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Abstract: Wearable technologies face challenges due to signal instability, hindering their usage. Thus,
it is crucial to comprehend the connection between dynamic patterns in photoplethysmography
(PPG) signals and cardiovascular health. In our study, we collected 401 multimodal recordings
from two public databases, evaluating hemodynamic conditions like blood pressure (BP), cardiac
output (CO), vascular compliance (C), and peripheral resistance (R). Using irregular-resampling
auto-spectral analysis (IRASA), we quantified chaotic components in PPG signals and employed
different methods to measure the fractal dimension (FD) and entropy. Our findings revealed that in
surgery patients, the power of chaotic components increased with vascular stiffness. As the intensity
of CO fluctuations increased, there was a notable strengthening in the correlation between most
complexity measures of PPG and these parameters. Interestingly, some conventional morphological
features displayed a significant decrease in correlation, indicating a shift from a static to dynamic
scenario. Healthy subjects exhibited a higher percentage of chaotic components, and the correlation
between complexity measures and hemodynamics in this group tended to be more pronounced.
Causal analysis showed that hemodynamic fluctuations are main influencers for FD changes, with
observed feedback in most cases. In conclusion, understanding chaotic patterns in PPG signals is vital
for assessing cardiovascular health, especially in individuals with unstable hemodynamics or during
ambulatory testing. These insights can help overcome the challenges faced by wearable technologies
and enhance their usage in real-world scenarios.

Keywords: photoplethysmography; chaotic analysis; fractal dimension; hemodynamic parameters

1. Introduction

Ambulatory cardiovascular function monitoring plays a vital role in the timely diag-
nosis and management of cardiovascular diseases. Wearable devices offer a convenient
approach to monitoring essential cardiovascular parameters, including heart rate (HR),
respiratory rate (RR), cardiac output (CO), and blood pressure (BP), utilizing signals
such as photoplethysmography (PPG), ballistocardiogram (BCG), and electrocardiogram
(ECG) [1–3]. While accurate calculations of HR and RR are attainable, achieving a higher
accuracy in monitoring cardiovascular functionality through noninvasive wearable meth-
ods remains a challenge. Advanced techniques, such as long- and short-term memory
neural networks (LSTM) and transformer neural networks, show promise in capturing the
complex and nonlinear relationships between measured signals and neighboring data [2,4].
However, the precise nature of these time series interactions is not yet fully understood.
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The utilization of fractal and entropy analyses provides valuable insights into the
relationship between cardiovascular function and the temporal complexities of the asso-
ciated signals. For example, Christ et al. conducted a study where they found that the
Hausdorff fractal dimension could be used to monitor hemodynamics during an elective
aortic aneurysm repair. They observed a higher fractal dimension in the PPG signal during
aortic clamping and declamping (p = 0.08) [5]. Khodabakhshi et al. explored the monitor-
ing of BP using fractal dimension, the Lyapunov exponent, and recurrence quantification
analysis (RQA) [6]. Their findings indicated that incorporating chaotic and other temporal
features enhance deep-learning performance in estimating BP from PPG. Prabhakar et al.
employed fuzzy entropy and approximate entropy (ApEn) to stratify the cardiovascular
risk [7]. Similarly, McManus et al. utilized the Shannon Entropy and Poincare plots for
atrial fibrillation (AF) detection [8]. Chen et al. and Rantanen et al. identified various
entropy measures, including ApEn, sample entropy (SampEn), response entropy, and state
entropy, which demonstrated correlations with analgesia depth [9,10]. Wei et al. found that
the percussion entropy index (PEI) serves as a significant risk parameter for newly onset
diabetic peripheral neuropathy (DPN) [11].

Heart rate variability (HRV) is also a well-studied index that demonstrates a strong
association with hemodynamics [12–14]. Nevertheless, the calculation of HRV is typically
based on ECG, while limited attention has been given to investigating the connection
between complexities of PPG, specifically its fractal dimension (FD), and hemodynamics.

In recent studies conducted by Sviridova et al., it was found that PPG signals exhibit
characteristics of chaotic motion resembling Rössler’s single band chaos [15,16]. They also
proposed that the chaotic components observed in PPG signals might be generated by
variations in blood volume [16]. However, the significance of PPG fractal components in
relation to factors, such as age, BP, and hemodynamic variation, remains uncertain. The
influence of these factors on the chaotic behavior of PPG signals has yet to be established.
Therefore, this paper aims to quantify the fractal components present in PPG signals and
establish a causal relationship between these components and underlying hemodynamic
changes. Investigating the interplay of these parameters will allow the development
of reliable tools to enhance wearable hemodynamic estimation accuracy and monitor
cardiovascular health. While we specifically employed PPG signals retrieved from publicly
available databases as an illustrative example, it is important to note that other technologies,
such as BCG, can also benefit from similar mechanism studies.

To build a link between PPG complexities and hemodynamics, we employed the clas-
sical four-element Windkessel (WK4) model [17,18]. Interestingly, the equations describing
this model bear resemblance to the Rössler system, which aligns with the findings reported
by Sviridova et al. In the context of an unstable state in the cardiovascular closed-loop
system, our hypothesis suggests that there is a significant exchange of energy within the
temporal patterns. This phenomenon may be attributed to hysteresis of vascular responses
and variations in active cardiac activities. As a result, complexity features may become
more pronounced.

