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Abstract: An important challenge in machine learning is performing with accuracy when few training
samples are available from the target distribution. If a large number of training samples from a
related distribution are available, transfer learning can be used to improve the performance. This
paper investigates how to do transfer learning more effectively if the source and target distributions
are related through a Sparse Mechanism Shift for the application of next-frame prediction. We
create Sparse Mechanism Shift-TempoRal Intervened Sequences (SMS-TRIS), a benchmark to evaluate
transfer learning for next-frame prediction derived from the TRIS datasets. We then propose to exploit
the Sparse Mechanism Shift property of the distribution shift by disentangling the model parameters
with regard to the true causal mechanisms underlying the data. We use the Causal Identifiability
from TempoRal Intervened Sequences (CITRIS) model to achieve this disentanglement via causal
representation learning. We show that encouraging disentanglement with the CITRIS extensions can
improve performance, but their effectiveness varies depending on the dataset and backbone used.
We find that it is effective only when encouraging disentanglement actually succeeds in increasing
disentanglement. We also show that an alternative method designed for domain adaptation does not
help, indicating the challenging nature of the SMS-TRIS benchmark.

Keywords: causal representation learning; video prediction; transfer learning; few-shot learning

1. Introduction

Applications such as self-driving cars [1], weather prediction [2], or camera-equipped
household robots [3] all benefit from the accurate prediction of high-dimensional future
timesteps such as video frames or satellite imagery. A particularly challenging task is
to make such predictions accurate when there are few samples to learn from. While it
is typically expensive to gather enough frames from a new environment, many frames
of a different-but-related environment are often available (such as a different location or
different sensory equipment). This motivates us to propose a method to better enable
a learner to make use of the related ‘old’ (in-domain or ID) data to increase prediction
accuracy on the target ‘new’ (out-of-domain or OOD) dataset.

A naïve approach is simply training a model to be as accurate as possible on the ID
data and subsequently fine-tuning it on the OOD data. Researchers have tried to improve
on this approach by making certain assumptions about how the ID and OOD data are
related. If y is the prediction target and x the input, typical assumptions are that only P(x)
changes but P(y|x) stays the same (‘covariate shift’), or that P(y|x) changes but we can split
x into xvariant, xinvariant such that P(y|xinvariant) stays the same [4–7]. One type of relatedness
between the ID and OOD data is still underexplored, however, except in the case where
there is a Sparse Mechanism Shift [8]. In this setting, the high-dimensional observables (like
video frames) are views of lower-dimensional factors (such as the position of a pedestrian)
evolving over time according to causal mechanisms that are fixed within one distribution
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(e.g., whenever the traffic light turns green, the pedestrians in front of it move forward
in subsequent timesteps). The ID and OOD distributions, then, are different in only a
small subset of these mechanisms. It is a technique that is able to improve the speed
of the adaptation under the Sparse Mechanism Assumption, which can have significant
implications for real-world applications. For example, when a robot undergoes a change
in a sensor or actuator [9], such a technique would improve how quickly it can accurately
predict future observations again. It can also help in a biological context by improving
the predictability of gene expressions in new pathways, where the Sparse Mechanism
Shift assumption has shown to be useful for disentangling biological processes [10]. The
reasonableness of the Sparse Mechanism Shift hypothesis is motivated in [8]. In this work,
we will take this hypothesis as true and explore how to improve few-shot prediction
accuracy in a scenario that is true.

We develop a novel benchmark to test few-shot domain adaptation when the Sparse
Mechanism Shift is true, called “SMS-TRIS”. It is derived from the TRIS datasets [11], which
are synthetic datasets of video frames rendered from latent causal factors that evolve over
time via stationary causal mechanisms, along with occasional interventions on the factors.
SMS-TRIS consists of variants of the TRIS datasets in which one stationary mechanism is
different per variant. We exploit the fact that the ID and OOD data are related through
a Sparse Mechanism Shift by disentangling certain model parameters with regard to the
true causal mechanisms. Specifically, we use CITRIS [11] to achieve this disentanglement, a
method that leverages access to intervention information to guarantee disentanglement.
If this succeeds, then a model of the ID data only needs to update the parameters that
correspond to the subset of mechanisms that shifted. Based on the results from [12], this is
hypothesized to increase speed-of-adaption, as a smaller number of parameters need to be
updated, reducing the effective dimensionality of the hypothesis search space.

Experimental results indicate that the CITRIS extensions can improve performance,
but that this improvement is brittle: it is dependent on the particular dataset, as well on
the particular backbone (i.e., the basic model architecture to which the CITRIS extensions
are added) that is used. Specifically, we find that the CITRIS extensions only improve the
prediction performance when they succeed in significantly improving disentanglement.

A comparison with an alternative Domain Adaptation method (Deep CORAL [13])
indicates that it is not consistently effective either, indicating that SMS-TRIS is a challeng-
ing benchmark.

In summary, our contributions are as follows:

• We generate and make available SMS-TRIS, a new benchmark for evaluating few-
shot domain adaptation for next-frame prediction under the Sparse Mechanism Shift
assumption (The code to generate the datasets and reproduce our experiments as well
as links to the dataset artifacts can be found at https://github.com/Natithan/SMS-
TRIS (accessed on 21 August 2023.)

• We show that encouraging disentanglement during pretraining for few-shot domain
adaptation can benefit prediction accuracy, but only if the disentanglement encourage-
ment succeeds in leading to strong disentanglement.

• We show that an external baseline (Deep CORAL) does not improve over a naïve base-
line, underlining the need for customized algorithms to exploit the Sparse Mechanism
Shift assumption.

