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Abstract: Fault diagnosis of rotating machinery plays an important role in modern industrial ma-
chines. In this paper, a modified sparse Bayesian classification model (i.e., Standard_SBC) is utilized
to construct the fault diagnosis system of rotating machinery. The features are extracted and adopted
as the input of the SBC-based fault diagnosis system, and the kernel neighborhood preserving em-
bedding (KNPE) is proposed to fuse the features. The effectiveness of the fault diagnosis system of
rotating machinery based on KNPE and Standard_SBC is validated by utilizing two case studies:
rolling bearing fault diagnosis and rotating shaft fault diagnosis. Experimental results show that base
on the proposed KNPE, the feature fusion method shows superior performance. The accuracy of
case1 and case2 is improved from 93.96% to 99.92% and 98.67% to 99.64%, respectively. To further
prove the superiority of the KNPE feature fusion method, the kernel principal component analysis
(KPCA) and relevance vector machine (RVM) are utilized, respectively. This study lays the foundation
for the feature fusion and fault diagnosis of rotating machinery.

Keywords: fault diagnosis; rotating machinery; dimension-increment technique; kernel neighbor-
hood preserving embedding; sparse Bayesian classification

1. Introduction

Rotating machinery plays an important role in the development of modern industry.
The faults will cause shutdown. The timely and effective fault diagnosis of rotating
machinery is good for reducing maintenance costs and shorting the shutdown time. Thus,
it is important to develop effective fault diagnosis systems for rotating machinery, and
artificial intelligence (AI) [1] has been widely utilized for the fault diagnosis of rotating
machinery, such as bearings, gears (or gearboxes), engines and turbines. There are two
kinds of AI methods for fault diagnosis: machine learning [2] and deep learning [3], as
shown in Figure 1. As for machine learning, it consists of feature engineering and shallow
learning. It should be noted that feature engineering generally needs experience to select
‘good’ features, and consider the time-consuming of modeling, thus, the feature engineering
of machine learning is the research object in this work.

Feature engineering plays a significant role for the predictive performance of the
fault diagnosis system. From the previous studies, it can be found that feature engineer-
ing mainly includes three aspects: data preprocessing, feature extraction, and feature
transformation. As for feature extraction, the commonly used are the time-domain, the
frequency-domain, and the time-frequency domain features [4]. It should be noted that the
commonly used signal decomposition techniques can provide numerous time-frequency
domain features for the fault diagnosis of rotating machinery, such as wavelet transform
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(WT) [5], wavelet package transform (WPT) [6–8], and empirical model decomposition
(EMD) [6,9–13]. Normally, the time-frequency domain features are obtained by extracting
statistical features, energy, energy ratio, energy entropy or Shannon entropy from sub-
signals that are obtained by WT, WPT or EMD. Moreover, excellent feature extraction
methods also need to be developed for further improving the diagnostic performance of the
decision-making system. Muruganatham et al. [14] applied a singular spectrum analysis
(SSA) to extract fault features of roller element bearing. Singular values (SV) and energy of
the corresponding principal components of the selected SV were adopted as fault features,
respectively. Experimental results showed that the presented method was simple, noise
immune and efficient. Liu et al. [15] proposed a short-time matching method based on a
kind of atomic decomposition (i.e., matching pursuit). Experimental results showed that
the proposed method outperformed the traditional time-domain methods in detecting
a bearing incipient fault. Cai et al. [16] proposed a sparsity-enabled signal decomposi-
tion method by the combination of a tunable Q-factor WT and morphological component
analysis (MCA). Experimental results showed that the proposed method outperformed
EMD and spectral kurtosis in identifying a gearbox fault. Li et al. [17] proposed a novel
extraction method of deep representation features by utilizing a Boltzmann machine to
fuse statistical parameters of WPT. Experimental results showed that the proposed method
outperformed the corresponding shallow representations in gearbox fault diagnosis. Gao
et al. [18] applied an empirical wavelet transformation (EWT) in time series forecasting.
Different from discrete WT, EWT analyzes the data in Fourier domain and implements the
spectrum separation, which may make it suitable for analyzing complex and non-stationary
vibration signals, especially for rotating machinery. From the previous studies [14–18], it
can be found that how to obtain effective fault features through feature engineering or
representation learning is an extremely important and complex task in the fault diagnosis
of rotating machinery.
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In general, the extracted features contain some invalid and redundant features, which
will affect the efficiency and accuracy of modeling. Thus, feature transformation is neces-
sary to remove the noise and redundancy features, to improve the predictive performance
of rotating machinery fault diagnosis system. Feature selection can remove invalid features
that are not sensitive to fault information of rotating machinery. The commonly used
feature selection methods include classification accuracy evaluation [11], distance evalua-
tion technique [12] and genetic algorithm (GA) [19,20]. Compared with feature selection,
feature fusion is a better method, which is conductive to removing noise and redundancy
simultaneously. The commonly used feature fusion methods include principal components
analysis (PCA) [7], kernel PCA (KPCA) [7], and manifold learning [5–7,13]. Yu [5] utilized
the locality preserving projection (LPP) to fuse the original features for the bearing fault
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diagnosis and found that LPP performed better than PCA. Li et al. [6] utilized locally linear
embedding (LLE) to extract distinct features for gear fault diagnosis and found that LLE
performed a little better than PCA (less than 1%). In the identification of different gear crack
levels, Wan et al. [7] utilized five methods (PCA, KPCA, ISOMAP, LLE and Laplacian Eigen-
maps) to carry out dimension-reduction and found that PCA performed the best. Moreover,
they pointed out that more case studies should be investigated so as to check whether PCA
was still effective. Tang et al. [13] applied orthogonal neighborhood preserving embedding
(NPE) for dimension-reduction with regard to turbine fault diagnosis, and found that
orthogonal NPE (ONPE) performed better than LPP and LLE. It is worth noting that PCA
and KPCA belong to global-preserving techniques while manifold learning (LPP, LLE,
NPE, ISOMAP, and Laplacian Eigenmaps) belong to local-preserving techniques [5,21]. In
addition to [5,6], image recognition tasks also proved that local-preserving techniques were
more suitable for classification problems [22,23]. Thus, manifold learning is recommended
for dimension-reduction in the fault diagnosis of rotating machinery. However, how to
determine the model parameters and the dimension of the fused features of manifold
learning are two thorny problems.