This paper is organized as follows. First, we present the publicly available database
and describe the data standardization procedure employed to validate our hypothesis. Sec-
ond, we provide a concise introduction to the WK4 model and model-based hemodynamic
estimation, which serves to provide a plausible physiological explanation. Next, we quan-
tify the chaotic components and compute several widely used fractal and entropy measures,
including HRV, to assess their responsiveness to the hemodynamic state and the variation
in sensitivity due to fluctuations in hemodynamics. Subsequently, we investigate the causal
relationship between the FD, HRV, and hemodynamic parameters across a diverse range
of hemodynamic conditions. By delving into potential physiological connections, our
objective is to gain insight into the underlying mechanisms and implications associated
with these findings.
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2. Materials and Methods
2.1. Data Collection and Preprosessing

In this study, we employed two databases to establish a relationship between com-
plexity measures and hemodynamics. The first database we utilized is VitalDB, which is a
comprehensive database specifically designed for storing and managing time series data of
vital signs in surgery patients and patients with ICU stays [19]. The database encompasses
a wide range of vital sign parameters, including hemodynamic measurements, blood gas
values, and ventilator settings. The second database, maintained by Carlson et al., consists
of data from 40 healthy subjects. This database provides a multimodal approach to captur-
ing vital sign data [20]. Each subject underwent measurements in a supine position for an
approximate duration of 5 min.

Considering the significant variability of data in real clinical settings, we implemented
measures to ensure relative consistency. Specifically, we limited the age range of the subjects
to those over 18 years old, with a weight greater than 40 kg, a height greater than 145 cm,
and a body mass index between 16 and 35. Furthermore, measurements obtained in lateral
positions as well as suspected excessive blood loss (SBP < 80 mmHg) were excluded from
the analysis. For this study, we included 361 patients who underwent various surgical
procedures, consisting of 213 male and 148 female subjects. Vital signals, such as BP, PPG,
and CO, were collected from these patients at a sampling rate of 50 Hz. Importantly,
none of the patients included in this study had undergone vascular or heart surgeries.
We also collected data from 40 healthy subjects, consisting of 17 males and 23 females,
with similar physiological measurements. For a comprehensive overview of participants’
information, please refer to Figure 1 and Table 1. We also presented the 1st percentile
(1%) and 99th percentile (99%) for each parameter to establish the boundaries of the data.
Outliers in systolic blood pressure (SBP) and diastolic blood pressure (DBP) were identified
as measurements outside this range. These outliers were then removed to minimize the
potential impact of erroneous measurements.

Entropy 2023, 25, 1582 3 of 21 
 

 

2. Materials and Methods 

2.1. Data Collection and Preprosessing 

In this study, we employed two databases to establish a relationship between com-

plexity measures and hemodynamics. The first database we utilized is VitalDB, which is 

a comprehensive database specifically designed for storing and managing time series data 

of vital signs in surgery patients and patients with ICU stays [19]. The database encom-

passes a wide range of vital sign parameters, including hemodynamic measurements, 

blood gas values, and ventilator settings. The second database, maintained by Carlson et 

al., consists of data from 40 healthy subjects. This database provides a multimodal ap-

proach to capturing vital sign data [20]. Each subject underwent measurements in a supine 

position for an approximate duration of 5 min. 

Considering the significant variability of data in real clinical settings, we imple-

mented measures to ensure relative consistency. Specifically, we limited the age range of 

the subjects to those over 18 years old, with a weight greater than 40 kg, a height greater 

than 145 cm, and a body mass index between 16 and 35. Furthermore, measurements ob-

tained in lateral positions as well as suspected excessive blood loss (SBP < 80 mmHg) were 

excluded from the analysis. For this study, we included 361 patients who underwent var-

ious surgical procedures, consisting of 213 male and 148 female subjects. Vital signals, 

such as BP, PPG, and CO, were collected from these patients at a sampling rate of 50 Hz. 

Importantly, none of the patients included in this study had undergone vascular or heart 

surgeries. We also collected data from 40 healthy subjects, consisting of 17 males and 23 

females, with similar physiological measurements. For a comprehensive overview of par-

ticipants’ information, please refer to Figure 1 and Table 1. We also presented the 1st per-

centile (1%) and 99th percentile (99%) for each parameter to establish the boundaries of 

the data. Outliers in systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 

identified as measurements outside this range. These outliers were then removed to min-

imize the potential impact of erroneous measurements. 

Table 1. Biometric and BP distribution. 

 VitalDB Healthy 

 Mean ± STD Range Mean ± STD Range 

Age (years) 55.5 ± 14.9 20–82 33.9 ± 14.5 18–65 

Height (cm) 163.9 ± 8.4 147–183 171.1 ± 10.7 148–198 

Weight (kg) 62.2 ± 11.1 41–89 76.0 ± 17.6 48–136 

SBP (mmHg) 122.3 ± 18.6 84–168 146 ± 25 80–193 

DBP (mmHg) 66.1 ± 12.8 41–98 88 ± 18 43–109 

 

Figure 1. Distribution of biometrics and surgery types (VitalDB). 

The data length varied among patients, ranging from 2 to 6 h, depending on the du-

ration of their surgical procedures. For data preprocessing, we used the algorithm 

Figure 1. Distribution of biometrics and surgery types (VitalDB).

Table 1. Biometric and BP distribution.

VitalDB Healthy

Mean ± STD Range Mean ± STD Range

Age (years) 55.5 ± 14.9 20–82 33.9 ± 14.5 18–65
Height (cm) 163.9 ± 8.4 147–183 171.1 ± 10.7 148–198
Weight (kg) 62.2 ± 11.1 41–89 76.0 ± 17.6 48–136

SBP (mmHg) 122.3 ± 18.6 84–168 146 ± 25 80–193
DBP (mmHg) 66.1 ± 12.8 41–98 88 ± 18 43–109

The data length varied among patients, ranging from 2 to 6 h, depending on the
duration of their surgical procedures. For data preprocessing, we used the algorithm
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proposed by Shin et al. [21] to detect the foot points of the PPG, which were then connected
by a straight line and subtracted. We defined the baseline as the DC component of the
PPG and the peak-to-peak amplitude of the detrended PPG as AC. Then, the data were
subjected to data cleaning, wherein highly noisy and distorted data were discarded, and
suitable time series were chosen [22,23].

