the nonequilibrium physics of information
transmission through noisy channels.

This new approach is not specific to particular models, and our conclusions are
generalizable for characterizing information transfer. To further support our findings, we
propose a simple information transfer model, which yields numerical results consistent with
our conclusions. Lastly, we discuss the potential applications of our work in biophysics.

2. Information Dynamics
2.1. Physical Settings

Information dynamics naturally arises from information transfer, information process-
ing, and sequential physical measurements. As discussed in the Introduction, the Marko-
vian sequential measurement model can be properly applied to the information dynamics.
Let us firstly introduce the physical settings of sequential information transfer.

In information transfer, a receiver gains information from a source through physical
interaction. The information source randomly selects a message X from a set X of n
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different messages, according to an a priori distribution PX on X . The interaction with
the source causes the receiver to feel a potential U. The profile of U is determined by the
message X, which is denoted by UX . The potential profile UX contains n distinguishable
wells with different locations, corresponding to the n possible messages of the source.
The well with the lowest depth is unique, and its location changes as the potential profile
is switched among different messages. The location of the lowest well represents the
position of the current message. An illustration for the potential profile is given in Figure 1.
The receiver is immersed in an environment with reciprocal temperature β.

Figure 1. An illustration of the potential profiles UX in an information transfer. There are two “flat”
wells in the potential: a higher well with height H > 0 and a lower well with height 0. The location
of the lower well depends on the source message X = 0 or X = 1. The left figure shows that the
lower well is located at the left half of the area when X = 0. The right figure shows that the lower
well is located at the right half when X = 1. When the receiver is found at the left half of the area,
the received message is Y = 0; the right half corresponds to Y = 1. The locations of the lower well
represent the correctly received message.

To obtain a message Xi−1 at time i − 1, the receiver interacts with the source for a
period of time τ ≡ 1. The receiver’s position in the potential U changes much more quickly
than the source message changes. This allows the receiver to quickly reach equilibrium with
the environment while the source message remains fixed during this period. The position
of the receiver in the potential UXi−1 at steady state, denoted by Yi, is viewed as the
received message. If Yi is found at the lowest well in UXi−1 , the received message is correct
(Yi = Xi−1). However, environmental noise can drive the receiver out of the lowest well
and across the potential barriers. In this case, the receiver is found at another well located at
Yi 6= Xi−1, and this is a wrongly received message. The information transition probability,
given by the conditional probability of Y when the source’s message is X, can be determined
by the following canonical distribution:

qY|X(Yi|Xi−1) = exp β[FXi−1 −UXi−1(Yi)]. (1)

where FXi−1 = −β−1 log{∑Yi
exp[−βUXi−1(Yi)]} denotes the free energy decided by the

profile UXi−1 . The information transition probability distribution qY|X in Equation (1)
quantifies the classical uncertainty of the information transfer channels, and it is influenced
by the interaction between the receiver and the source, which is characterized by the
potential UXi−1 , and the environmental noise, which is characterized by the reciprocal
temperature β.

In practice, the source often transmits messages randomly in time. These messages
then come into a time sequence, such as X1, X2, ..., Xt. The corresponding time sequence
of the received messages is obtained as Y2, Y3, ..., Yt+1, where each message Yi is obtained
from Xi−1 via the interaction described in the above. For the sake of simplicity, we assumed
that the source selects message Xi independently of the previously message Xi−1. The re-
ceived message Yi+1 is then only determined by the message Xi according to the transition
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probability qY|X(Yi+1|Xi), and it is independent of both Yi and Xi−1. This means that the
received message is not influenced by the previous received message or the previous source
message. If the a priori distribution of the source messages PX is time-invariant, then
the probability distribution of the received message is stationary, which is given by the
following probability identity:

PY(Yi) = ∑
Xi−1∈X

qY|X(Yi|Xi−1)PX(Xi−1). (2)

2.2. Markovian Dynamics of Sequential Information Transfer

Since the time sequences of the source messages are assumed to be stationary and due
to the ergodicity, we can formulate the sequential information transfer as a coarse-grained
Markov process of the received messages within one receiving period.

When a message Yi has been received corresponding to the source message Xi−1,
the source transmits the next message Xi, which interacts with the receiver immediately.
Consequentially, the potential profile is changed from UXi−1 to UXi promptly. Meanwhile,
the receiver position in the potential remains at the previous Yi temporarily, and Yi is
recognized as the initial position under the new potential UXi . The conditional joint
probability of Xi and Yi under the previous source message Xi−1 in this potential-switching
event is given by P(Yi, Xi|Xi−1) = qY|X(Yi|Xi−1)P(Xi|Xi−1). Here, P(Xi|Xi−1) represents
the transition probability from Xi−1 to Xi and is given by P(Xi|Xi−1) = PX(Xi), because Xi
has been assumed to be independent of the previous Xi−1.