The remainder of the article is structured as follows: We position our work in the
context of related work in Section 2. We detail our problem setup and explain our method
in Section 3. We then describe the datasets and models we use in our experimental setup
in Section 4. Finally, we discuss our experimental findings in Section 5 and conclude in
Section 6.

https://github.com/Natithan/SMS-TRIS
https://github.com/Natithan/SMS-TRIS
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2. Related Work
2.1. Causal/Disentangled Representation Learning

While the focus of our study is on leveraging disentanglement to improve few-shot
performance, disentangling latent variables has often been of interest as a goal in itself.
CITRIS is proposed by [11], with the goal of creating latent representations that are disen-
tangled with regard to true causal factors. We build on this by evaluating the usefulness
of such disentanglement for domain adaptation. Another work that disentangles latent
representations using extra information is iVAE [14], which we include as a baseline under
the name “Standard VAE”. Work such as [15] aims to improve disentanglement, stating
that this can be useful for transfer learning or zero-shot learning. However, they assume
independent factors of variation, which is not realistic when factors of interest can have
common causes, as in our data. In [12], causal representation learning and domain adap-
tation are linked, but with reversed goals: they make use of speed-of-domain adaptation
to achieve disentanglement with regard to the underlying causal structure; we achieve
this disentanglement through other means (i.e., making use of intervention vectors as
CITRIS does) and subsequently evaluate whether such disentanglement improves speed-
of-domain adaptation.

2.2. Causality for Distribution Shifts

Researchers have investigated whether ideas from causality can benefit performance
after a distribution shift. In [8], the authors motivate how causal representation learning
could be relevant for machine learning purposes, such as domain adaptation, if the Sparse
Parameter Shift assumption holds. However, they do not perform empirical experiments.
There are a number of works [5,16–18] that make use of causal representation learning for
distribution shifts, but they focus on domain generalization rather than domain adaptation.
They typically have one mechanism of interest (that is, the target variable) and assume that
this mechanism is invariant in distribution shifts, while the mechanisms of covariates are
allowed to change. In contrast, this paper is interested in modeling mechanisms of multiple
causal factors, assumes that a small number of them can change, and aims to improve
the adaptation of the model to that change, rather than hoping to remain unaffected by it.
Few-shot domain adaptation is performed in [4], but they assume known factors. They also
do not assume a Sparse Mechanism Shift, but rather that no causal mechanisms shifted, and
the distribution shift is due to a shift in the noise variable distributions. They then intend
to learn a model that fits both the source-domain and target-domain data (a ‘conservative’
setting), while we intend to adapt the model (a ‘non-conservative’ setting). Moreover, they
require access to multiple source domains.

2.3. Domain Adaptation

A substantial body of work shares the goal of performing domain adaptation, without
using causality as a tool.

Many works focus on the classification setting, such as for images ([4,13,19,20] or for
labeling activities in videos [21,22]). In Deep CORAL [13], the authors aim to improve the
model performance on the OOD data based on access to the ID data and some OOD data.
They align the covariance of latent features of the ID and OOD data, whereas we align the
mechanisms and parameters for the ID data and investigate whether that improves the
fine-tuning on the OOD data. It is complementary to encouraging disentanglement. We
compared the effect of Deep CORAL to the effect of encouraging disentanglement in our
experiments. A similar idea of aligning certain views of the samples from the source and
target domain, but for videos, is used in [22]. Other works try to address domain adaptation
for classification in a way that relies on having access to categorical labels [19–21]. Those
techniques are not applicable for next-frame prediction, however.

Other settings in which domain adaptation has been tackled include semantic seg-
mentation, language modeling, or keypoint detection [23]. In semantic segmentation, the
meta-learning framework is common [24,25], in which training happens on a series of
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few-shot domain adaptation episodes, rather than the transfer learning setting in this work,
in which we train on one big source domain and adapt to one target domain. In language
modeling, parameter-efficient fine-tuning has been shown to be an effective approach for
few-shot domain adaptation [26].

3. Methodology

We first detail the problem setup by formalizing the kind of data, the type of distribu-
tion shift, and the kind of models we consider. We then explain and motivate our method.

3.1. Problem Setup

The task under consideration is next-frame prediction, and for our purposes, we
assume the frames come out of a Mechanisms-Induced Distribution:

Definition 1 (Mechanisms-Induced Distribution). A Mechanisms-Induced Distribution D is
characterized by the following:

• Pc0 : R∑K
k=1 ζk → R+: A distribution from which the set of true, unobserved causal factors

ct = (ct
k ∈ Rζk )K

k=1 at the first time t = 0 are sampled, where ζk is the dimension of factor ct
k;

• PuX : RζuX → R+: A distribution from which the rendering noise ut
X is sampled at each

timestep, where ζuX is the dimension of ut
X ;

• Pu : R∑K
k=1 υk → R+: A distribution from which the set of factor noises ut+1 = (ut+1

k ∈
Rυk )K

k=1 is sampled at each timestep, where υk is the dimension of ut+1
k . The ut+1

k are assumed
to be independent of each other: Pu(ut+1

1 , . . . , ut+1
K ) = ∏K

k=1 Puk (u
t+1
k );

• fk, k ∈ {1 . . . K}: The true causal mechanisms that determine how factors evolve: ct+1
k =

fk(ct, ut+1
k ). They are stationary;

• X t: The observed video frame at time t, deterministically ‘rendered’ from a combination of ct

and ut
X by some observation function h: X t = h(ct, ut

X).

It is possible that a factor ct+1
k = fk(ct, ut+1

k ) depends only on a subset of factors
Pa(ct+1

k ):

Pa(ct+1
k ) = {ct

l |1 ≤ l ≤ K, ∃ct, ut+1
k :

∂ fk(ct, ut+1
k )

∂ct
l

6= 0} (1)

We call this subset the parents of ct+1
k .

We assume the two distributions are related by a Sparse Mechanism Shift:

Definition 2 (Sparse Mechanism Shift (SMS)). We define a Sparse Mechanism Shift as a Boolean
property of two Mechanisms-Induced Distributions, D1 and D2, and an integer s that is true if
and only if D1 and D2 are equal in all characteristics except in the subset S of all K true causal
mechanisms, S = { fi|1 ≤ i ≤ K, |S| = s}.