To showcase the contents of the database, we chose an example and depicted the
corresponding signals in Figure 2. Outlier detection was performed on a per cardiac cycle
basis, employing the following criteria:

• Pulse pressure was smaller than 15 mmHg.
• The correlation coefficient of BP and the PPG waveform was less than 0.8 [24].
• Peak-to-peak distance of one “cardiac cycle” exceeded 1.5 s or was less than 0.5 s.
• PPG signal quality was considered unusable if the skewness of the PPG signal in any

window was less than 0, as suggested by [25,26].
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Figure 2. An illustration of multichannel signals from a subject in VitalDB with corruption detection.

To conduct the fractal analysis on the raw signal, a sliding window of 100 s with a
5 s overlap was applied. On the other hand, for the fractal analysis of the per-beat signal
amplitude, a sliding window of 100 cardiac cycles was utilized. If more than 10 s of signal
was corrupt or labelled as outliers, the entire window was discarded.

2.2. Brief Introduction of the WK4 Model

PPG signals were generated by a classical WK4 model, as depicted in Figure 3. In
this model, the heart was represented as a current source qin, which is closely related
to the stroke volume (SV) and CO. The arterial tree system was modeled by four major
parameters. C1 is the compliance of the major blood vessels [27]. R reflects the peripheral
resistance [28]. The compliance of the distal arteries (C2) and inertance (L) were added to
increase the PPG waveform fitting accuracy [29]. The peripheral BP (pp) was estimated with
known cardiovascular and hemodynamic parameters. Time dependence was introduced to
C1, qin, pc, and pp, indicating that these variables exhibit rapid fluctuations within a cardiac
cycle. In contrast, other parameters may exhibit significantly slower rates of change.
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Figure 3. The WK4 model. Morphological features of PPG were generated by instantaneous vascular
expansion and contraction. The temporal patterns were formed by the delayed vascular responses to
varying qin. pc(t): blood flow in central vasculature.

The equations describing this system bear resemblance to the Rössler system, a well-
known example capable of generating deterministic chaos.

dq(t)
dt = 1

L
(

pc(t)− pp(t)
)

dpc(t)
dt = 1

C1(t)
(qin(t)− q(t))

dpp(t)
dt = 1

C2

(
q(t)− pp(t)

R

) (1)

The WK4 model is a simplified 0D representation of the complex cardiovascular
system. Its accuracy for quantification is limited. However, the model is straightforward
and easily comprehensible. In this study, we aim to explain the experimental findings
based on the existing physiological models.

2.3. Hemodynamic Parameter Estimation

The WK4 model serves as a physiological basis for estimating hemodynamic parame-
ters. In order to streamline the estimation procedure, we adopted an alternative approach
that initially estimated C1 and R. Subsequently, the WK4 model was employed to estimate
C2 and L.

On a per-heartbeat basis, R was estimated by calculating the ratio of the mean arterial
pressure (MAP) and CO [28]. The major compliance C1 was estimated by calculating the
ratio of the peak-to-peak PPG amplitude and the pulse pressure (PP) of BP [30]. This
simplified approach does not offer a precise estimation of C1. Nevertheless, in situations
where a quick evaluation of vascular function is required, especially when relying solely
on C1 to estimate the intrasubject correlation between hemodynamics and PPG features,
a highly simplified method was adequate [30]. Peripheral compliance C2 and inertance L
were estimated according to the WK4 model by decomposing blood flow into a Fourier
series [31,32]. To optimize the model, values for L and C2 were selected to minimize the
root–mean–square difference (RMS) between the model’s output pp and the observed data.
The RMS value was calculated as the square root of the sum of squared errors (SSE) divided
by the degree of freedom N-1, following the formula RMS =

√
SSE/(N − 1). The detailed

process followed the method proposed by Segers et al. [32].

2.4. Morphological Features of PPG

Morphological features derived from photoplethysmography (PPG) signals have
been used to estimate hemodynamics. While the direct correlation coefficient may not
be high, a combination of these features allows for a decent estimation of hemodynamic
parameters, such as C1, BP, and CO. These features mainly capture the instantaneous
response of the cardiovascular system to fluctuations in hemodynamics. In this study, we
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employed commonly used morphological features (as listed in Table 2) to compare with
complexity measures.

Table 2. Definition of selected morphological features.

Features Definition

AC Pulsating amplitude of PPG [33]

DC Mean of PPG baseline [33]

AREA Area under the normalized PPG waveform [34]

SPMEAN Mean upstroke slope during the systolic period [35]

SPVAR Variation of upstroke slope (standard deviation) during the
systolic period [36]

DPMEAN Mean downstroke slope during the diastolic period [35]

DPVAR Variation of downstroke slope (standard deviation) during the
diastolic period [35]

b/a Height of the early negative peak over the early positive peak of
second derivatives of PPG [37]

2.5. Complexity Measures of PPG Signals
2.5.1. Separating Fractal and Oscillatory Components

To begin, it was crucial to understand the significance of chaotic signals. It was only
when the chaotic signal proved to be increasingly valuable that it became worth considering
in our analysis.