Then, the initial probability of the receiver position in the new potential profile UXi ,
denoted by ui(Yi|Xi−1, Xi) (it can depend on the previous source message in general cases),
is given as follows: ui(Yi|Xi−1, Xi) = P(Yi, Xi|Xi−1)/P(Xi|Xi−1) = qY|X(Yi|Xi−1). This
means that ui is equal to the equilibrium distribution, which is only conditioning on the
previous source message exactly.

During the message-receiving period, the source message Xi remains unchanged
within this period. The transition rates of the receiver between two possible positions
s and s′ in the potential UXi can be represented by r(s′|s, Xi). The Markov dynamics of
the receiver position under Xi in continuous time can be given by the following master
equation ∂τuτ = Guτ , where uτ is the distribution of the receiver position at time τ and G
is the transition matrix composed of the transition rates r.

Provided the initial distribution ui, the solution of this master equation is given
by uτ = exp(Gτ)ui. Since the receiver is interacting with a single environmental heat
bath, then the transition rates r between two positions satisfy the local detailed balance
condition, r(s′|s, Xi)/r(s|s′, Xi) = exp[β(UXi (s)−UXi (s

′))]. The final distribution after a
long enough message receiving period τ → ∞ can achieve the equilibrium distribution,
i.e., u f = limτ→∞ exp(Gτ)ui = qY|X=Xi

. Here, we take τ = 1 for the long enough time
to reach the equilibrium. At the end of the period, we take the position Yi+1 as the new
received message. An illustration of the sequential information transfer is given in Figure 2.

According to the continuous-time dynamics, the matrix K = limτ→∞ exp(Gτ) is recog-
nized as the transition probability matrix for the information transfer dynamics at a coarse-
grained level. The transition probabilities can be given by K(Yi+1, Yi) ≡ k(Yi+1|Yi, Xi) =
qY|X(Yi+1|Xi), which is recognized as the information driving force [4,29] from the initial
position Yi to the final one Yi+1 within a period.

Due to the description in the above, we obtain the master equation of this coarse-
grained Markov process in discrete time as follows:

u f (Yi+1|Xi) = ∑
Yi

k(Yi+1|Yi, Xi)ui(Yi|Xi), (3)
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where 
u f (Yi+1|Xi) = qY|X(Yi+1|Xi), final equilibrium distribution,
k(Yi+1|Yi, Xi) = qY|X(Yi+1|Xi), information driving force,
ui(Yi|Xi) = qY|X(Yi|Xi−1), initial distribution.

Figure 2. An illustration of a sequential information transfer. The time sequence of the source
messages is given by Xi−1 = 1, Xi = 0. The sequence of the received message is given by Yi, Yi+1.
(a) The receiver receives correct messages as Yi = 1, Yi+1 = 0, where all the received messages appear
at the correct locations of the lower wells in the potential profiles. (b) The receiver obtains the wrong
messages as Yi = 0, Yi+1 = 1, where all the received messages appear at the locations of the higher
wells in the potential profiles.

3. Information Recoverability
3.1. Decision Rules of Information Recovery

In this section, we will discuss two decision rules used to recover information. Due
to the stochasticity of the noisy channel, two different source messages Xi−1 and X′i−1
can be both transformed into the same received message Yi by the channel, according
to the information driving forces qY|X(Yi|Xi−1) and qY|X(Yi|X′i−1) (see Equations (1) and
(3)), respectively. If one extracts the original message Xi−1 from the received message Yi,
a decision rule should be employed to justify that Yi originated from Xi−1 rather than
another message X′i−1 6= Xi−1.

There are mainly two kinds of decision rules frequently used for recovering the source
messages. The first kind is the maximum likelihood rule, that is choosing the message Xi−1
such that

lYi (Xi−1, X′i−1) = log
qY|X(Yi|Xi−1)

qY|X(Yi|X′i−1)
> 0, for all X′i−1 6= Xi−1. (4)

The maximum likelihood rule is suitable for the cases where the a priori distribution PX is
uniform or PX is not important for the information transfer.

The second kind of decision rule is the so-called maximum a posteriori probability.
This means selecting the message Xi−1 such that

rYi (Xi−1, X′i−1) = log
PX|Y(Xi−1|Yi)

PX|Y(X′i−1|Yi)
> 0, for all X′i−1 6= Xi−1. (5)

where the a posteriori probability follows the Bayes equation as

PX|Y(Xi−1|Yi) =
P(Xi−1, Yi)

PY(Yi)
=

qY|X(Yi|Xi−1)PX(Xi−1)

∑Xi−1
qY|X(Yi|Xi−1)PX(Xi−1)

. (6)
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If the a priori distribution PX is not uniform and PX carries the significant information of
the message, then the maximum a posteriori probability rule is more appropriate than the
maximum likelihood rule for the message recovery.