As for the construction of a decision-making system, many machine learning methods
have been utilized for fault diagnosis of rotating machinery, such as k-nearest neighbors
(k-NN) [6,11], artificial neural network (ANN) [8,14,19,20], support vector machine
(SVM) [9,12,13,15], least square SVM (LS-SVM) [10], and the hidden Markov model
(HMM) [24]. In these methods, k-NN is easy to understand and implement. However, k-NN
requires a large amount of calculation since the distance from test points to all samples
must be calculated to obtain the k nearest neighbors. Moreover, k-NN is very vulnerable to
sample unbalance. Objectively speaking, ANN, SVM and HMM are more pertinent choices.
Nevertheless, how to determine the hyper parameters of ANN, SVM and HMM is a thorny
problem, especially for novice researchers. Moreover, these methods [6,8–15,19,20,24] do
not belong to a true sparse model, since all features of test points need to participate in
calculation. Thus, on the premise of guaranteeing the diagnostic performance, how to
develop a true sparse model and greatly reduce the test time is a great challenge.

In this work, we intend to study from two aspects: feature fusion and model construc-
tion, about fault diagnosis of rotating machinery. As for the traditional manifold learning
methods [5–7,13], the model parameters and the dimension of the fused features are hard
to determine. To solve these problems, a novel dimension-increment technique is proposed
for feature fusion. Kernel neighborhood preserving embedding (KNPE) is realized by the
combination of KPCA [25] and NPE [26]. KNPE is conductive to enriching the valid infor-
mation related to a rotating machinery fault by utilizing the dimension-increment method.
Moreover, a novel sparse Bayesian classification (Standard_SBC) method is proposed for
model construction, which aims to optimize hyper parameters, overcome non-sparsity
and reduce time consumption. Standard_SBC is a variant version of the relevance vector
machine (RVM) [27], by removing the kernelization operation. This gives Standard_SBC
two advantages: (1) no kernel parameter needs to be optimized in model construction;
(2) it automatically selects out more important features in model construction, i.e., integrat-
ing feature selection into model construction. This avoids the process of optimization of
kernel parameter and feature selection, which greatly reduces the time-consumption of sys-
tem modeling and helps to realize rapid modeling. In the previous studies [6–15,19,20,24],
determination of the features is independent of the model construction for the fault di-
agnosis of rotating machinery. It is worth noting that the combination of KNPE and
Standard_SBC avoids the determination of feature dimension (a problem that must be
solved in traditional dimension-reduction methods), which greatly reduces the workload
of feature engineering. In short, the fused features of KNPE are adopted as the input of
Standard_SBC, with the aim to construct a more effective SBC-based fault diagnosis system.
To show the superiority of KNPE and Standard_SBC, KPCA and RVM are utilized for
feature fusion and model construction, respectively.
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In this work, two application cases are analyzed to show the effectiveness of the
presented method (KNPE + Standard_SBC). The first one is rolling bearing fault diagnosis.
The experimental data are obtained from the Bearing Data Center of Paderborn Univer-
sity [28,29]. Another one is the rotating shaft fault diagnosis. The manned recreational
facility “Pirate Ship” is popular because of its extreme overweight and weightlessness
experience. How to ensure the safe operation of the pirate ship is the top priority. The pirate
ship is a kind of large semi-rotating machinery, and the rotating shaft of the suspended hull
is subjected to tension and friction for a long time. Once the rotating shaft of the suspended
hull fails, it will cause equipment damage and even casualties. Thus, the rotating shaft
fault diagnosis is necessary to ensure the safe operation of the pirate ship.

The following are the main contributions of our paper:

(1) A new classification method abbreviated as Standard_SBC is firstly proposed, which
aims at rapidly constructing the sparse diagnostic model.

(2) A new dimension-increment technique abbreviated as KNPE is firstly proposed,
which aims at enriching the valid information related to the rotating machinery fault.

(3) Standard_SBC can automatically select out more important features from the fused
features of KNPE, which greatly simplifies the SBC-based model. The combination
of KNPE and Standard_SBC is conductive to rapidly constructing an effective and
feasible fault diagnosis system for rotating machinery.

(4) A superior diagnostic performance is demonstrated by Standard_SBC when sup-
ported by KNPE. Two case studies (on the rolling bearing fault diagnosis and rotating
shaft fault diagnosis) validate the effectiveness of KNPE and Standard_SBLR fault
diagnosis systems.

The following is the organization of this paper. The background of KNPE and SBC
is presented in Section 2. Section 3 presents the fault diagnosis system based on KNPE
and Standard_SBC. Section 4 analyzes the presented model and presents the experimental
results. Other details about KNPE, Standard_SBC, and future research are provided in
Section 5. The paper is concluded in Section 6.

2. Backgrounds

The purpose of this section is to provide an introduction to KNPE and Standard_SBC,
which will be utilized in Section 4 for the diagnosis of rotating machinery faults.