In the rest of the paper, we will be informal and leave out the s argument when we
just mean that s is a small fraction of all K mechanisms. We will model the data with
Encoder-Transition models:

Definition 3 (Encoder-Transition Model). An Encoder-Transition Model M is characterized by:

• An invertible encoder eθ , with inverse function e−1
θ , that maps between X t and a latent

representation zt = eθ(X t), X̂ t+1 = e−1
θ (ẑt+1).

• A transition prior pφ that predicts the next timestep in the latent space: ẑt+1 = pφ(zt).

Such a two-component model is a natural fit when the true Mechanisms-Induced Dis-
tribution can also be partitioned along the observation function h and the mechanisms fk.
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3.2. Our Method: Causal Mechanism Disentanglement for Few-Shot Domain Adaptation

Our approach to improve few-shot next-frame prediction after a Sparse Mechanism
Shift in order to encourage the parameters of the transition prior pφ to being disentangled
with regard to the true mechanisms fk. We refer to such disentanglement as Causal
Mechanism Disentanglement.

We will first detail Causal Mechanism Disentanglement and then discuss why it is
expected to improve few-shot next-frame prediction after a Sparse Mechanism Shift.

3.2.1. Causal Mechanism Disentanglement

Figure 1a illustrates Causal Mechanism Disentanglement with regard to a Mechanism-
Induced Distribution in an Encoder-Transition Model.

Figure 1. (a) Causal mechanism disentanglement for three latent dimensions of zt and two true
causal factors ct

k, with sample frames from the Shapes dataset. The top part shows the true factors
and mechanisms along with the observation function h that produces the observed frames. The
bottom part shows the modeled latents and parameters. The alignment between true factors ct

k and
disentangled dimensions of the model activations zt

i is indicated with full bold-colored outlines
(purple for factor 1 and zt dimensions 0 and 1; pink for factor 2 and zt dimension 2). (b) In the target
domain, the shifted mechanism g1, with a green background, leads to a shift in P(ct+1

1 | Pa(ct+1
1 )). If

the encoder eθ disentangles different causal factors into different subsets of the latent zt, this leads to
a shift only in P(zt+1

ψ1
| Pa(zt+1

ψ1
)). It is then possible to adapt to this change during transfer learning

by updating only pφ,ψ1 . This work evaluates whether this isolation of the parameters that need to
update can be exploited to improve few-shot domain adaptation.

To define Causal Mechanism Disentanglement, consider the following variables:

• An Encoder-Transition Model M with encoder eθ and transition prior pφ;
• A Mechanisms-Induced Distribution D;
• An assignment function ψ : J → K, J ≥ K that assigns dimensions of zt to an index k

in {1, . . . , K}. In other words, ψ partitions the dimensions of zt into K subsets, where
each subset is assigned to one of the K true factors.
For a certain ψ, we can consider pφ as the composition of two parts:

– pφ,shared: A shared part whose parameters affect all dimensions of ẑt+1;
– pφ,ψk , k ∈ 1 . . . K: A set of K parts, where the parameters of the part with index k

affect only the dimensions of ẑt+1 that are assigned to factor k.

We then say a model M has achieved Causal Mechanism Disentanglement with regard
to distribution D if there exists an assignment function ψ such that two requirements
hold: First, there exists a set of deterministic functions {ηk : R#ψk → Rζk}K

k=1 such that
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ηk(zt
ψk
) = ct

k for all k ∈ {1, . . . , K}, where ψk = {j | j ∈ {1 . . . J}, ψ(j) = k} corresponds to
the dimensions of zt that are assigned to causal factor k, and #ψk is the number of elements
in ψk. Second, the model’s transition prior pφ accurately predicts the next-step latents:

∀ct : eθ ◦ h(ct+1
1 , . . . , ct+1

k ) = pφ ◦ eθ ◦ h(ct
1, . . . , ct

k) (2)

Here, ◦ indicates the function composition: f ◦ g(x) = f (g(x)).
The first requirement corresponds to causal representation learning as defined in [11].

We use Causal Factor Disentanglement as a synonym for causal representation learning,
as it concerns disentangling latent activations zt with regard to the true causal factors ct.
Furthermore, if ct

j ∈ Pa(ct+1
i ), k ∈ ψj and l ∈ ψi, we simply write zt

k ∈ Pa(zt+1
l ).

In order to fulfill the first requirement (i.e., achieve Causal Factor Disentanglement),
we use the CITRIS model [11]. To achieve Causal Mechanism Disentanglement with regard
to the ID mechanisms, we fulfill the second requirement by training the model to accurately
predict the next frame in the ID data.

3.2.2. Relevance to Few-Shot Next-Frame Prediction

Informally, Causal Mechanism Disentanglement is about making distinct subsets of
the parameters of pφ responsible for modeling distinct true causal mechanisms ft. If the
Sparse Mechanism Shift assumption holds, successful Causal Mechanism Disentanglement
entails that only the subset of parameters that modeled the shifted mechanisms needs
to change in response. The parameters that model mechanisms that did not shift can
remain the same. Causal Mechanism Disentanglement thus reduces the expected number
of parameters that need to update.

Figure 1a illustrates this. It shows a target distribution that is shifted with regard to the
one shown in Figure 1b that was caused by a single causal mechanism change, indicated
in green. Gradient descent in a smaller parameter search space is then expected to adapt
the model to a good solution more quickly, a property that has been empirically observed
in [12].

3.2.3. Shared Parameters

A restriction of our setup concerns shared parameters. Consider model parameters
that are shared across all latent predictions (i.e., the shared parameters in the transition
parameter pφ, as well as all parameters of the encoder eθ). If these shared parameters
already ‘specialize’ to particular source-domain causal mechanisms, it restricts the extent to
which the model can ‘get away’ with only updating the nonshared parameters. Addressing
this specialization is an interesting avenue for future work.