The connection of these two decision rules is that the log ratio r in Equation (5) carries
additional information about the a priori distribution PX compared to the log ratio l in
Equation (4) as follows:

rYi (Xi−1, X′i−1) = lYi (Xi−1, X′i−1) + γ, (7)

where γ = log PX(Xi−1)
PX(X′i−1)

is the log ratio of the a priori probabilities. When the message Xi−1

is transmitted and the log ratio l satisfies Equation (4) or r satisfies Equation (5), then Xi−1
can be recovered correctly. Otherwise, if another message X̂i−1 6= Xi−1 maximizes the
likelihood or the a posteriori probability, then X̂i−1 rather than the original message Xi−1
can be chosen by the decision rules incorrectly.

3.2. Information Recoverability of Noisy Channels

The decision rules can be used to justify the transferred information. However, the abil-
ity of the noisy channels to recover the transferred information is still unclear. We need a
new physical quantity to quantify the recoverability of the source messages. Obviously, this
quantity should be independent of the decision rules. In this subsection, we will discuss
the definition of information recoverability for the noisy channels.

For illustration, we firstly considered the maximum likelihood decision rule. One
should be aware that the information driving force or transition probability qY|X in
Equation (1) works as the key characterization to decide the performances of the decision
rules, if the a priori distribution PX is fixed. From the perspective of information theory,
the log ratio l in Equation (4) is a fundamental entity to quantify the recoverability of the
source messages, because l merely depends on the information driving force qY|X. Intu-
itively, while the a priori distribution PX is fixed, the inequality lYi (Xi−1, X′i−1) ≤ 0 indicates
the situation that Xi−1 is completely unrecoverable. On the other hand, as lYi (Xi−1, X′i−1)
increases in the positive regime, the a posteriori distribution PX|Y (see Equation (6)) con-
ditioned on Yi tends to be more concentrated on Xi−1 than X′i−1 6= Xi−1, and hence, Xi−1
becomes more recoverable. On the contrary, as lYi (Xi−1, X′i−1) decreases, then Xi−1 becomes
less recoverable when Yi is received.

To address our idea more clearly, we rewrite lYi (Xi−1, X′i−1) in the following form:

lYi (Xi−1, X′i−1) = i(Xi−1, Yi) + ie(X′i−1, Yi). (8)

with 
i(Xi−1, Yi) = log

qY|X(Yi |Xi−1)

PY(Yi)
, stochastic mutual information,

ie(X′i−1, Yi) = − log
qY|X(Yi |X′i−1)

PY(Yi)
, stochastic error information,

PY(Yi)is given in Equation (2).

(9)

Here, i(Xi−1, Yi) and ie(X′i−1, Yi) quantify the stochastic mutual information of the mes-
sages Xi−1 and X′i−1 contained in the received message Yi, respectively. When Xi−1 is
transmitted and Yi is received, i(Xi−1, Yi) is the useful information for recovering Xi−1.
On the other hand, ie(X′i−1, Yi) quantifies the noise-induced error, which introduces a spuri-
ous correlation between Yi and X′i−1. The negative sign in ie represents the part of the useful
information from the correct source message Xi−1 that is reduced by the error. Then, the
log ratio l quantifies the remaining useful information of Xi−1 while the error information
i(X′i−1, Yi) reduces the useful information i(Xi−1, Yi). The larger l becomes, the more useful
information of the source message Xi−1 is preserved in the received message Yi, and Xi−1
becomes more recoverable.
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With this consideration, we used the average of the log ratio l to describe the overall
recoverability of the source messages, i.e., we can properly define information recoverability
R for the maximum likelihood decision rule as follows:

R = 〈lYi (Xi−1, X′i−1)〉

= ∑
Xi−1,X′i−1,Yi

PX(Xi−1)PX(X′i−1)qY|X(Yi|Xi−1) log
qY|X(Yi|Xi−1)

qY|X(Yi|X′i−1)
, (10)

where the average is taken over the ensembles of Xi−1, X′i−1, and Yi.
Now, let us discuss the information recoverability for the maximum a posteriori

probability decision rule. It can be verified that the average of the log ratio of the a
posteriori probabilities r in the maximum a posteriori probability rule (see Equation (5)) is
equal to the recoverability R, i.e., R = 〈rYi (Xi−1, X′i−1)〉, with the log ratio of the a priori
probabilities γ (see Equation (7)) vanishing in the average. This implies that the entity R
can be used as a new rationale for the characterization of the recoverability, which should
not depend on concrete decision rules.

3.3. Information Transfer Rate Enhanced by Recoverability

In this subsection, we derive the novel result that the information transfer rate increases
monotonically with recoverability, formally proving that enhancing the ability to recover
messages also boosts the rate of reliable information transmission through noisy channels.