To separate fractal and oscillatory components in the PPG signal, we employed the
irregular-resampling auto-spectral analysis (IRASA) technique [38]. The IRASA method
addresses limitations of the straightforward power spectrum method when prominent os-
cillations may deviate the power spectral density (PSD) from a power-law distribution [39].
It uses a resampling technique with multiple noninteger pairwise factors, including positive
numbers and their reciprocals. By calculating the geometric mean of the auto-power spectra
for each pair of resampled signals, the power associated with the oscillatory component
was redistributed away from its original frequencies (fundamental and harmonic) by a
frequency offset that varies with the resampling factor. In contrast, the power attributed to
the fractal component maintains a consistent power-law statistical distribution, regardless
of the resampling factor. An example of the IRASA is demonstrated in Figure 4. The
analysis included two different signal lengths, 100 and 1000 heartbeats. Specifically, for the
100-heartbeat segment, both the IRASA of the PPG waveform at 50 Hz and the beat-to-beat
baseline (DC) and pulsatile amplitude (AC) of the PPG were conducted [24]. The chaotic
components exhibited higher noise levels and deviated from linearity at lower frequen-
cies, as shown in Figure 4a. This deviation was likely due to multifractality at different
timescales [38]. Figure 4b exhibited a higher level of noise compared to Figure 4c. With
a longer recording time and lower sampling rate, minimal oscillation was observed in
Figure 4c, suggesting that the long-term chaotic components are the main contributor to
the power and require a longer duration to stabilize.

To test the spectral difference, we decomposed the PPG signal into various wavelet
components and individually analyzed each component to calculate its chaotic properties,
as shown in Figure 5. For our investigation, we utilized the Morse wavelet and focused
on wavelet components ranging from 0.4 Hz to 11.5 Hz. The frequency of each wavelet
was established based on the sampling rate and the length of the signal. In this case, a
consistent duration of 100 s was employed for all calculations, resulting in the scalogram
having uniform frequency ticks. The wavelet component, centered around 4 Hz, showed a
standard blend of oscillatory and chaotic behavior. Conversely, the wavelet component
with higher frequencies (11.63 Hz) exhibited a behavior similar to chaos, although the
spectrum deviated from linearity at lower spectral frequencies. On the other hand, the
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wavelet component with lower frequencies (1.45 Hz) mainly exhibited chaotic behavior,
with a deviation from linearity at higher spectral frequencies. This observation suggests the
presence of multifractal behavior at the higher spectral frequencies. The fractal analysis of
the PPG raw signal resulted in overlapping individual spectral response patterns. The sum
of the individual PSD of wavelets matched the oscillatory peaks and the shape of the PSD
of the PPG raw signal. However, due to the potential nonorthogonality of the continuous
wavelet decomposition, it is not advisable to numerically represent the PSD of the PPG raw
signal by simply summing the wavelet PSDs.
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Figure 4. IRASA of PPG signals with different signal lengths and sampling rates. (a) At 50 Hz, the
PPG signal is a mixture of oscillatory and chaotic components (0.5–10 Hz). (b,c) If the pulsatile
amplitude data is sampled per heartbeat, the time series pattern of AC and DC is chaotic, with
minimal oscillatory components.
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2.5.2. Calculation of Fractal Dimensions

Since the PPG signal was chaotic, we used fractal dimensions to describe its temporal
patterns. The Higuchi fractal dimension (HFD) and Katz fractal dimension (KFD) are two
of the most commonly used FD measures for physiological and neurological data [40].
The HFD, developed by Yoshimi Higuchi et al., is a measure that describes the degree of
self-similarity of a time series signal [41]. It is computed by analyzing the fluctuations in
the time series over different scales or window sizes and serves as a function of the curve
length in relation to the granularity of the analysis scale. On the other hand, the KFD is
computed by measuring the length of the curve as a function of the level of detail, which
captures the overall complexity of the structure without considering its orientation [42].
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The method for calculating the HFD has been previously described in the literature.
In this study, we employed three different sampling approaches to determine the optimal
correlation with hemodynamics: raw PPG waveform sampled at 50 Hz, wavelet spectral
components sampled at 50 Hz, and beat-to-beat sampling of PPG–AC or PPG–DC. The
wavelet decomposition resulted in a multiscale FD. For all three schemes, the maximum
number of segments (kmax) was set to 10.

The detailed calculation of the KFD was proposed by Katz et al. [42]. While the HFD
provides more accurate estimations of fractal dimensions, some studies have shown that
the KFD exhibits higher discriminative power in specific circumstances [40,43].

2.5.3. Entropy Measures

To compare with the fractal analysis, we tested several popular entropy measures.
The same three sampling approaches described in Section 2.5.2 were utilized. In order
to improve the precision of the entropy estimation, we first calculated the embedded
dimension. The embedded dimension refers to the number of variables or dimensions
required to represent a complex or high-dimensional dataset in a lower-dimensional space.
In our study, we employed the false nearest neighbors (FNN) method [44], as shown in
Figure 6, to determine the embedded dimension. Based on the FNN calculation, we set
the embedded dimension as four. It is worth noting that the decrease in the FNN of the
PPG–AC and PPG–DC was not consistently monotonic, which may be attributed to the
uneven sampling time of the PPG–DC and PPG–AC.
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For the purpose of hemodynamic monitoring, we chose the following four sets of
entropy measures to compare with the fractal dimensions:

• Sample Entropy (SampEn): SampEn was used to quantify the irregularity or unpre-
dictability of the time series data. It assessed the complexity of a signal by measuring
the likelihood of finding repeated patterns within a specified length [45].

• Approximate Entropy (ApEn): Similar to SampEn, ApEn measured the amount of unpre-
dictability in the time series data, with higher values indicating greater complexity [46].

• Fuzzy Entropy (FuzzEn): FuzzEn is a measure of complexity that incorporates uncer-
tainty or fuzziness in data by using fuzzy sets. It quantified the disorder or complexity
in systems with imprecise or uncertain information [47].
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• Recurrence quantification analysis (RQA): RQA measured properties, such as fre-
quency, duration, and clustering of the recurrences, providing insights into the com-
plexity and predictability of a system. In this study, we used entropy (ENTR) in RQA,
due to its high relevance [48,49].