4. Experimental Setup

In this section, we detail our benchmark datasets, the models we compare, and our
evaluation metrics.

4.1. Datasets
4.1.1. TRIS Datasets

Our benchmark is derived from the Temporal Intervened Sequences (TRIS) datasets [11].
We select these datasets for two reasons. First, they satisfy the property of being Mechanisms-
Induced. They are generated as one long sequence of observable video frames, where the
mechanisms dictate how the latent causal factors evolve from those at the previous timestep,
and the rendering function determines how that translates into observed frames. Note that
this entails that the underlying causal factors are typically not mutually independent.

The second reason for starting from the TRIS datasets is that they include extra informa-
tion that allows a model to disentangle the underlying causal factors. This disentanglement
is key to the way in which we exploit the Sparse Mechanism Shift assumption. Specifically,
they include the presence of a binary soft-intervention value ιt+1

k ∈ {0, 1} for each factor k



Entropy 2023, 25, 1554 7 of 18

at each timestep t + 1 that changes the natural mechanism fk into an intervened mechanism
f ι
k : Pa(ct+1

k )× uk → ct+1
k if equal to 1. This kind of extra information can be realistic for

learning agents, where the interventions might correspond to the actions of the agent (For
example, the natural mechanism of a pie in a hot oven might be to transform a pie at one
timestep into a slightly expanded pie at the next timestep, but if the agent intervenes by
turning off the oven, the mechanism will take the same input pie but produce a smaller one
over time).

In this work, we assume that for a given time t, the ιtk for different factors ct
k are

sampled independently.
This extra information is also necessary to achieve Causal Factor Disentanglement.
The task for this dataset is then to predict the next-timestep frame X t+1, based on the

current-timestep frame X t and the intervention vector ιt+1.
Figure 2 shows an example for K = 2, Pa(ct+1

1 ) = {ct
1, ct

2} and Pa(ct+1
2 ) = {ct

2}.

Figure 2. Temporal Intervened Sequence (TRIS) data setup for K = 2 causal factors, for which
Pa(ct+1

1 ) = {ct
1, ct

2} and Pa(ct+1
2 ) = ct

2. The mechanism governing the evolution of the causal factors
is the natural mechanism fk if ιt+1

k = 1, and the intervened mechanism f ι
k is otherwise.

We use the two TRIS datasets reported in [11]: Temporal Causal3DIdent (Shapes) (For
Shapes, we use the same object shapes as [11]: Cow [27], Head [28], Dragon [29], Hare [30],
Armadillo [31], Horse [32], and Teapot [33]. We do not use the Teapot-only variant, but
the variant with all seven shapes) and Pong. Both are synthetic datasets, where the true
causal factors and mechanisms are known. Shapes consists of 250,000 frames at a resolution
of 64 × 64. It displays a three-dimensional object varying in position/orientation/color,
which makes it representative for real-life applications involving three-dimensional objects
such as a robot manipulating certain household objects. Pong consists of 100,000 frames at
a resolution of 32 × 32. It shows frames of an adaptation of the Atari game of Pong [34],
making it relevant for applications that involve game-playing. We show examples of the
Shapes and Pong datasets in Figures A1 and A2 in Appendix A.

4.1.2. SMS-TRIS Benchmark

We create out-of-distribution versions of these datasets by changing the causal mecha-
nisms of one factor at a time. The ID mechanisms correspond to those in the original TRIS
datasets. We generate nine OOD variants of the Shapes dataset and eight OOD variants
of the Pong dataset, each of which differ from the original dataset in one mechanism.
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Following the original TRIS dataset, we generate each variant as one long sequence. For
both Shapes and Pong, we generate 10,000 frames for each OOD variant.

For the Shapes dataset, the original causal mechanisms and the OOD-shifted mecha-
nisms are shown in Table 1 for the position, rotation, and hue values.

Table 1. OOD mechanisms for position, rotation, and hue values. They cover different kinds
of distribution shifts: ones that keep the same input, ones that depend on different inputs, and
one in which a relation is changed from linear to non-linear. Red text highlights the difference
between ID mechanism and OOD mechanism. The function f (a, b, c) = a−b

2 + c and u-variables are
independently sampled from a Gaussian distribution as described in [11]. For HUEO_ID_GOAL and
HUEO_OOD_GOAL, see ID object hue goal and OOD object hue goal, respectively, in Table 2.

Factor ID Mechanism OOD Mechanism

pos_xt+1 f (1.5 · sin(rot_βt), pos_xt, ut
X) f (1.5 · cos(rot_βt), pos_xt, ut

X)
pos_yt+1 f (1.5 · sin(rot_αt), pos_yt, ut

y) f (−1.5 · cos(rot_αt), pos_yt, ut
y)

pos_zt+1 f (1.5 · cos(rot_αt), pos_zt, ut
z) f (1.5 · sin(rot_βt), pos_zt, ut

z)
rot_αt+1 f (hue_b, rot_αt, ut

α) f (hue_o, rot_αt, ut
α)

rot_βt+1 f (hue_o, rot_βt, ut
β) f (hue_b, rot_βt, ut

β)

rot_st+1 f (atan2(pos_xt+1, pos_yt+1), rot_st, ut
rs) f (atan2(pos_yt+1, pos_zt+1), rot_st, ut

rs)
hue_st+1 f (2π − hue_bt, hue_st, ut

hs) f (2π − hue_bt·hue_st, hue_st, ut
hs)

hue_bt+1 hue_bt + ut
hb hue_bt + ut

hb + hue_ot

hue_ot+1 f (HUEO_ID_GOAL, hue_ot, ut
ho) f (HUEO_OOD_GOAL, hue_ot, ut

ho)

For object hue, the mechanism can be described as trying to achieve a particular hue
value depending on the object shape. The OOD-shifted-mechanism changes this target hue
value, as shown in Table 2.