The relationship between the information transfer rate and the recoverability can be
given by Equations (8) and (9) straightforwardly:

R = 〈lYi (Xi−1, X′i−1)〉
= 〈i(Xi−1, Yi) + ie(X′i−1, Yi)〉 (11)

= I + Ie ≥ 0

with I = 〈i(Xi−1, Yi)〉 = ∑Xi−1,Yi
PX(Xi−1)qY|X(Yi|Xi−1) log

qY|X(Yi |Xi−1)

PY(Yi)
≥ 0

Ie = 〈ie(X′i−1, Yi)〉 = ∑X′i−1,Yi
PX(X′i−1)PY(Yi) log

qY|X(Yi |X′i−1)

PY(Yi)
≥ 0

(12)

Here, I is recognized as the mutual information between the time sequences of the messages
X = {X1, X2, ..., Xt} and Y = {Y1, Y2, ..., Yt}; Ie is the averaged error information of the infor-
mation dynamics with the meaning of Ie interpreted in Equations (8) and (9). Since I and Ie
can be given in terms of the relative entropies as
I = DKL{P(Xi−1, Yi)||PY(Yi)PX(Xi−1)} and Ie = DKL{P(X′i−1, Yi)||PY(Yi)PX(X′i−1)}, then
I and Ie are both positively defined. Thus, the recoverability R is a nonnegative valued,
due to Equation (11).

The mutual information I quantifies the useful information of the source messages
contained in the received messages and characterizes the rate of the information transfer.
It is also called the information transfer rate. Equation (11) implies that the information
transfer rate I can be given as a function of the recoverability:

I = R− Ie. (13)

We can verify that I is a monotonically increasing function with respect to R with a fixed a
priori distribution PX. This is because both the mutual information I and recoverability
R are a convex function of the information driving force qY|X when PX is fixed (see [31]
and Appendix A of this paper). They achieve the same minimum value of 0 at the points
qY|X(Yi|Xi−1) = qY|X(Yi|X′i−1), where all the source messages cannot be distinguished
from each other. Then, I and R are both monotonically increasing functions in the same
directions as qY|X . Therefore, I is a monotonically increasing function of R.
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From the convexity of the recoverability, one can easily obtain the following two obser-
vations. The first observation is that, if the source and received messages Xi−1 and Yi are
independent of each other, then all the source messages become unrecoverable. Otherwise,
R increases monotonically while each absolute difference between two information driving
forces |dYi (Xi−1, X′i−1)| increases (see Appendix A). Here, the difference d is defined as

dYi (Xi−1, X′i−1) =
1
2
[qY|X(Yi|Xi−1)− qY|X(Yi|X′i−1)]. (14)

On the other hand, the information transfer rate I is also a convex function over all the
possible information driving forces qY|X [32]. The proof of the convexity of I can be given
by applying the log sum inequality. The unique minimum of I is provided by zero, and this
minimum information transfer rate can be achieved if and only if the messages Xi−1 and
Yi are independent of each other, i.e., dYi (Xi−1, X′i−1) = 0 for all X′i−1 6= Xi−1. Thus, both
the information transfer rate I and the recoverability R increase monotonically as each
absolute difference |dYi (Xi−1, X′i−1)| increases. This indicates that the information transfer
can be enhanced by the recoverability monotonically due to Equation (13). The increase
in the information transfer rate also implies the improvement of the information recovery,
with smaller upper bounds of the error probabilities of the decision rules in Equations (4)
and (5) [33].

4. Nonequilibrium Information Dynamics

In this section, we will develop the model of nonequilibrium information dynamics
by introducing the time-reverse sequence of the sequential information transfer process.
We will show that the recoverability is closely related to the nonequilibrium behavior of
the Markovian information dynamics described in Equation (3). As we can see from the
following discussions, the difference d given in Equation (14) works as the nonequilib-
rium information driving force of the information dynamics. The recoverability R can be
shown as the thermodynamic dissipation cost or the entropy production of the information
dynamics, driven by the nonequilibrium information driving force d.

The nonequilibrium behavior of the Markovian information dynamics (Equation (3))
can be seen intuitively from the following fact: When the source message is changed from
Xi−1 to Xi, the profile of the potential is changed from UXi−1 to UXi accordingly. Since
UXi is different from UXi−1 if Xi 6= Xi−1, the corresponding equilibrium distribution of
the receiver message qY|X=Xi

, which is conditioning on Xi, can differ from the previous
equilibrium distribution qY|X=Xi−1

, which is conditioning on Xi−1. This indicates that
the receiver is driven out of equilibrium in the new potential UXi at the beginning of the
message-receiving period. Then, the difference between two information driving forces
under different potential profiles at the same received message, where the potential profile
is switched, can reflect the degree of this nonequilibrium. With this consideration, we
decompose the information driving force in Equation (3) into two parts [4,29]:

qY|X(Yi|Xi−1) = dYi (Xi−1, Xi) + mYi (Xi−1, Xi), (15)

with{
dYi (Xi−1, Xi) =

1
2 [qY|X(Yi|Xi−1)− qY|X(Yi|Xi)], nonequilibrium strength,

mYi (Xi−1, Xi) =
1
2 [qY|X(Yi|Xi−1) + qY|X(Yi|Xi)], equilibrium strength.