2.1. Neighborhood Preserving Embedding

In order to maintain the local manifold structure of the given data, neighborhood
preserving embedding (NPE) [26] is a dimension-reduction technique. In the same manner
as locality preserving projection (LPP) [22], NPE is also an approximation to the nonlinear
locally linear embedding (LLE) [30]. There are significant differences between NPE and
LPP in the objective function.

Given a dataset X = {xi}m
i=1 ∈ Rn, NPE seeks to find a transformation matrix A that

maps these data points xi to a dataset {yi}
m
i=1 ∈ Rd(d� n), where yi = xi A is a row vector.

The implementation of NPE follows the following steps:
Step 1: Constructing the adjacency graph: Assume that G is an adjacency graph

with m nodes (i.e., data points). A graph adjacency G is constructed to model the local
structure using k-nearest neighbors. Nodes i and j are connected, if xi is one of xj’s k-nearest
neighbors.

Step 2: Calculating the weights: In W, the weights of the edges connecting nodes i
and j are represented by Wij. The weights of the edges [30] can be obtained by solving
Equation (1), which is a sparse but asymmetric matrix of weights.

min∑i

∥∥∥∥∥xi −∑
j

Wijxi

∥∥∥∥∥
2

(1)

where ∑j Wij = 1, j = 1, 2, · · · , m.
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Step 3: Eigenmaps: Utilizing the Equation (2), the generalized eigenvector problem
can be solved to obtain eigenvectors and eigenvalues.

XT MXα = λXTXα (2)

M = (I −W)T(I −W) (3)

where I = diag(1, · · · , 1), M represents the sparse symmetric and semi-positive definite
matrix.

The obtained eigenvectors α1, α2, · · · , αd are arrayed according to the ascending order
of the obtained eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd. A = (α1, α2, · · · , αd) is a n× d matrix.

Utilizing the NPE, the fused features of the vector xi or the new test data xt are
as follows:

yi = xi A (4)

yt = xt A (5)

where yi and yt are d-dimensional vectors (d� n).

2.2. Kernel Neighborhood Preserving Embedding

Kernel neighborhood preserving embedding (KNPE) is the nonlinear form of NPE,
which is realized by the combination of KPCA [25] and NPE [26]. Different from the
traditional dimension-reduction methods, KNPE is a new dimension-increment technique.

Suppose Φ : xi → Φ(xi) represents the nonlinear mapping from a Euclidean space
into a Hilbert space. X = {xi}m

i=1 ∈ Rn represents the before-mapping data matrix.
Φ(X) = [Φ(x1), Φ(x2), · · · , Φ(xm)]

T ∈ Rm×∞ represents the after-mapping data matrix.
Suppose that the data samples {Φ(xi)}m

i=1 mapped into the Hilbert space have been cen-

tralized, i.e.,
m
∑

i=1
Φ(xi) = 0. It is possible to express the generalized eigenvector problem in

the Hilbert space in the method as Equation (2):

ΦT(X)MΦ(X)ν = λΦT(X)Φ(X)ν (6)

where λ represents the eigenvalue; ν ∈ R∞ represents the eigenvector.
The trouble is that the explicit solution to Equation (6) is not available since the

nonlinear mapping Φ is implicit and unknown. However, the eigenvector ν can be linearly
expressed by Equation (7).

ν =
m

∑
i=1

αiΦT(xi) = ΦT(X)α (7)

where, α =
[
α1, α2, · · · , αm]T .

Fortunately, the eigenvector α can be obtained by utilizing the kernel tricks function.
Equation (8) can be obtained by fusing Equations (6) and (7).

Φ(X)ΦT(X)MΦ(X)ΦT(X)α = λΦ(X)ΦT(X)Φ(X)ΦT(X)α (8)

Equation (8) can be simplified and re-expressed, as given by:

Kcenter MKcenterα = λKcenterKcenterα (9)

where Kcenter = Φ(X)ΦT(X) represents the centralized kernel matrix, λ represents the
eigenvalue, and α ∈ Rm represents the eigenvector.
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Construction of the centralized kernel matrix Kcenter is the same as that in KPCA [31].

Kcenter = K− 1m×mK−K1m×m + 1m×mK1m×m (10)

K =
[
Kij
]

m×m (11)

Kij = K
(
xi, xj

)
=
〈
Φ(xi), Φ

(
xj
)〉

(12)

where K represents the kernel matrix, 1m×m represents a m×m matrix with the elements
1/m, and K

(
xi, xj

)
represents the kernel function.

The solution for Equation (9) is available since the centralized kernel matrix Kcenter
can be derived easily. Suppose (α1, α2, · · · , αm) represent the eigenvectors of Equation (9).
Vd = (v1, v2, · · · , vd) represent the first d eigenvectors of Equation (6), which correspond
to the first d eigenvalues of Equation (9).

The fused features of xi (i.e., training data) by utilizing KNPE are given by:

yi = Φ(xi)Vd = Ki
center(α1, α2, · · · , αd) (13)

where Ki
center represents the ith vector of Kcenter. d represents the dimension of the matrix.

As for the xt, the new test points constructed a new centralized kernel matrix KC
test by

means of K(xt, xi) and K
(
xi, xj

)
, which is the same as that in KPCA [31].

KC
test = Ktest −Ktest1m×m − 1t×mK + 1t×mK1m×m (14)

where 1t×m represents a t×m matrix with the elements 1/m.
The fused features of the new test points xt by utilizing KNPE are given by:

yt = Φ(xt)Vd = KC
test(α1, α2, · · · , αd) (15)

The dimension of the KNPE-based features can be determined by Equation (16):

∑d
i=1 λi

∑m
i=1 λi

≥ γ (16)

where 0 < γ ≤ 100%.
The kernel function of KNPE is set as the radial basis function (RBF),

KRBF(x, y) = exp

(
−‖x− y‖2

2σ2
0

)
(17)

where σ0 represents the kernel parameter, σ0 > 0.