Table 2. OOD mechanisms for object hue. We choose the changes so that the inherent difficulty is not
changed.

Object Shape ID Object Hue Goal OOD Object Hue Goal

Teapot 0 π

Armadillo 1
5 · 2π 0

Hare avg(hue spot, hue back) avg(hue spot, hue back) + π

Cow 2
5 · 2π 3

5 · 2π
Dragon avg(hue spot, hue back) + π avg(hue spot, hue back)
Head 3

5 · 2π 2
5 · 2π

Horse 4
5 · 2π 4.5

5 · 2π

Table 3 shows the changes in the causal mechanisms of the factors in Pong.
In the SMS-TRIS benchmark, the latent causal factors correspond to human-interpretable

factors such as color, position, etc. For disentanglement to benefit domain adaptation,
human-interpretability is in itself not a required property of the factors that the model
disentangles. Their only required property is that the distribution shift of interest is sparse
in the space of mechanisms that generate them. An avenue for future work is to evaluate
the effectiveness of disentanglement when latent factors are not human-interpretable.
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Table 3. Changes in the causal mechanisms of the factors in Pong. Since a Pong timestep plays out in
multiple stages, we need to ensure that a mechanism change always only affects only one variable
given its causal parents.

Factor OOD Mechanism Change

Ball x-position The ball now teleports horizontally over a middle section whose width is half the inter-paddle
horizontal distance.

Ball y-position The ball now teleports vertically over a middle section whose width is one-fifth of the inter-wall
vertical distance.

Ball velocity direction When a ball collides with a paddle, instead of only having the x-component of its velocity direction
flipped, now the y-component also flips, flipping the velocity direction by 180 degrees.

Ball velocity magnitude Ball velocity is doubled when in the lower half of the playing field.

Paddle left y-position After a paddle–ball collision, the paddle now teleports a distance equal to half the inter-wall vertical
distance up, if the collision was in the lower half, and down, if the collision was in the upper half.

Paddle right y-position Same as for paddle left y-position.

Score left When a score of 5 is reached, the score now resets to 1 instead of 0.

Score right Same as for score left.

4.2. Models

Our hypothesis is that we can improve the few-shot OOD prediction accuracy of a
model by not only training it to predict accurately on the source-domain data, but also
encouraging it to be disentangled. To achieve this disentanglement, we use the Causal-
Factor-Disentanglement-encouraging extensions proposed in [11], which we refer to as
‘CITRIS CFD extensions’. We compare models with CITRIS CFD extensions (‘CITRIS’) to
baseline models (‘Standard’) with the same backbone, but none of the extensions. As in [11],
we do this for two backbone variations: an Auto-Encoder + Normalizing Flow (NF) and a
Varatiational Auto-Encoder (VAE). This results in four models: CITRIS-NF, CITRIS-VAE,
Standard-NF, and Standard-VAE.

Additionally, we compare the effect that disentanglement encouragement has with the
effect of Deep Correlation Alignment (Deep CORAL [13]), an alternative method designed
to improve the domain adaptation performance that is not designed to exploit the Sparse
Mechanism Shift assumption.

We now detail the backbones, summarize the CITRIS CFD extensions, and explain the
DeepCORAL baseline.

4.2.1. Backbones

The Variational Auto-Encoder backbone consists of an encoder eθ , a decoder dι, and
a transition prior pφ. Following [11], the decoder dι is an approximation of the inverse
encoder e−1

θ . Each of these components predict a probability distribution by predicting the
mean and standard deviation of a normal distribution. We indicate the predicted probability
distributions of these components as Pθ , Pι, and Pφ, respectively. The VAE objective then
consists of a reconstruction term and a Kullback–Leibler (KL) divergence term:

LVAE =−Ezt+1∼Pθ(zt+1|X t+1)

(
log Pι(X t+1|zt+1)

)
+

Ezt∼Pθ(zt |X t),zt+1∼Pθ(zt+1|X t+1)

(
DKL(Pθ(zt+1|X t+1)||Pφ(zt+1|zt, ιt+1)

) (3)

The Normalizing Flow backbone does not operate on X t directly. Rather, an autoen-
coder {eAE, dAE} is first trained with a reconstruction objective (where dAE again approxi-
mates e−1

AE), and the model then operates on the encoded images yt = eAE(X t). Another
encoder eθ is then trained to map yt to a zt that is intended to be disentangled with regard
to the causal factors ct. This latter encoder eθ is implemented via an invertible multilayer
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normalizing flow (NF) network. The encoder eθ is responsible for ensuring Causal Factor
Disentanglement, i.e., the information about different true factors ct

k is stored in separate
dimensions of zt.

The transition prior part of the model (pφ) then predicts a mean and log standard
deviation for the next timestep in the zt-space and uses this to optimize for the Negative
Log Likelihood (NLL) of yt+1 after rescaling with the help of the Jacobian of the flow
network eθ .

For both backbones, we follow [11] in using an autoregressive transition prior.

4.2.2. CITRIS CFD Extensions

To achieve Causal Factor Disentanglement, CITRIS consists of a number of extensions
to the basic KL-Divergence/NLL objective. We summarize the extensions here and refer
to [11] for an in-depth explanation.

Three extensions are about restricting information about the input based on the learned
assignment function ψ when predicting the NLL (for a Normalizing Flow) or KL-Divergence
(for a VAE).