(16)

In Equation (15), if the nonequilibrium strength d vanishes at every source and received
message, then the information transfer process (Equation (3)) is at the equilibrium state,
and the information driving force qY|X degenerates to its equilibrium strength m. In this
situation, the new potential UXi is equal to the previous potential UXi−1 plus a constant a, i.e.,
UXi = UXi−1 + a, and the receiver stays at the same equilibrium state under Xi as that
under Xi−1. Then, the nonequilibriumness in the information transfer vanishes, and the
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vanishing nonequilibrium strength d0 = 0 at every source and received message is called
the equilibrium point of the information transfer. Consequentially, the equilibrium point
makes any two different source message Xi and Xi−1 indistinguishable from each other
by the receiver (see the Decision Rules of Information Recovery Section). Clearly, this leads
to invalid information transfer. On the other hand, the non-vanishing nonequilibrium
strength d 6= 0 indicates that not only the information transfer is a nonequilibrium process,
but also some source message X can be distinguished from the others by the receiver.

In addition, the nonequilibrium strength d shows the same form as Equation (14),
where we can regard the source message X′i−1 in Equation (14) as Xi in Equation (16)
because the source select the message in the i.i.d. way. This d guarantees the convexity of
the information recoverability (Equation (10), Appendix A of this paper). This means that
the information recoverability is a non-decreasing function of the absolute nonequilibrium
strength. Then, as a consequence, the information system is further driven away from
the equilibrium state, which will give rise to the better recoverability. This leads to the
connection between the nonequilibrium thermodynamics and the recoverability.

5. Nonequilibrium Information Thermodynamics

The nonequilibrium behavior of a system can give rise to a thermodynamic dissipa-
tion cost in the form of energy, matter, or information, which can be quantified by the
entropy production [31,34,35]. In this section, we will discuss the entropy production of the
nonequilibrium information dynamics. It is shown that the entropy production can be used
to characterize the averaged dissipative information during the nonequilibrium process.

The entropy production can be written in terms of the work performed on the receiver.
From the perspective of stochastic thermodynamics [18], for receiving an incoming message
Xi , a stochastic work w = UXi(Y(i))−UXi−1(Y(i)) should be performed on the receiver
to change the potential profile from UXi−1 to UXi. Meanwhile, the free energy change
∆F = FXi−1 − FXi (the free energy is shown in Equation (1) quantifies the work to change
the potential profile within an equilibrium information transfer. The difference between
w and ∆F quantifies the energy dissipation within a nonequilibrium information transfer,
which is recognized as the stochastic entropy production when receiving one single message.
This stochastic entropy production can be shown as the logarithmic ratio between two
transition probabilities at the same received message, as follows:

σ = β(w− ∆F) = log
qY|X(Yi|Xi−1)

qY|X(Yi|Xi)
, (17)

where {
w = UXi(Y(i))−UXi−1(Y(i)), stochastic work,
∆F = FXi−1 − FXi, free energy difference.

On the other hand, the receiver can be regarded as a finite-state information storage. It
stores the information from the source message, which may be corrupted by environmental
noise. However, due to its finite memory, the receiver must erase the stored information of
the source message Xi−1 when a new source message Xi is coming. According to the theory
of information thermodynamics [1–5], the work w is needed to erase the information of
Xi−1 and to write the new information of Xi in the receiver.

The information of the source message Xi−1 stored in the receiver is quantified
by the stochastic mutual information between the previous received message Yi and

Xi−1, i = log
qY|X(Yi |Xi−1)

PY(Yi)
(see Equation (9)). On the other hand, not all the work is used to

erase the information. Due to environmental noise, a part of the work introduces error infor-
mation, which shows the spurious correlation between Yi and the incoming source message

Xi, quantified by the negative stochastic mutual information ie = − log
qY|X(Yi |Xi)

PY(Yi)
(see
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Equation (9)). Then, it can be shown that the stochastic entropy production in Equation (17)
can be rewritten as the sum of the useful information i and the error information ie:

σ = i + ie, (18)

where 
i = log

qY|X(Yi |Xi−1)

PY(Yi)
, stochastic mutual information,

ie = − log
qY|X(Yi |Xi)

PY(Yi)
, stochastic error information,

PY(Yi)is given in Equation (2).

Equation (18) indicates that the stochastic entropy production σ not only quantifies the work
dissipation in one single information transfer, but also justifies the detailed recoverability
of each received messages, as shown in Equation (8).

The average of the stochastic entropy production Σ = 〈σ〉 is the key characterization
of a nonequilibrium process in thermodynamics, which is given as follows:

Σ = β(W − ∆F )
= I + Ie

= ∑
Yi ,Xi−1,Xi

PX(Xi−1)PX(Xi)qY|X(Yi|Xi−1 log
qY|X(Yi|Xi−1)

qY|X(Yi|Xi)
≥ 0, (19)

where

W = 〈w〉 = β−1Σ, averaged work,

∆F = 〈∆F〉, averaged free energy difference equals 0 in this case,

I = 〈i〉 = ∑Xi−1,Yi
PX(Xi−1)qY|X(Yi|Xi−1) log

qY|X(Yi |Xi−1)

PY(Yi)
≥ 0, useful information of Xi−1,

Ie = 〈ie〉 = ∑Xi ,Yi
PX(Xi)PY(Yi) log PY(Yi)

qY|X(Yi |Xi)
≥ 0, error information from Xi.