2.3. Sparse Bayesian Classification

Sparse Bayesian classification (SBC) [27] aims to solve the problem of binary classifi-
cation, which follows an essentially identical framework as a sparse Bayesian regression
(SBR) [27,31]. For the new test points, SBC can provide not only the category output but
also the probability. The SBC is introduced as follows.

2.3.1. Probabilistic Model for Classification

Provided a dataset {xi, ti}N
i=1, xi ∈ Rd is the input variable, ti ∈ R is the corresponding

target value, and N represents the number of data samples. For binary classification,
ti ∈ {0, 1} is specified for each sample.
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For the new test point xs, the posterior probability of ts = 1 can be expressed by
Equation (18).

P( ts = 1|w) = σ{y(xs; w)} = 1
1 + e−y(xs ;w)

(18)

y(xs; w) =
N

∑
i=1

wiK(xs, xi) + w0 (19)

where y(xs; w) represents the discriminant function, wi represents the ith element of the
weight vector w, and K(xs, xi) represents the kernel function.

The category information of the new test point xs is: (1) ts = 0 when P( ts = 1|w) < 0.5
is satisfied; (2) ts = 1 when P( ts = 1|w) > 0.5 is satisfied.

The discriminant function as given by Equation (19) can be simplified and expressed
by:

y = Φw (20)

where y = (y1, y2, · · · , yN)
T , yi = y(xi; w), and Φ = [Φ(x1), Φ(x2), · · · , Φ(xN)]

T ∈
RN×(M+1) represents the ‘design’ matrix; Φ(xi) represents the ‘basis function’,
Φ(xi) = [K(xi, x1), K(xi, x2), · · · , K(xi, xN)], and w = (w0, w1, · · · , wM)T , M = N.

2.3.2. The Fundamentals of SBC

In SBC, the weight coefficients (see Equation (19)) of the binary classification model
(see Equation (18)) are considered to be random variables. SBC aims to obtain the pos-
terior distribution over the weights w by means of Laplace approximation so as to con-
struct a binary classification model. A detailed solution process for the weights w =

(w0, w1, · · · , wN)
T is introduced as follows.

P( t|x) is supposed to satisfy the Bernoulli distribution. The corresponding probability
can be calculated by:

P(t|w) =
N

∏
i=1

σ{y(xi; w)}ti [1− σ{y(xi; w)}]1−ti (21)

where t = (t1, t2, · · · , tN)
T is the target vector.

In SBC, the prior distribution over the weights w is the same as in SBR [27,31], which
is defined as given by:

p(w|α) =
M

∏
i=0
N
(

wi

∣∣∣0, α−1
i

)
(22)

where α = (α0, α1, · · · , αM) consists of M+ 1 hyper-parameters; p(wi|αi) = N
(

wi

∣∣∣0, α−1
i

)
.

For the value of α, the weights wMP can be found by maximizing the log-probability
of p(w|t, α ) ∝ P(t|w)p(w|α).

log{P(t|w)p(w|α)} =
N

∑
i=1

[tilogzi + (1− ti)log(1− zi)]−
1
2

wTAw (23)

where zi = σ{y(xi; w)}, A = diag(α) is a diagonal matrix.
When the weights wMP are determined, the probability of the test point xnew

i can be
calculated by Equation (18). The corresponding category is given by Equation (24):

ti|xnew
i

=

{
0, P(ti = 1|wMP) < 0.5
1, P(ti = 1|wMP) > 0.5

(24)

2.3.3. Hyper-Parameter Estimation of SBC

It should be noted that the weights w cannot be integrated directly. Thus, Laplace’s
method is used to obtain an approximate solution. The process is as follows.
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1. The second-order Newton method is utilized to find the values wMP.

g = ∇wlog{P(t|w)p(w|α)} = ΦT(t− z)−Aw (25)

H = ∇w∇wlog{P(t|w)p(w|α)} = −
(

ΦTBΦ + A
)

(26)

∆w = −H−1g (27)

wnew
MP = wMP + ∆w (28)

where z = (z1, z2, · · · , zN)
T . B = diag(β) is a diagonal matrix, β = (β1, β2, · · · , βN),

wherein βi = zi(1− zi).

2. In the Laplace method, a Gaussian function that centered at wMP is adopted to
approximate p(w|t, α ). By utilizing the Hessian matrix that was obtained in step 1,
we can derive the corresponding covariance matrix.

Σ =
(
−H|wMP

)−1
=
(

ΦTBΦ + A
)−1

(29)

3. The hyper-parameters α need to be updated in the same way as in SBR [27,31].

αnew
i =

γi

w2
MPi

(30)

γi = 1− αiΣii (31)

where wMPi represents the ith element of the weights wMP; Σii represents the ith diagonal
element of the covariance matrix Σ.

The ‘most probable’ values of wMP can be finally determined by a multi-iteration with
regard to Equations (28) and (30). The log-probability log{P(t|w)p(w|α)} will gradually
increase, most of the hyper-parameters αi gradually tend to infinity and the corresponding
weight wi tends to zero. When the iterative process is complete, the ‘most probable’ values
of wMP will be obtained.

2.3.4. The Proposed Standard_SBC

In the original literature [27], SBC is also referred to as a relevance vector machine
(RVM). The discriminant function (see Equation (19)) in RVM is a kernelized model, which is
similar to the support vector machine (SVM). In this work, a new SBC method, abbreviated
as Standard_SBC, is proposed so as to match with dimension-increment (i.e., KNPE).