First, CITRIS restricts access to the information in the intervention vector ιt+1 during
the prediction of a particular zt+1

i . Specifically, it only allows access to the element in ιt+1

to which that particular zt+1
i is assigned by ψ. The motivation is that whatever properties

of the observed data that the encoder stores in a particular zt+1
i , the transition prior will

need to be able to predict that property as accurately as possible using zt and only one part
of ιt+1. Each part of ιt+1 contains information relevant for the prediction of properties
corresponding to one true causal factor. Hence, the encoder allows the transition prior to
make the best possible prediction of a dimension zt+1

i by letting that dimension contain
only properties corresponding to the causal factor it is assigned to. This encourages the
encoder to disentangle the information in its output zt+1 with regard to the causal factors
by making use of the information ιt+1 has on the causal factors.

Second, CITRIS restricts access to the information in the previous timestep zt during
the prediction of a particular zt+1

i . Consider the case where zt+1
i is assigned by ψ to the

first element of ιt+1 and that first element in ιt+1 indicates whether the ’object-color’ was
intervened on. If that first element of ιt+1 equals 1, the ’object-color’ was indeed intervened
on, meaning that its value is no longer correlated with the previous frame. In that case, it
is not useful for the model to let its predictions of the zt+1-dimensions that are mapped
by ψ to the ’object-color’ depend on the previous frame. Accordingly, CITRIS erases the
information about the previous timestep for the prediction of a zt+1

i that is mapped by ψ to
a causal factor for which ιt+1 equals 1.

Third, the transition prior is autoregressive per group of zt-dimensions assigned to the same
factor. Empirically, restricting the autoregression in this way is important for improving
disentanglement.

Two further extensions add additional terms to the loss besides the KL-Divergence/NLL
objective.

First is a target classifier: an added MLP trained to predict each element in the
intervention vector ιt+1 from zt and different subsets of zt+1. The encoder eθ is then
encouraged to allow the target classifier to be maximally accurate when predicting an
element of ιt+1 from the subset of zt+1 that matches it according to ψ, but less accurate (only
up to predicting the average value) when predicting it from a nonmatching subset. Since
this loss term is quite involved, we refer to appendix C.3.3 in [11] for its detailed description.

Second is a term that is intended for the situation when not all the information in the
video frames is predicted by the causal factors that the model can disentangle with the help
of the intervention vector. The term biases ψ to reserving some dimensions of zt+1 for this
‘extra information’:

Lbias = λbias
1
L

L

∑
l=1

(1− eΨ0,l

∑K
j=0 eΨj,l

) (4)
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Here, λbias is a hyperparameter (set to 0.01 in [11] and in this work), L is the number of
dimensions of zt+1, K is the number of causal factors, and Ψ is a K + 1 by the L parameter
matrix containing logits that are used to assign each of the L dimension of zt+1 to a causal
factor (rows 1 to K) or to reserve it for this ‘extra information’ (row 0).

The Standard models leave out all of the CITRIS CFD extensions. This means
this model is no longer biased to be more disentangled than what is useful for the ID
prediction objective.

The Standard model with the VAE backbone is equivalent to Identifiable VAE (iVAE [14]),
in which the conditioning information consists of the previous timestep along with the
intervention information.

4.2.3. Deep CORAL

To place the impact of the CITRIS CFD extensions on few-shot domain adaptation
into context, we compare its impact to that of an existing method designed for domain
adaptation. For our problem setup, the method needs to be applicable to non-categorical
prediction targets and needs to be able to work with access to only one source distribu-
tion. We select Deep CORAL [13] as an external baseline that is compatible with our
problem setup.

Deep CORAL works by accessing the OOD data during ID training and encouraging
the covariance matrices of latent activations of the ID and OOD batches to be close to each
other. Since this is orthogonal to the CITRIS extensions, we report CITRISNF, Standard,
CITRISNF + Deep CORAL, and Standard + Deep CORAL.

The variants using Deep CORAL cannot reuse the same ID-pretrained model for
different OOD shifts. That is because they need access to the ID and OOD data at the same
time during pretraining, so each pretrained model is specific to one OOD shift. Since we
evaluate many OOD shifts, this significantly increases the computational requirements.
Hence, we pretrain for a maximum of 50 epochs in the experiments that compare the
effect of CFD encouragement to the effect of Deep CORAL, whereas we pretrain for
500 epochs in the other experiments. We select the pretrained checkpoint based on the best
ID prediction performance.

4.3. Evaluation

To investigate the relation between Causal Factor Disentanglement (CFD), Causal
Mechanism Disentanglement (CMD), and the OOD next-timestep-prediction performance,
we report a number of metrics.

4.3.1. Causal Factor Disentanglement (CFD)

To quantify the level of disentanglement of the latents (zt) with regard to the true
causal factors (ct) for different models after ID training, we use the correlation metrics and
triplet evaluation used in [11].

For the correlation metrics, a mapping mk,j is learned to predict each ĉt
k = mk,j(zt

ψj
)

from each group of latents zt
ψj

, 1 ≤ j ≤ K (so not only from the ’matching’ group of

latents zt
ψk

). Note that this mapping mk,j is not part of the model, but is learned purely
for evaluation purposes. The correlation between the prediction mk,j(zt

ψj
) and the true

factor ct
k is then reported. A well-disentangled model should have high correlation values

for k = j, and low values otherwise. The R2 coefficient of determination [35] and the
Spearman’s rank correlation coefficient [36] are reported. Since the TRIS and SMS-TRIS
datasets are generated sequentially, factors in each frame can be correlated, which can
skew the interpretation of these correlation metrics. Hence, the correlation metrics are
evaluated on independently sampled video frames. For the ‘Standard’ models, ψ is not
learned. Hence, each latent dimension is assigned to the causal factor that it has the highest
correlation with.
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We also report the triplet distance, calculated as follows. A separate evaluation dataset
is rendered consisting of triplets of frames: two randomly sampled images and a third
image rendered using a mix of causal factors of the other two images. The model then
computes the latents for the two original images, and a third latent is made by using the
same mix of groups of latent dimensions assigned to a particular causal factor. The model
is then tasked to decode this third latent to an image, which is compared to the rendered
third image. The comparison is not reported in the pixel space but in the causal-factor space.
To do so, a mapping from images X t to causal factors ct is learned in a supervised fashion.
For categorical causal factors (such as shape), accuracy is used, while absolute difference is
used for continuous variables. Each distance is normalized to fall between 0 and 1.