Heart rate variability (HRV) was also calculated as a comparison. HRV reflects the
regulation of the autonomic nervous system and has been used to assess the risk of car-
diovascular disease, among other conditions. We evaluated the LF/HF of the HRV. Here,
the LF/HF (low frequency to high frequency ratio) is a measure of HRV that indicates
the balance between sympathetic and parasympathetic nervous system activity [14]. A
higher LF/HF ratio suggests greater sympathetic activity, while a lower ratio indicates
more parasympathetic influence. The LF/HF is robust to occasional signal corruptions.

2.6. Causal Relationship between Hemodynamics and Complexity Measures

Our hypothesis suggests that variations in hemodynamics contribute to an increase in
complexity. To investigate this, we computed the percentage power of chaotic components
and compared it to hemodynamics and their fluctuations. Additionally, we hypothesized
that the relevance of complexity measures would be magnified during unstable hemody-
namic conditions. To explore this further, we calculated the intrasubject Pearson correlation
coefficient to evaluate the sensitivity of complexity to hemodynamic status, taking into
account the magnitude of hemodynamic fluctuations. This analysis was performed under
different hemodynamic conditions and fluctuation levels, enabling meaningful compar-
isons to be made.

We also used the Granger causality test to investigate the relationship between hemo-
dynamics and fractal patterns. Although the Granger causality does not establish true
causation, it suggests the presence of a predictive relationship between variables. Our
previous work demonstrated that hemodynamic fluctuation, including CO, C1, and R,
contributes to the hysteresis of cardiovascular responses, leading to the formation of fractal
patterns [18]. Along with the Granger causality test, our results provided supportive evi-
dence for future, more rigorous investigations in this area. In this study, the significance
level of the Granger test was set to 0.05, and the maximum lag time was set to be 50 s [50].

2.7. Statistical Tests

The intrasubject correlation coefficients (r) of features and hemodynamics were ex-
pected to follow a student’s t-distribution, which is robust when the sample size is large.
In our study, each subject had an average recording time of 13,258 s, corresponding to
approximately 3014 data points. We used a p-value of 0.05 to determine the statistical
significance in the analysis.

To enable comparisons, we calculated the feature–hemodynamics correlation coeffi-
cient for each subject. The distribution of these complexity measures closely resembled
a t-distribution, as determined by a student’s t-test (e.g., p = 0.12 for HFD). Therefore, to
minimize potential biases associated with calculating mean values, we chose to utilize the
median and standard deviation for intersubject cohort comparisons. This approach ensures
a more robust and unbiased evaluation of differences within and between cohorts. We
conducted the comparison of correlations across groups using the Wilcoxon rank-sum test.

3. Results and Discussions

In this section, we first investigated the hemodynamic distribution of the clinical
data. Additionally, we quantified the chaotic components of the PPG using three sampling
schemes and spectral decomposition. To determine the most suitable complexity parame-
ters for estimating hemodynamics, we evaluated their correlation with the hemodynamic
status and fluctuation. The causal effect between the chosen parameters and hemodynamic
condition was investigated to further evaluate their relationship.
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3.1. Hemodynamics Characteristics

A total of 652,313 windows were collected from the database, and the age stratified
distribution of hemodynamic parameters is shown in Figure 7. The error bars in the figure
represent the standard deviation of the respective hemodynamic parameters. Our analysis
revealed several significant trends with age. DBP, CO, and C1 exhibited a significant
decrease, whereas R showed a significant increase. On the other hand, SBP and L did not
exhibit a significant trend with age.
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Previous studies have demonstrated that CO may experience a decrease of 24% in
males and 7% in females between the ages of 20 and 69 [51]. Additionally, C1 has been found
to exhibit a negative correlation with age [52]. The change in peripheral resistance (R) can
either increase or remain unchanged depending on the population under investigation [53].
Our findings aligned with these trends. However, it is generally known that SBP tends to
increase with age [54]. Surprisingly, in our study, although PP—as the difference between
SBP and DBP—significantly increased, SBP itself did not display a significant change
with age. It is worth noting that the data in VitalDB predominantly comprise patients
undergoing surgery, which may explain the inconsistency with the literature.

3.2. Quantification of the Chaotic Component of PPG Signals

The significance of the chaotic components is a noteworthy issue. As depicted in
Figure 4, when the time resolution of the PPG measurement was one heartbeat, most of the
long-term PPG signal (AC or DC fluctuation) exhibited fractal characteristics. However,
as the time resolution decreased to 0.02 s (50 Hz), the percentage power of the fractal
components was 4.0% in surgery patients and 13.2% in healthy subjects, on average. The
difference between the two groups was statistically significant according to the Wilcoxon
rank-sum test (p < 0.001). The percentage of chaotic components appeared to be relatively
unaffected by hemodynamic status, such as CO (r = −0.04, p = 0.48). Nevertheless, we
observed significant correlations between the percentage power of chaotic components
and the standard deviation of DBP, C1, R, and L, with correlation coefficients of 0.16, 0.11,
0.23 and 0.13, respectively. It is noteworthy that SBP and CO were more influenced by
active cardiac activity, whereas DBP, C1, R and L were more related to the passive vascular
responses. If we consider the standard deviation as a measure of hemodynamic stability, our
findings indicated that fractal components increase with greater hemodynamic instability.
Furthermore, we assessed the impact of age on the percentage of chaotic power and found
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a marginally significant correlation (r = −0.10, p = 0.07) between the two variables. Weight
and height had no influence.