Standard_SBC is a variant version of RVM and realized by using a standard linear
model as the discriminant function, as given by Equation (32).

y(xs; w) =
d

∑
i=1

wixi
s + w0 (32)

where wi represents the ith row of the weight vector w, xi
s represents the ith element of the

input variable xs.
The discriminant function as given by Equation (32) can also be simplified and ex-

pressed by:
y = Φw (33)

where y = (y1, y2, · · · , yN)
T , yi = y(xi; w), Φ = [Φ(x1), Φ(x2), · · · , Φ(xN)]

T ∈ RN×(M+1)

represents the ‘design’ matrix, Φ(xi) represents the ‘basis function’, Φ(xi) = [1, xi],
w = (w0, w1, · · · , wM)T , and M = d.
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2.3.5. Summary of SBC

It should be noted that Equations (20) and (33) have the same expression. The differ-
ence is that they have a different ‘basis function’ Φ(xi). According to the ‘basis function’
Φ(xi), SBC can be divided into two categories:

(1) When Φ(xi) = [1, xi] is adopted as the ‘basis function’, SBC is defined as Stan-
dard_SBC.

(2) When Φ(xi) = [1, K(xi, x1), K(xi, x2), · · · , K(xi, xN)] is adopted as the ‘basis function’,
SBC is defined as Kernelized_SBC.

Most of the weight coefficients (see Equations (19) and (32)) tend to zero when the
hyper-parameters’ estimation of SBC is completed. This reveals the sparseness of SBC.
Thus, it is possible to improve the model framework of SBC in accordance with the number
of non-zero weights that are given by:

y(xs; w) = ∑
xi

s∈RD

wixi
s + w0 (34)

y(xs; w) = ∑
xi∈RV

wiK(xs, xi) + w0 (35)

where wi represents the ith element of the weight vector w, K(xs, xi) represents the kernel
function, xi

t represents the ith element of the input variable xt.
In summary, SBC can be divided into two categories: Standard_SBC and Kernel-

ized_SBC. Kernelized_SBC is also known as RVM, which was discussed in our previous
research [32].

3. Fault Diagnosis of Rotating Machinery Based on KNPE and Standard_SBC

In this work, Standard_SBC is utilized to construct the SBC-based fault diagnosis
model of rotating machinery. Figure 2 illustrates the overall process.

3.1. Feature Extraction and Fusion

Firstly, feature extraction from the signals need to be carried out so as to directly reflect
the change of the health state of rotating machinery. The widely used signals for the fault
diagnosis of rotating machinery contains vibration, acoustic emission (AE) and current. To
remove the influence of different operating conditions, as shown in Table 1, the features
are determined by our previous work [21]. The extracted features need to be normalized
according to Equation (36) before fusion or feeding to Standard_SBC.

x′ =
x− x

σx
(36)

where x represents the mean value of x; σx represents the standard deviation of x.
Secondly, to remove as much noise and redundancy as possible, KNPE is utilized to

fuse the extracted features. Moreover, the model parameters (k and σ0) of KNPE have a
certain influence on the effectiveness of the fused features. The pseudo-code of KNPE is
shown in Table 2.

3.2. Model Construction

The extracted features or the KNPE-based fusion features make up the feature vectors,
which are adopted as the input of Standard_SBC.

Pseudo-code of the SBC algorithms is shown in Algorithm 1. After the training process,
the parameters of Standard_SBC (wMP) can be obtained and utilized to construct a fault
diagnosis system based on Standard_SBC. There is no kernel parameter that needs to be
optimized in Standard_SBC, which will greatly reduce the modeling time. Moreover, Stan-
dard_SBC is a standard linear and sparse model, which will greatly reduce the recognition
time for test samples.
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Table 1. Three domains and the corresponding features.

Domains Features [21] Expressions

Time-domain (T)

Mean µ = E(|xi|)
Root mean square (RMS) xRMS =

{
E
(

x2
i
)}1/2

Maximum (Max) xMax = max(|xi|)
Peak to valley (PV) xPV = max(|xi|)−min(|xi|)
Standard deviation (Std) xStd = σ =

{
E
[
(|xi| − µ)2

]}1/2

Skewness (Ske) xSke = E
{
[(|xi| − µ)/σ]3

}
Kurtosis (Kur) xKur = E

{
[(|xi| − µ)/σ]4

}
Form factor (Fmf) xFm f = xRMS/µ

Frequency-domain (F) Frequency centroid (FC) xFC = ∑N
i=1 fi ·P( fi)

∑N
i=1 P( fi)

Frequency variance (FV)
xFV = ∑N

i=1 ( fi−xFC)
2·P( fi)

∑N
i=1 P( fi)

Wavelet-domain (W) RMS of the wavelet packet
coefficients [33] RMSFdir−L−M =

√
1
Ni

Ni

∑
t=1

(
d(M)

j−L,t

)2
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Table 2. Pseudo-code of the feature fusion algorithms (NPE and KNPE).

NPE KNPE

Calculation of the eigenvectors and eigenvalues
1 Constructing the adjacency graph G
2 Calculation of the weight matrix W as given by Equation (1)
3 Calculation of the semi-positive definite matrix M as given by Equation (3)

4 × Constructing the kernel matrix Kcenter as
given by Equation (10)

5 × Constructing the kernel matrix KC
test as given

by Equation (14)

6 Calculation of the eigenvectors and
eigenvalues by solving Equation (2)

Calculation of the eigenvectors and
eigenvalues by solving Equation (9)

Calculation of the fused features
1 Determination of the dimension d of the fused features

2 Calculation of the fused features for the
training data by Equation (4)

Calculation of the fused features for the
training data by Equation (13)

3 Calculation of the fused features for the test
data by Equation (5)

Calculation of the fused features for the test
data by Equation (15)

Note: In step 6, the singular value decomposition (SVD) [34,35] is applied for improving the computing efficiency
of the feature fusion. Detailed process is provided in Appendix A.