Note that both the independently sampled frames used for the correlation metrics and
the triplets of frames used for the triplet distance do not consist of frames related over time
through causal mechanisms. Hence, the same CFD score applies to both the in-domain and
out-of-domain datasets.

Measuring Causal Factor Disentanglement is possible only because the true causal
factors are known in the TRIS datasets. For real applications, we might not have access
to the true causal factors. We are, however, still interested in measuring CFD to evaluate
the effectiveness of encouraging CFD as a tool to reduce few-shot prediction error. Such a
tool is useful for real applications, even if we cannot verify the level of disentanglement in
real applications.

4.3.2. Prediction Error

We report the OOD prediction error for different models after transfer learning. After
pretraining the models on the ID data, we fine-tune them on the OOD data with a varying
number of available OOD samples. We report the results for differing choices of the ID-
training checkpoint to start fine-tuning from. We freeze eθ during this fine-tuning and only
train the transition prior: in line with the argument for Causal Mechanism Disentanglement
made in Section 3, the model should be able to learn to predict the OOD data by adapting
only (a subset of) the parameters of the transition prior. While the number of available
samples varies, we fine-tune for a fixed number of epochs (50).

We evaluate the models on a held-out test set of the OOD data. We measure errors in
the causal factor space, in the same way as for the triplet evaluation.

5. Results and Discussion
5.1. Causal Factor Disentanglement (CFD)

Table 4 shows the disentanglement metrics for both models for the Shapes and
Pong datasets.

Table 4. Disentanglement metrics for the Shapes and Pong data. R2 is the R2 coefficient of determina-
tion and Sp is Spearman’s rank correlation coefficient. diag corresponds to the average correlation
score of the predicted causal factor mk,k(zt

ψk
) and its matching true factor ct

k (best value is 1); offdiag
corresponds to the average of the maximum correlation score of a predicted causal factor mi,k(zt

ψk
)

and a non-matching true factor ct
i , i 6= k (best value is 0). For triplet distances, the mean over all

causal factors is reported (Triplet mean). CFD score is the average of all other metrics (using 1 minus
[metric] for the metrics for which lower is better).

Model R2 Diag ↑ R2 Sep ↓ Sp Diag ↑ Sp Sep ↓ Triplet Mean ↓ CFD Score ↑

Shapes

CITRIS-NF 0.95 ± 0.011 0.08 ± 0.020 0.95 ± 0.017 0.10 ± 0.016 0.05 ± 0.008 0.93 ± 0.014
Standard-NF 0.26 ± 0.001 0.62 ± 0.003 0.29 ± 0.001 0.61 ± 0.004 0.21 ± 0.000 0.42 ± 0.001
CITRIS-VAE 0.63 ± 0.022 0.25 ± 0.062 0.63 ± 0.028 0.28 ± 0.050 0.34 ± 0.010 0.68 ± 0.031
Standard-VAE 0.60 ± 0.016 0.46 ± 0.015 0.61 ± 0.014 0.47 ± 0.004 0.23 ± 0.001 0.61 ± 0.005

Pong

CITRIS-NF 0.64 ± 0.064 0.39 ± 0.046 0.62 ± 0.068 0.41 ± 0.045 0.31 ± 0.168 0.63 ± 0.070
Standard-NF 0.13 ± 0.004 0.85 ± 0.006 0.13 ± 0.003 0.85 ± 0.002 0.25 ± 0.001 0.26 ± 0.001
CITRIS-VAE 0.77 ± 0.085 0.25 ± 0.118 0.77 ± 0.086 0.31 ± 0.136 0.26 ± 0.030 0.75 ± 0.081
Standard-VAE 0.83 ± 0.124 0.37 ± 0.081 0.83 ± 0.115 0.39 ± 0.054 0.25 ± 0.001 0.73 ± 0.060
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We are only able to reproduce the strong improvement in the level of disentanglement
reported in [11] for the Shapes dataset and the NF backbone. Hence, we expect the CITRIS
CFD extensions to improve few-shot accuracy only in that setting. For Shapes, the most
challenging factors to disentangle were usually those concerning the rotation of the object.
For Pong, the most challenging was to disentangle both paddle positions into separate
dimensions, as their movements are very correlated.

5.2. Prediction Error

We show three perspectives on the prediction error. In the first perspective, we vary
the pretraining epoch (between 1 and 500) used as a starting point for the few-shot domain
adaptation and show the prediction error for one number of available shots (i.e., 200 shots).
In the second perspective, we select one pretraining epoch (i.e., epoch 500) and show the
prediction error for various numbers of available shots (i.e., 20, 100, 1000, and 10,000 shots).
Finally, we also show a scatterplot comparing the CFD score to the prediction error at one
number of shots (i.e., 100) and one pretraining epoch (i.e., 500).

5.2.1. Varying Pretraining Epoch

Figure 3 shows the evolution of the target-domain error with source-domain epochs
for both SMS-TRIS datasets.

Figure 3. The 0-shot OOD error and 200-shot OOD error (lower is better) that a model achieves if the
source-domain pretraining checkpoint at the epoch indicated on the x-axis is taken. The Standard
models (St-VAE and St-NF) are shown in orange/red and the CITRIS models (CI-VAE and CI-NF) in
green/olive. The left figures show results for the Shapes dataset and the right for the Pong dataset.
The top figures show the Normalizing flow backbone and the bottom figures the VAE backbone. The
line indicates the average of five runs, with the shaded areas indicating the standard deviation.