The wavelet decomposition process proved to be effective in generating consistent
chaotic components. Specifically, the correlation coefficient between the percentage power
of the wavelet fractal components (8.23 Hz) and C1 exhibited a value of −0.43, as depicted
in Table 3. The correlation displayed a monotonic decrease with wavelet frequencies,
and there was a notable shift in the paradigm at 11.63 Hz. In Figure 5, it is evident that
the oscillatory components vanished at 11.63 Hz, resulting in a shift in the paradigm.
This finding suggests that incorporating fractal components is essential when assessing
hemodynamics in the older population with stiff blood vessels. It is worth noting that
the power of wavelet fractal components varies with hemodynamic status rather than its
fluctuation, whereas the overall fractal power varies with hemodynamic fluctuations.

Table 3. The Pearson correlation coefficient (PCC) between the percentage power of wavelet fractal
components and C1.

Correlation between the Percentage Power of Wavelet Fractal Components and C1

Wavelet frequency (Hz) 11.63 8.23 5.82 4.11 2.91 2.06 1.45

PCC 0.01 −0.44 * −0.34 * −0.32 * −0.21 −0.19 −0.13

* significant correlation (p < 0.05).

Another significant concern when estimating the fractal dimension is the associated
uncertainty. The fractal spectrum, as depicted in Figure 4, may not adhere to standard
characteristics. To quantify the fitting error, the variance–covariance matrix for the fitted
coefficients was utilized [55]. Consequently, uncertainties were determined for various pa-
rameters. For example, the HFD of the PPG waveform, AC, and DC exhibited uncertainties
of 2.2%, 11.3%, and 15.1%, respectively. As illustrated in Figure 8, the uncertainty for the
HFD of the wavelet components is dependent on the spectral frequency, typically remain-
ing below 1%. This minimal uncertainty in the HFD of wavelet components can likely be
attributed to the simplistic frequency-dependent response of the cardiovascular system.
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In summary, the PPG signal possesses fractal components that should be taken into
consideration when dealing with individuals with stiff blood vessels or unstable hemody-
namic conditions. The uncertainty in the HFD calculation depends on the sampling scheme,
but it is generally low for most applications when using a window size of 100 cardiac cycles.

3.3. Correlation of PPG Complexities and Hemodynamic Status

We evaluated several commonly used complexity measures for their average correla-
tion with main hemodynamic parameters: BP, CO, C1, and R. C2 and L were not displayed
in the results due to their limited relevance to physiological applications in this context. We
only presented complexity measures derived from the PPG raw signal, as it exhibited the
strongest correlation with hemodynamics, as demonstrated in Supplementary Figure S1.
Throughout the subsequent discussion, the term “complexity measure” without a subscript
refers specifically to the complexity of the raw signal.

Among these measures, the HFD exhibited the strongest correlation with SBP, whereas
the KFD displayed the strongest correlation with C1, as shown in Figure 9a. Morphological
features typically exhibited a weak correlation with BP, CO, and R, but demonstrated a
notably strong correlation with C1, as shown in Supplementary Figure S2. This observation
was not unexpected, as it is widely accepted that PPG morphology reliably estimates blood
vessel stiffness. It is important to note that our analysis is not exhaustive. We only included
some commonly used complexity measures. It is possible that better performing complexity
measures may exist.
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A similar analysis was conducted on HRV. While HRV showed a weakly significant
correlation with most hemodynamic parameters, the results revealed that HRV did not
exhibit a significant overall correlation with CO. It is important to note that for certain
individuals, the correlation between HRV and hemodynamics may be either significantly
positive or negative. However, the statistical analysis revealed that the overall intersub-
ject correlation between HRV and hemodynamics is considerably smaller. Likewise, the
correlation between the HFD of wavelet components and BP was not found to be significant.

It was intriguing to observe that the type of surgery influenced the correlation between
complexity measures and hemodynamics. For instance, the strongest average correlation
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observed between complexity features and SBP was 0.65 for SampEn (Thyroid). Following
closely, the correlation between the KFD (Breast) and SBP reached −0.60. On the other
hand, the weakest correlation was observed during biliary/pancreas surgeries, where the
strongest correlation between any complexity measures and SBP reached only 0.15. It
is important to emphasize that the accuracy of these intrasubject correlation estimation
improves with longer recording times. As the recording time is usually longer than 1 h,
an ample number of data points per subject are available, ensuring the robustness of the
intrasubject correlation.

3.4. Sensitivity of Complexity Measures to Hemodynamics

The sensitivity of complexity measures to hemodynamics can vary depending on
the hemodynamic fluctuation. For example, in an equilibrium system, the sensitivity
of morphological features to BP is more influenced by the hemodynamic status [56],
while in unstable hemodynamic conditions, the sensitivity of the FD to BP may rely more
on the level of hemodynamic fluctuation. To describe this phenomenon, we employed
Equations (2) and (3). “SBP” could be replaced by other hemodynamic parameters depend-
ing on the situation. Featurem refers to morphological features, while FD refers to the
HFD or KFD measures. f m and f d represent functions that establish a connection between
the sensitivity of morphology and FD with respect to hemodynamics. The hemodynamic
fluctuation was measured by calculating the standard deviation, denoted as σ.

∂Featurem

∂SBP
= fm(SBP, DBP, CO, C1, R) (2)

∂FD
∂SBP

= fd(σ(SBP),σ(DBP),σ(CO),σ(C1),σ(R)) (3)

To enhance clarity, we utilized SBP as an exemplar and conducted an examination
of the sensitivity of the HFD to BP across varying hemodynamic fluctuation conditions.
Additionally, we assessed the sensitivity of the morphological feature, b/a, to SBP for
comparison purposes, as illustrated in Figure 10. Our analysis revealed that ∂HFD/∂SBP
is primarily positive in surgery patients, also showing a positive correlation between
∂HFD/∂SBP and CO fluctuation. This suggests that the HFD becomes increasingly impor-
tant in estimating SBP during unstable CO conditions. However, it is important to note that
in healthy subjects, CO fluctuation was minimal during the 5 min test. While ∂HFD/∂SBP
showed a change in signs with CO fluctuation, it was inconclusive and requires further
investigation. On the other hand, ∂(b/a)/∂SBP was predominantly negative, with decreas-
ing sensitivity to SBP as CO or CO fluctuation increases. b/a is known to correlate with
instantaneous vascular compliance [37], which may explain its decreased sensitivity at
high CO.