Note that Standard_SBC is a binary classifier. A voting method [36] is needed to
perform the task of multi-classification.

Algorithm 1: Standard_SBC and Kernelized_SBC

SBC-training
1 Constructing the ‘design’ matrix: Φ = [Φ(x1), Φ(x2), · · · , Φ(xN)]T ∈ RN×(M+1)

2 Initialization of w = (w0, w1, · · · , wM)T , α = (α0, α1, · · · , αM) and
β = (β1, β2, · · · , βN)

3 A = diag(α), B = diag(β)
4 for i = 1 : maxIteration % maxIteration is the maximum number of iterations.
5 Calculation of the log-probability log{P(t|w)p(w|α)} as given by Equation (23)
6 Update of the covariance matrix Σ as given by Equation (29)
7 Update of the weights wnew

MP as given by Equation (28)
8 Update of the hyper-parameters αnew

i as given by Equation (30)
9 Update of the diagonal matrix A
10 Update of the diagonal matrix B
11 Calculation of the convergence condition: tmperr = max

{∥∥αnew
i − αi

∥∥}
12 if tmperr < 10−5

13 break % Iteration is stopped when the convergence condition is satisfied.
14 end if
15 end for % The ‘most probable’ values wMP are determined.
SBC-prediction
1 Constructing the ‘design’ matrix Φ(x∗)
2 Calculation of the probability output for test point xnew

i as given by Equation (18)
3 Determination of the category label for test point xnew

i as given by Equation (24)
Note: xi ∈ Rd is the input variable. As for Standard_SBC, Φ(xi) = [1, xi] and M = d. As for
Kernelized_SBC, Φ(xi) = [1, K(xi, x1), K(xi, x2), · · · , K(xi, xN)] and M = N. In step 6, SVD [34,35]
is applied for reducing the singularity of the matrix

(
ΦTBΦ + A

)
. Detailed process is provided in

Appendix A.

4. Experimental Results and Analysis

To show the effectiveness of the proposed method (KNPE + Standard_SBC) for fault
diagnosis of rotating machinery, two case studies are analyzed in this work.
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4.1. Case Study 1: Rolling Bearing Fault Diagnosis
4.1.1. Experimental Introduction

In this section, the data are obtained from the Bearing Data Center of Paderborn
University [28,29]. The experimental setup for the collection of bearing data with the
working condition is shown in Figure 3. The test rig consists of five modules: (1) electric
motor, (2) torque-measuring shaft, (3) bearing test module, (4) flywheel, and (5) load motor.
The bearing test module is used to generate the experimental data of ball bearings with
different types of damage: non-damage (healthy), artificial damages and real damages. The
type of electric motor and load motor is Permanent Magnet Synchronous Motor (PMSM).
The phase currents (u, v) of the electric motor are collected by a current transducer, low-
pass filter at 25 kHz and A/D converter [29]. The vibrations of the bearing test module are
collected by a piezoelectric accelerometer, charge amplifier, low-pass filter at 30 kHz, and
A/D converter [29]. The sampling frequency for the phase currents (u, v) and vibration
information are set to 64 kHz. Further details of the experimental setup are available in [29].
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Real damages caused by accelerated lifetime tests are as shown in Figure 4. The
experimental data obtained from 15 bearings are listed in Table 3. For each bearing, the data
are collected at different operating parameters, as shown in Table 4. For each kind of setting,
a total of 20 measurements are saved as MATLAB files. The name for the MATLAB files
consists of the operating parameters, the bearing code and the code of measurement (e.g.,
N15_M07_F10_K001_1.mat). There are a total of 1200 measurements that can be obtained:
15 bearings × 4 settings × 20 measurements.

Table 3. Categorization for healthy bearings and bearings with real damages.

Actual State Healthy
(Class 1)

Outer Ring Damage
(Class 2)

Inner Ring Damage
(Class 3)

K001 KA04 KI04
K002 KA15 KI14

Bearing code K003 KA16 KI16
K004 KA22 KI18
K005 KA30 KI21

Table 4. Operating parameters of the test rig.

No. Rotational Speed (rpm) Load Torque (Nm) Radial Force (N) Name of Setting

1 900 0.7 1000 N09_M07_F10
2 1500 0.1 1000 N15_M01_F10
3 1500 0.7 400 N15_M07_F04
4 1500 0.7 1000 N15_M07_F10
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Figure 4. Real damages caused by accelerated lifetime tests: (a) Indentation at the raceway of outer
ring; (b) small pitting at the raceway of inner ring.

Table 5 shows the details of the operating parameter of healthy (undamaged) bearings
during the run-in period. And, the Table 6 shows the detail information of bearings with
real damages caused by accelerated lifetime test. The extent of the damage describes
the size of the damage in normalized levels, which are independent of the bearing size.
The levels are based on the length of the damage and the parameters for describing the
geometry of bearing damages, as shown in Figure 5. The damage percentage of the length
relative to pitch circumference is calculated and then assigned to five levels according to
Table 7, especially for bearing 6203.

Table 5. Operating parameter of healthy (undamaged) bearings during run-in period.