Equation (19) expresses the first equality in terms of the averaged energy or work
dissipation (see Equation (17)). Since the averaged free energy ∆F vanishes in this case,
then the averaged work W is completely converted into heat and dissipated into the
environment. Since the averaged entropy production Σ is shown as the relative entropy
DKL(qY|X=Xi−1

||qY|X=Xi
) (the third equality in Equation (19)), then Σ is always nonnegative,

which is equivalently shown as the work bound W ≥ ∆F = 0. This is the thermodynamic
second law for the information transfer. Here, the equal sign in the second law implies that
the information transfer process is at the equilibrium point d = 0 (see Equation (16)) and the
discussion below). Otherwise, if Σ > 0, then the measurement is at a nonequilibrium point.

On the other hand, the second equality in Equation (19) establishes the bridge between
the nonequilibrium energy dissipation and the information transfer. The entropy produc-
tion is taken as the sum of the useful information, quantified by the mutual information I
between the source and received information, and the error information Ie. This expression
shows that the entropy production works as the recoverability given in Equation (10):

Σ = R. (20)

This equation shows a novel result that recoverability is equivalent to entropy production.
This means that information retrieval is linked to thermodynamic costs. In other words,
improving the recoverability means increasing the nonequilibrium dissipation cost.

In addition, since both I and Ie are shown as the relative entropies in the forms of
DKL(qY|X ||PY) ≥ 0 and DKL(PY||qY|X) ≥ 0, then I and Ie are both nonnegative. It is seen
that the error information Ie ≥ 0 works as the interference, which reduces the recoverability
of information transfer and enlarges the energy dissipation. For this reason, the work
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bound in the second law can be given more tightly by the acquired information β−1 I,
shown as

W ≥ β−1 I ≥ 0. (21)

This lower bound indicates that, for valid information transfer I > 0, we should perform
a positive work of β−1 I at least to erase the previous transmitted information stored in
the receiver. Here, Equation (21) is the so-called generalized Landauer principle [3,4],
which gives the minimum work or the minimum entropy production estimation for valid
information erasing and transfer in this model on the average level. Since both the en-
tropy production and mutual information are a monotonically increasing function of the
nonequilibrium strength, the entropy production or the work performed on the receiver is
a monotonically increasing function of the valid information transfer. This indicates that
the more-useful information of one source message is transferred, and more energy or work
dissipation is needed.

6. Numerical Results

In this section, we will present a simple example that can test our previous conclu-
sions numerically.

At first, we set the source messages to be Xi = 1, 2, 3 and the possible received
messages Yi = 1, 2, 3. The a priori distribution PX is given by the following column vector:

PX = [PX(1); PX(2); PX(3)]T = [0.4610; 0.0753; 0.4637]T . (22)

The information driving force or the transition probabilities are given by the following
matrix:

qY|X =

0.4410 0.5558 0.1562
0.4903 0.3848 0.3067
0.0687 0.0594 0.5371

, (23)

where qY|X follows a given potential, which is shown in Equation (1)), and the labels of
the columns and rows of qY|X represent the indices of the source and received messages,
respectively. We then evaluated the recoverability R along a stochastic time sequence of the
source and received messages, Z = {(X1, Y2), (X2, Y3), ...(Xt, Yt+1)}. This time sequence Z
is generated by the given probabilities in Equations (22,23). Following the Markov nature,
the probabilities of Z can be given by P(Z) = ∏t

i=1 PX(Xi)qY|X(Yi+1|Xi). If the time t
is long enough, then the sequence Z will enter the typical set of the joint sequences of
the source and received messages [31]. This means that all the time averages of Z will
converge to the typical statistics of the joint sequences of the source and received messages.
However, if we generate another time sequence Z′ = {(X′1, Y2), (X′2, Y3), ...(X′t, Yt+1)},
where the sequence of the received messages is the same as that in the typical sequence
Z, but with the original sequence of the source messages being randomly shuffled, we
then obtain a non-typical sequence Z′ with probability P(Z′) = ∏t

i=1 PX(X′i)qY|X(Yi+1|X′i).
The recoverability R in the information transfer can be evaluated by the time average of the
log ratio of the probabilities P(Z) to P(Z′):

R′ =
1
t

log
P(Z)
P(Z′)

, for long enough t.

On the other hand, we can evaluate the average of the stochastic entropy production in
Equation (17) along the same time sequence Z as follows:

Σ′ =
1
t

t

∑
i=2

log
qY|X(Yi|Xi−1)

qY|X(Yi|Xi)
, for long enough t.
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The entropy production Σ′ converges to the same theoretical value with the recoverability
R′ (Equation (10)) in the long time limit. The related results are shown Figure 3, which
verify the fact that the thermodynamic dissipation cost works as the recoverability.