Most of these complexity feature sensitivities displayed a significant trend depending
on CO variation, indicating that variations in hemodynamics can result in different temporal
patterns, as shown in Figure 11. SampEn exhibited consistent increases in sensitivity to SBP
with higher CO fluctuations. On the other hand, HFD and FuzzEn demonstrated increased
sensitivity to SBP with higher CO fluctuations, but only in surgery patients. RQA(ENTR)
showed increased sensitivity only for healthy subjects. Interestingly, the KFD displayed
decreasing sensitivity, indicated by lower |PCC| values, suggesting a different origin
compared to the HFD. We categorized the CO fluctuation as either “low fluctuations” or
“higher fluctuations” by dividing it with the median value. The morphological features,
SPMEAN and SPVAR, exhibited similar performances to b/a, while other features generally
showed insignificant changes in sensitivity with CO fluctuation. We have shown selected
features in the Supplementary Figure S3.
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Figure 10. (a) The sensitivity of HFD to SBP exhibits variability in response to CO fluctuation. The
analysis includes both healthy individuals and patients. A generalized linear model fit shows the
95% confidence interval (line + shaded area). (b) The relationship between the sensitivity of HFD to
SBP and CO. (c) The relationship between the sensitivity of b/a to SBP and CO fluctuation. (d) The
relationship between the sensitivity of b/a to SBP and CO.
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Figure 11. The sensitivity of complexity measures to SBP exhibited variability in response to high
and low CO fluctuation. The central mark represents the median, while the bottom and top edges of
the box represent the 25th and 75th percentiles, respectively. The whiskers extend to the farthest data
points that are not considered outliers, and outliers are individually marked.

3.5. Granger’s Causality Test

This analysis encompassed a total of 401 subjects, and we explored both unidirectional
causality and mutual feedback, as presented in Table 4. Among the subjects examined,
195 individuals showed unidirectional hemodynamics caused HFD, while feedback was
observed in 136 subjects, indicating that the HFD also influences the hemodynamics in
these cases. Only 70 subjects exhibited no discernible causal relationship. The HFD offers a
more precise mathematical estimation of the FD, whereas the KFD [42,43], although it may
display a good correlation with hemodynamics in specific scenarios, lacks a strong causal
relationship with hemodynamics. This can potentially be attributed to the calculation
method of the KFD, which tracks the vessel wall movement trajectory [40,43].

Table 4. Number of subjects with certain causal relationships.

HFD KFD LF/HF AC b/a

Unidirectional
hemodynamics-caused complexity 195 74 23 95 192

Unidirectional
complexity caused

hemodynamic changes
62 60 276 151 35

Bidirectional feedback 74 54 20 82 115

No causality 70 213 82 73 59
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A Wilcoxon’s rank-sum test with uneven numbers of subjects showed that, for subjects
exhibiting feedback, there was a significant increase in σCO (p = 0.04). For instance, if
the HFD displayed bidirectional feedback with hemodynamics, the median σCO was
0.76 L/min, whereas for subjects with no feedback, the median σCO was 0.61 L/min. This
finding suggests that in subjects without feedback, one potential explanation could be that
the absence of sufficient disturbance fails to trigger the activation of fractal behavior.

Despite achieving a high correlation with C1, there was a much smaller causal re-
lationship between the KFD and hemodynamics. Combined with the finding that the
KFD is more sensitive to DBP, this suggests that the KFD might be more associated with
structural fractality instead of hemodynamic responses. Notably, we observed that HRV
predominantly acted as the influencer, rather than being influenced, implying that HRV
is an active stimulus. Similarly, b/a was more of an influencer, which was also heavily
influenced. The interaction time was also short, so that mutual feedback was less. These
noteworthy outcomes contribute valuable insights into the intricate interplay between
hemodynamics and the HFD within our study population.

In conclusion, our analysis suggests that elevated BP and fluctuations in hemodynam-
ics are likely the main contributors to the observed fractal behaviors. Additionally, it is
possible that the structural fractality of vasculature may also contribute to the occurrence
of such behaviors.

3.6. Potential Improvement by Adding Temporal Complexity Information

While not explicitly utilized, certain studies may employ the temporal association of
data or spectral information to enhance the estimation of hemodynamics. Among these,
the most prevalent topic is the estimation of BP. We used the single-site finger PPG-derived
BP as an example, as shown in Table 5. Although the methods employed in these studies
vary, a noticeable trend of improvement can be observed when incorporating temporal
information [2,57,58], spectral information [59], stage-wise hemodynamic information,
such as SV and CO [60], and bidirectional temporal information [61]. It is important
to note that the specific results obtained may be influenced by factors, such as the data
source, validation process, and the utilization of the black box of deep neural networks.
Nevertheless, it is evident that the inclusion of temporal information contributes valuable
insights to the estimation of hemodynamics.

Table 5. Comparison with previous studies.