For Shapes and the NF backbone, we see that CITRIS-NF obtains the best performance.
We also see that CITRIS-NF is the only variant for which the 200-shot performance (full
lines) is significantly better than the 0-shot (dotted lines) performance. This is in line with
our hypothesis that successful disentanglement improves few-shot domain adaptation.

For the VAE-models, the CITRIS-CFD extensions are not beneficial and Standard-VAE
(which is equivalent to iVAE) is significantly better. This can be explained by the limited
success of CITRIS-VAE in improving Causal Factor Disentanglement over Standard-VAE,
as observed in Table 4.
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For Pong, we also do not see that the CITRIS-CFD extensions are beneficial. This is
again in line with the observation in Table 4 that the CITRIS-CFD extensions fail to improve
Causal Factor Disentanglement. This indicates that finding more robust disentanglement
encouragement is an avenue to more robustly improving few-shot domain adaptation
prediction accuracy.

5.2.2. Varying Number of Shots

Figure 4 also shows the error, but displays the number of shots on the x-axis, rather
than the pretraining epoch as in Figure 3. The pretraining epoch is fixed to 500.

Figure 4. In-domain error, 0-shot error, and few-shot error of models after pretraining for 500 epochs.
The Standard models are shown in red/orange and the CITRIS models in green/olive. The left figures
show results for the Shapes dataset and the right for the Pong dataset. The top figures show the NF
backbone and the bottom figures the VAE backbone. The average of five runs is shown, with the error
bars/shaded areas indicating the standard deviation. The x-axis indicates in-domain or zero-shot
out-of-domain for the bar charts and the number of shots used for the line plots.

For Shapes, it confirms the observation from Figure 3 that CITRIS-NF sees the biggest
improvement compared to its zero-shot performance. For Pong, we see that none of the
models are able to improve over their zero-shot performance, indicating that adaptation in
SMS-Pong is more challenging than in SMS-Shapes.

5.3. Causal Factor Disentanglement versus Prediction Error

Figure 5 shows the correlation between few-shot prediction performance and Causal
Factor Disentanglement.

It shows that while adding CITRIS does not consistently improve the CFD score,
a higher CFD score is positively correlated with a lower prediction error, regardless of
how it was achieved. This again indicates that finding more robust disentanglement
encouragement is a promising avenue.
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Figure 5. Correlation between few-shot prediction performance and Causal Factor Disentanglement.
The y-axis shows 100-shot prediction error after pretraining for 500 epochs. The x-axis shows the
CFD Score. Results for the Shapes dataset are on the left, and for Pong, on the right.

5.4. Comparison to Deep CORAL

Figure 6 evaluates the effect of including the Deep CORAL objective. We only consider
the Normalizing Flow backbone, as it showed the most consistent few-shot learning. Since
using Deep CORAL is complementary to the use of CITRIS CFD encouragement, we
show four variations: CITRIS-NF, CITRIS-NF + Deep CORAL, Standard-NF, and Standard-
NF + Deep CORAL. The results show that the Deep CORAL objective is not helpful for
the SMS-TRIS benchmark, highlighting the need for alternative methods to exploit the
SMS assumption.

Figure 6. The effect of Deep CORAL on in-domain error, 0-shot error, and few-shot error of models
after pretraining for 50 epochs. The Standard models are shown in shades of red and the CITRIS
models in shades of green. The left figure shows results for the Shapes dataset and the right for the
Pong dataset. The average of five runs is shown, with the error bars/shaded areas indicating the
standard deviation. The x-axis indicates in-domain or zero-shot out-of-domain for the bar charts and
the number of shots used for the line plots.
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5.5. Discussion

We observe that CFD encouragement, using the CITRIS CFD extensions, does not
improve the CFD score consistently across different backbones and datasets. This indi-
cates that a more robust way of improving the CFD score is important when leveraging
disentanglement for few-shot domain adaptation.

Our results indicate that CFD encouragement can help specifically in improving the
relative improvement of few-shot performance over zero-shot performance, which is in line
with the observations made in [12]. However, adding the CFD encouragement sometimes
damages the zero-shot performance.

One factor that might be limiting the benefits of disentanglement is that shared pa-
rameters in the encoder and transition prior specialize to source-domain mechanisms. If
that happens, the model cannot “get away” with only updating the nonshared parameters
that are disentangled with regard to the shifted mechanism. Hence, it can be valuable to
achieve disentanglement without being influenced by specific ID mechanisms.

6. Conclusions

This paper proposed a method to improve accuracy in the challenging problem of
transfer learning for few-shot video prediction. Specifically, we aim to exploit the situation
where the source and target domains are related through a Sparse Mechanism Shift. In this
situation, we study the idea of encouraging the model to be disentangled with regard to
causal mechanisms, allowing it to improve their few-shot prediction performance. We argue
that successful Causal Representation Learning can enable such disentanglement. To exper-
imentally investigate this connection, we created a novel benchmark called SMS-TRIS that
consists of datasets with source-domain and target-domain variants that vary by a single
distribution shift. Using this benchmark, we compare the effect of Causal Representation
Learning using the CITRIS extensions proposed in [11] on a number of baselines.

Our results suggest that including CITRIS extensions benefits few-shot target-domain
accuracy if those extensions allow the model to reach a sufficient level of Causal Factor
Disentanglement on the source-domain data. Our experiments also indicate that few-shot
learning in general is a hard problem and that it is often hard to beat the simple baseline of
not using the few available target-domain samples at all.

We hope this work can spark research that further looks into the best ways to leverage
the Sparse Mechanism Shift assumption for few-shot domain adaptation.
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Appendix A. Example Subsequence of Shapes and Pong Datasets

Figures A1 and A2 show example subsequences of the Shapes and Pong datasets,
respectively.

https://calculus-project.eu/
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Figure A1. Example subsequence of the Shapes dataset.

Figure A2. Example subsequence of the Pong dataset.
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