No. Bearing Code Run-in Period (h) Radial Force (N) Speed (min−1)

1 K001 >50 1000–3000 1500–2000
2 K002 19 3000 2900
3 K003 1 3000 3000
4 K004 5 3000 3000
5 K005 10 3000 3000

Table 6. Test bearings with real damages caused by accelerated lifetime test.

No. Bearing
Code Type of Damage Damage

Location Combination Arrangement Damage
Level

Characteristic
of Damage

1 KA04 fatigue: pitting OR S no repetition 1 single point

2 KA15 plastic deform.:
Indentations OR S no repetition 1 single point

3 KA16 fatigue: pitting OR R random 2 single point
4 KA22 fatigue: pitting OR S no repetition 1 single point

5 KA30 plastic deform.:
Indentations OR R random 1 distributed

6 KI04 fatigue: pitting IR M no repetition 1 single point
7 KI14 fatigue: pitting IR M no repetition 1 single point
8 KI16 fatigue: pitting IR S no repetition 3 single point
9 KI18 fatigue: pitting IR S no repetition 2 single point
10 KI21 fatigue: pitting IR S no repetition 1 single point

Note: OR: outer ring; IR: inner ring; S: single damage; R: repetitive damage; M: multiple damage. Single damage:
One single component of the rolling bearing is affected by a single damage. Repetitive damage: Identical damage
symptoms are repeated at several places on the same bearing component. Multiple damage: Different damage
symptoms occur in the bearing or identical damage symptoms occur on different bearing components.
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Figure 5. Parameters for describing the geometry of bearing damages.

Table 7. Damage levels determine the extent of damage.

Damage Level Assigned Percentage Values Limits for Bearing 6203

1 0–2% ≤2 mm
2 2–5% >2 mm
3 5–15% >4.5 mm
4 15–35% >13.5 mm
5 >35% >31.5 mm

4.1.2. Feature Extraction and Fusion

Due to the influence of different operating parameters, the original phase currents
(u, v) and vibrations find it difficult to reflect the bearing damages. Thus, the features [21]
as shown in Table 1 are extracted. A total of 8 Time− domain× 3 Signals = 24 time−
domain features and 2 Frequency− domain× 3 Signals = 6 frequency− domain features
are obtained for each signal. Moreover, the decomposition of the phase currents (u, v) and
vibrations at level-5 are based on the use of ‘db5′ wavelet packets’ decomposition (WPD)
with Shannon entropy [36]. A total of 32 sub-bands can be obtained from the phase currents
(u, v) and vibrations, respectively. By utilizing the WPD, a total of 32 wavelet− domain×
3 Signals = 96 wavelet− domain features can be obtained by calculating the root mean
square (RMS) of the wavelet packet coefficients in each sub-band.

The “feature vector” of samples consists of 24 time-domain (T) features, 6 frequency-
domain (F) features and 96 wavelet-domain (W) features. The 126 TFW features or the
fused features of KNPE are adopted as the features of the SBC-based rolling bearing fault
diagnosis system, as can be observed in Table 8.

Table 8. The feature extraction of phase currents (u, v) and vibrations.

No. Domain Symbol Feature Number

1 Time-domain T 24
2 Frequency-domain F 6
3 Wavelet-domain W 96
4 Total TFW 126

The phase currents (u, v) and vibrations are divided into four segments at the interval
of one second, as shown in Figure 6. Segment 1 and segment 3 are utilized to train models.
Segment 2 and segment 4 are utilized to test models. Altogether, 4800 data samples can
be obtained: 15 bearings × 4 settings × 20 measurements × 4 segments. The samples are
divided into a training dataset (2400) and test dataset (2400).
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4.1.3. Effectiveness of KNPE

To verify the effectiveness of KNPE, the SBC-based rolling bearing fault diagnosis
system is constructed by utilizing the extracted features and the fused features of KNPE,
respectively. The detailed process is as follows.

Model Construction and Evaluation by Using the Original Features

The Standard_SBC classifier is a binary classifier. This study focuses on multi-classifying
bearings with real damages. To perform the task of multi-classification, a one-versus-
one method [33], also called voting, is employed. Suppose a binary classifier is trained
using two categories of samples. Any two categories of samples can be used to train the
classifier. Altogether, l(l − 1)/2 binary classifiers can be obtained by the combination of any
two categories and utilized to realize an l-classification. Test samples are classified by the
l(l − 1)/2 binary classifiers. The category with the greatest number of votes from the
l(l − 1)/2 binary classifiers is considered to be the final estimate.

A pseudo-code of the SBC algorithms is shown in Algorithm 1, and the set of hyper-
parameters are shown in Table 9. In step 2 of SBC-training, the weights w are initialized
as w0 = w1 = · · · = wM = 0, and the hyper-parameters α are initialized as α0 = α1 =
· · · = αM = 5× 10−5. As for Standard_SBC, the subscript of the weight wM and the hyper-
parameter αM refers to the dimension of the “feature vector” xi ∈ Rd, i.e., M = d. The
details are provided in Section 2.3.4. The parameters β are initialized as β1 = β2 = · · · =
βN = 0.25, since βi = zi(1− zi) and zi = σ{y(xi; w)}. In the iterative process, most of the
hyper-parameters αi gradually tend to infinity while the corresponding weights wi tend to
zero. In practical terms, the weights wi have been very close to zero when the corresponding
hyper-parameters αi exceed 105. Thus, in this work, αi will stop being updated when
αi > 105 is satisfied. The maximum iterations of Standard_SBC is set to 1000. Moreover, the
convergence condition in the iterative process is set to tmperr = max

{∥∥αnew
i − αi

∥∥} < 10−5.