Studies Algorithm
MAE (mmHg)

Data Source
SBP DBP

Radha et al. [2] LSTM 8.22
(RMSE)

6.55
(RMSE) 106 healthy subjects

Harfiya et al. [57] LSTM 4.05 2.41 MIMIC dataset

Slapničar et al. [59] Spectro-Temporal Deep
Neural Network 9.43 6.88 MIMIC dataset

Wang et al. [58] LASSO-LSTM 4.95
6.14

3.15
5.61

UCI-ML-BP;
MPC-FAHUSTC

dataset

Atef et al. [60] LSTM with multistage
transfer learning 2.03 1.18 MIMIC dataset

Meng et al. [61] DC-Bi-RNN 3.21 1.80 MIMIC dataset
RMSE: Root Mean Square Error; MAE: Mean Absolute Error; LSTM: Long Short-Term Memory; DC-Bi-RNN: deep
convolutional bidirectional recurrent neural network; MIMIC: Medical Information Mart for Intensive Care.

4. Discussion
4.1. Novelty of the Study

Measuring ambulatory vital signs with wearable devices has always been a challenge.
In fact, even when individuals are immobile, various factors like breathing and neuro-
logical activities contribute to fluctuations in the cardiovascular system. This lack of true
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equilibrium in the cardiovascular system introduces hysteresis, potentially affecting the
accuracy of measurements. Machine learning algorithms have shown promising results in
overcoming these challenges. However, understanding the exact mechanism behind their
improved performance remains difficult.

In our previous study [18], we observed temporal complexities due to hemodynamic
fluctuations but lacked a clear understanding of their nature. Our current study used the
IRASA algorithm to confirm the fractal nature of PPG’s temporal patterns and quantify
their contribution.

Key findings include:

(1) Multiscale fractal components’ power increased with declining vascular compliance,
indicating their significance in individuals with stiff blood vessels.

(2) The HFD and KFD had the strongest correlation with SBP and DBP, respectively,
compared to other complexity measures.

(3) The sensitivity of the FD to BP was more pronounced in individuals with higher
hemodynamic instability.

(4) The Granger causality showed that both feedback and unidirectional relationships
exist between hemodynamics and HFD, while HRV was the influencer rather than
being influenced. The KFD may be more relevant to vascular structural complexities.

(5) Subjects with clear causal feedback between HFD and hemodynamics exhibited
significantly increased fluctuations in cardiac output.

(6) Healthy subjects displayed a greater occurrence of fractal components, which should
be taken into consideration when estimating hemodynamic parameters. Additionally,
less invasive surgeries, particularly those that do not significantly affect the cardiovas-
cular system, showed a relatively stronger complexity–hemodynamics correlation.

To our knowledge, this study is the first attempt to clearly establish a connection
between hemodynamic condition and fractal properties of PPG signals. The results of
our study can serve as a valuable starting point for researchers seeking a suitable fractal
description of the system and an explanation for the observed phenomena.

4.2. Comparison with Previous Studies

Although previous studies have confirmed that the PPG signal is fractal [15,16], very
few studies have linked the FD to hemodynamics [62], and most of them are empirical
without a comparison to other complexity measures. [63,64]. In this study, we quantified
the fractal components and tested the potential importance of different sampling schemes,
such as wavelet decomposition, by sampling per cardiac cycle and at 50 Hz. Our study
revealed a strong correlation between the FD and BP, indicating a high association between
these variables. When examining the wavelet decomposition, we observed an increase
in the power of fractal components in relation to vascular stiffness. We also showed
that FD is a better indicator for hemodynamic estimation, compared to other popular
complexity measures.

While HRV has been extensively studied as a dynamic feature, its influence on im-
proving blood pressure primarily pertains to assessing neurological activity [65–67]. It
represents the “active” cardiac activities and does not encompass all aspects of the dynamic
process. Our causal analysis aligned with this physiological explanation. Additionally, our
findings indicated that chaotic behavior is largely caused by fluctuations in hemodynamics,
which occur as a passive vascular response. The presence of feedback suggests a closed-
loop nature within the cardiovascular system. Comparing these findings with HRV may
provide valuable insights into the physiological source of complexities observed in PPG.

4.3. Limitations of the Study

In our study, the database primarily comprised surgery subjects. While we did include
healthy subjects in the cohort, it is important to note that their measurement duration
was shorter, and their hemodynamic fluctuation was significantly lower compared to the
surgery patients. To obtain more comprehensive results, the same procedure should be
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tested on datasets that encompass a broader range of subjects. Although the influence of
sex on the correlation between PPG and hemodynamic is unlikely, further exploration is
warranted to better understand its role. Lastly, we employed estimated hemodynamic
parameters to produce the relationship between the FD of PPG and hemodynamics. It
is imperative to validate these findings through medical ultrasound and total peripheral
resistance (TPR) measurements.

While the WK4 model and the fractality of PPG share some resemblances to Rössler’s
chaos, it is important to note their distinct structures. Therefore, additional research efforts
should be dedicated to unraveling the nature of the attractor.

4.4. Suggestions for Future Work

The cardiovascular system is a closed-loop system. Through causal analysis of ex-
perimental data, we identified both unidirectional and feedback interactions between
hemodynamic fluctuation and temporal fractality. To gain a deeper understanding of this
interaction, future research should involve in silico simulations using closed-loop models.
Additionally, there are unresolved issues that need to be addressed. Quantitative analysis
of the fractal components is necessary to determine the specific contributions from the
vascular tree, cardiac pacing, and vascular hysteresis. Furthermore, conducting further in-
vestigations on the age effect will enhance hemodynamic estimation in different age groups.
Lastly, it is crucial to determine the exact nature of the fractal attractor by expanding our
knowledge in this area.

5. Conclusions

In this study, we systematically analyzed the fractal behavior of PPG and discovered a
clear dependence of the FD on hemodynamic conditions. This study may help unravel the
origin of fractality and result in better machine learning algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e25121582/s1, Figure S1: Correlation of complexity measures with
hemodynamics; Figure S2: Correlation of morphological measures with hemodynamics, stratified by
health conditions; Figure S3: The sensitivity of morphological features to SBP exhibits variability in
response to CO fluctuation.
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