Figure 3. Equivalence of the entropy production and the recoverability. Black line, the time average
of the stochastic entropy production. Blue line, the time average of the stochastic recoverability.
Red line, the theoretical value. Both the entropy production and the recoverability converge to the
theoretical value with time.

We demonstrate that both the mutual information I (Equation (12)) and the recoverabil-
ity or the entropy production (Equation (19)) are convex functions of the nonequilibrium
strength d (Equations (14) and (16), Appendix A of this paper). Due to the i.i.d. assumption
in the Physical Settings Section, we can drop the time indices in the information driving
force qX|Y. Then, the nonequilibrium decomposition of qX|Y in Equation (15) becomes

qY|X(y|x) = my(x, x′) + dy(x, x′), for x′ 6= x (24)

with {
my(x, x′) = 1

2 [qY|X(y|x) + qY|X(y|x′)],
dy(x, x′) = 1

2 [qY|X(y|x)− qY|X(y|x′)].
(25)

where m and d are recognized as the equilibrium and nonequilibrium strengths,
respectively.

By substituting Equation (24) into the expressions of I (Equation (12)) and R
(Equation (19)), respectively, we have thatI = ∑x,y PX(x)[my(x, x′) + dy(x, x′)] log my(x,x′)+dy(x,x′)

∑x PX(x)[my(x,x′)+dy(x,x′)]

R = ∑x,x′ ,y PX(x′)PX(x)dy(x, x′) log my(x,x′)+dy(x,x′)
my(x,x′)−dy(x,x′)

(26)

Here, we note that the total number of source messages need not be equal to that of the
received messages in practice. Under this consideration, we set the source messages to
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be x = 1, 2 (2 messages) and the possible received messages to be y = 1, 2, 3 (3 messages).
Then, the information driving force qY|X becomes a 3× 2 matrix, which can be given by

qY|X =

qY|X(1|1) qY|X(1|2)
qY|X(2|1) qY|X(2|2)
qY|X(3|1) qY|X(3|2)

.

According to the nonequilibrium decomposition given in Equation (24), for this case, we
have the equilibrium and nonequilibrium strengths as follows:{

my = my(1, 2) = my(2, 1) = 1
2 [qY|X(y|1) + qY|X(y|2)],

dy = dy(1, 2) = −dy(2, 1) = 1
2 [qY|X(y|1)− qY|X(y|2)].

Due to the nonnegativity and the normalization of the conditional probabilities, i.e.,
qY|X ≥ 0 and ∑y qY|X(y|x) = 1, the constraints on m and d can be given as follows:

my ≥ 0, ∑
y

my = 1, and ∑
y

dy = 0. (27)

By combining these constraints, we can obtain the inequality constraints on d:{
−my ≤ dy ≤ my, if my < 1/2
my − 1 ≤ dy ≤ 1−my, if my ≥ 1/2.

(28)

According to Equation (26), we have the explicit forms of the mutual information and the
recoverability for this case as follows:I = p ∑3

y=1(my + dy) log my+dy
my+(2p−1)dy

+ (1− p)∑3
y=1(my − dy) log my−dy

my+(2p−1)dy
,

R = 2p(1− p)∑3
y=1 dy log my+dy

my−dy
,

where the a priori probabilities PX(1) = p and PX(2) = 1− p. For no loss of generality, we
set m1 = m2 = m3 = 1/3 for the numerical calculations. Then, we can obtain the inequality
constraints on d given in Equation (28) more explicitly:

−1/3 ≤ d1 ≤ 1/3,−1/3 ≤ d2 ≤ 1/3, and − 1/3 ≤ d1 + d2 ≤ 1/3. (29)

Here, we should note the identity d3 = −d1 − d2, which is due to the equality constraint
on d in Equation (27). This yields the last inequality for d1 + d2. We then randomly select
the a priori probability p, which is shown in Table 1. We plot the mutual information
I and recoverability R as functions of the nonequilibrium strengths (d1, d2), which are
shown in Figures 4 and 5, respectively. These results show that I and R are both convex for
(d1, d2). We next plot I as the function of R and R as the function of I, which are shown
in Figures 6 and 7, respectively. These results show that both the recoverability and the
mutual information are monotonically increasing functions of each other. This indicates
that the increasing information recoverability can enhance the information transfer rate,
while the increasing information transfer rate enhances the information recoverability.

Table 1. The a priori probabilities PX(1) = p used for numerical illustrations.

(a) (b) (c) (d)

p 0.8212 0.0154 0.0430 0.1690
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Figure 4. The mutual information as a function of the nonequilibrium strengths (d1, d2). The mutual
information is calculated corresponding to the a priori probabilities given in Table 1.

Figure 5. The recoverability as a function of the nonequilibrium strengths (d1, d2). Each recoverability
is calculated corresponding to the a priori probability shown in Table 1.
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Figure 6. The mutual information as a function of the recoverability at fixed d1. The mutual
information and the recoverability are calculated corresponding to the a priori probabilities given in
Table 1.

Figure 7. The recoverability as a function of the mutual information at fixed d1. The mutual
information and the recoverability are calculated corresponding to the a priori probabilities given in
Table 1.
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7. Conclusions

In this study, we investigated the nonequilibrium effects on the information recov-
ery. By considering the information dynamics of the sequential information transfer
(Equation (3)), we can quantify the recoverability of the source messages as the averaged
log ratio of the transition probabilities of the channel (Equations (10) and (19)). We see that
the difference between the transition probabilities works as the nonequilibrium strength
behind the information dynamics (Equation (15)). The recoverability can be shown as the
thermodynamic dissipation cost or the entropy production of the information dynamics
(Equations (19) and (20)), driven by the nonequilibrium information driving force. This
shows that the dissipation cost is essential for the information recoverability. The recov-
erability increases monotonically as the nonequilibrium information driving force or the
nonequilibrium strength increases. On the other hand, as a function of the recoverability
(Equation (19)), the mutual information also increases monotonically as the nonequilibrium
strength increases. This demonstrates that the nonequilibrium cost can boost the infor-
mation transfer from the thermodynamic perspective. In a similar spirit, increasing the
information transfer rate can improve the information recoverability. The numerical results
support our conclusions.

Finally, we discuss some examples that may have potential applications of the model
and conclusion in the present work. As is well known, information transfer plays an
important role in biology. For example, in biological sensory adaptation, which is an
important regulatory function possessed by many living systems, organisms continuously
monitor the time-varying environments while simultaneously adjusting themselves to
maintain their sensitivity and fitness in response [36]. In this process, the information is
transferred from the stochastic environments to the sensory neurons in the brain towards
the objects that can be treated as the noisy channels. It is obvious that our model provides
a simplified version of this process. The recoverability determines the accuracy of the
response of the living system to the environment. A similar process also happens at
the cellular level, where cells sense the information from the environment and transmit
it towards signal transduction cascades to transcription factors in order to survive in a
time-varying environment. As a response, a suitable gene expression is then initiated [37].
Similarly, in gene regulation, the time-varying transcription factor profiles are converted
into distinct gene expression patterns through specific promoter activation and transcription
dynamics [38–41]. In this situation, Xi−1 and Yi in Equation (3) can represent the input
and the output states at a fixed time. In fact, because the transcription factor profiles are
time-varying, the input signals and the corresponding output signals compose the complete
trajectories of the input and output processes on a considered time interval [0, t]. In [42,43],
it was shown that the mutual information can be used to quantify the cumulative amount
of information exchanged along these trajectories. In the present work, we introduced
the joint time sequence Z to describe the trajectories of the input and output processes.
We believe that the model discussed in the present work can be applied to these above-
mentioned situations. We will address the issues of the nonequilibrium recoverability in
these examples in the near future.
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Appendix A

Here, we prove the convexity of the recoverability in Equation (10).

Proof. Select two different information driving forces q(1)Y|X and q(2)Y|X. Then, the convex

combination q(λ)Y|X = λq(1)Y|X + (1− λ)q(2)Y|X is also an information driving force, which is due
to the nonnegativity and the normalization of the probability distributions. Then, we have

λR1 + (1− λ)R2 = λ ∑
Xi−1,X′i−1,Yi

PX(Xi−1)PX(X′i−1)q
(1)
Y|X(Yi|Xi−1) log

q(1)Y|X(Yi|Xi−1)

q(1)Y|X(Yi|X′i−1)

+ (1− λ) ∑
Xi−1,X′i−1,Yi

PX(Xi−1)PX(X′i−1)q
(2)
Y|X(Yi|Xi−1) log

q(2)Y|X(Yi|Xi−1)

q(2)Y|X(Yi|X′i−1)

≥ ∑
Xi−1,X′i−1,Yi

PX(Xi−1)PX(X′i−1)q
(λ)
Y|X(Yi|Xi−1) log

q(λ)Y|X(Yi|Xi−1)

q(λ)Y|X(Yi|X′i−1)
(A1)

= Rλ.

The log sum inequality ∑i ai log ai
bi
≥ (∑i ai) log ∑i ai

∑i bi
was applied in Equation (A1) [31].

Thus, R is convex with respect to qY|X with the unique minimum point R = 0 if and only
if qY|X(Yi|Xi−1) = qY|X(Yi|X′i−1) for all Yi and X′i−1 6= Xi−1. Note that, in this paper, we
chose the conventional rule that the convex function is a synonym for the concave-up
function with a positive second derivative. This completes the proof.

Since both the mutual information I and the recoverability R are convex functions of
the transition probabilities qY|X, then both of them are the convex functions of the affine
transformation of qY|X , i.e.,{

dYi (Xi−1, X′i−1) =
1
2 [qY|X(Yi|Xi−1)− qY|X(Yi|′Xi−1)],

mYi (Xi−1, X′i−1) =
1
2 [qY|X(Yi|Xi−1) + qY|X(Yi|′Xi−1)].

This means that both I and R are convex functions of the difference d by fixing every m.
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