Table 9. The hyper-parameters of Standard_SBC-based fault diagnosis system.

No. Hyper-Parameters Dimension Initial Value

1 w M w0 = w1 = · · · = wM = 0
2 α M α0 = α1 = · · · = αM = 5× 10−5

3 β N β1 = β2 = · · · = βN = 0.25

Altogether, three Standard_SBC-based binary classifiers are needed to realize a three-
classification for the actual state of bearings: model_1-2, model_1-3 and model_2-3. The
model_1-2 represents the class1 versus class2 of the Standard_SBC-based classifier.

The iterative process of Standard_SBC can be described by the variation of
log{P(t|w)p(w|α)}, as shown in Figure 7; the horizontal axis represents the number of
iterations, and the vertical axis represents the value of log{P(t|w)p(w|α)}; most of the
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weights wi for model_1-2, model_1-3, and model_2-3 are equal to zero when the iterative
process is finished. Figure 8 shows the weights wi of the SBC-based rolling bearing fault
diagnosis system, Figure 8a–c represents the weight of the model_1-2, model_1-3 and
model_2-3, respectively. In Figure 8, the horizontal axis represents the index of weights,
and the vertical axis represents the value of the weights. Test results are shown in Figure 9.
There are only three misclassification samples in 2400 test samples, the horizontal axis
represents the index of samples, where index 1–800 represents the samples in state 1, index
801–1600 represents the samples in state 2, index 1601–2400 represents the samples in
state 3, the vertical axis represents the state of predicted samples, blue dots represent the
correctly classified samples, and red dots represent the misclassified samples. The result
shows that the accuracy of the SBC-based rolling bearing fault diagnosis system reaches up
to 99.88%.
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In the following section, C1 and C2 represent the phase currents u and v of an electric
motor, respectively. V represents the vibrations of the bearing test module. Moreover, as
mentioned in Table 1, ‘T’ represents the time-domain, ‘F’ represents the frequency-domain,
and ‘W’ represents the wavelet-domain.

To comprehensively analyze the performance of the SBC-based rolling bearing fault
diagnosis system, different combinations of signals and features (TFW features, TF features,
and W features) are analyzed. The number of features extracted by utilizing the different
signals and domains are shown in Table 10. The performance evaluation of the SBC-based
rolling bearing fault diagnosis system with different combinations is shown in Figure 10,
the horizontal axis represents the signals utilized by the models, the vertical axis represents
the prediction accuracy, the blue column represents the prediction accuracy by utilizing
the TFW features, the red column represents the prediction accuracy by utilizing the W
features, and the brown column represents the prediction accuracy by utilizing the TF
features; the following conclusions can be drawn from Figure 10:

(1) When the features are determined, the combination of vibrations (V) and phase
currents (C1 + C2, C1 or C2) can guarantee a better diagnostic performance.

(2) W features are more important than TF features in eliminating the influence of differ-
ent operating conditions.
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126 TFW features obtained from the phase currents (u, v) and vibrations.
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Table 10. The number of features extracted by utilizing the different signals and domains.

Signal Domain

TF W TFW

C1 30 96 126
C2 30 96 126
V 30 96 126
C1 + C2 60 192 252
C1 + V 60 192 252
C2 + V 60 192 252
C1 + C2 + V 90 288 378
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Figure 10. Performance evaluation of the SBC-based rolling bearing fault diagnosis system for
different combinations of signals and features. ‘T’, ‘F’, and ‘W’ represent the time-domain, the
frequency-domain, and the wavelet-domain, respectively. C1 and C2 represent the phase currents u
and v of motors, respectively. V represents the vibration signal of bearings.

The sparseness of the SBC-based rolling bearing fault diagnosis system by using the
TFW features is shown in Figure 11. It can be found that the more signals (C1 + C2 + V)
are utilized to construct models, the less number of ‘relevance dimensions’ (RDs).
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In summary, the more sufficient signals (C1 + C2 + V) and sufficient features (TFW
features) are utilized to construct the SBC-based rolling bearing fault diagnosis system, the
better diagnostic performance and larger sparseness.



Entropy 2023, 25, 1549 19 of 31

Model Construction and Evaluation by Using the Fused Features of KNPE

In this section, to guarantee the diagnostic performance of the SBC-based system,
the KNPE is utilized to fuse the features. A pseudo-code of KNPE is shown in Table 2.
In the step 1 of KNPE, k-nearest neighbors (k ∈ N) is adopted to construct the adjacency
graph. In this work, the parameter k and the kernel parameter σ0 of KNPE are set to 10 and
5, respectively.

KNPE is utilized to fuse the features (TFW features, TF features, and W features)
of signals. The first d fused features of KNPE are selected as the input. The dimension
d is determined by the cumulative contribution rate γ, as shown in Equation (16). In
this section, the parameter γ is set to 50%. The effectiveness of KNPE in improving the
diagnostic performance of the SBC-based fault diagnosis system is shown in Figure 12. It
can be found that, when the features are sufficient (see Figure 12a) or relatively sufficient
(see Figure 12b), KNPE can improve the diagnostic performance of the SBC-based system,
especially in the case of less signals (C1 + C2, C1, C2 and V). When the features are
insufficient (see Figure 12c), vibrations (V) are still effective with the support of KNPE
and perform far better than phase currents (C1 + C2, C1 or C2). With the combination of
vibrations (V) and TF features (see Figure 12c), KNPE makes the prediction accuracy of
the SBC-based system improve from 65.88% to 97.33%. This reveals that vibrations (V) are
more suitable for rolling bearing fault diagnosis.

In summary, KNPE is conductive to guaranteeing a better diagnostic performance even
when the conditions become more severe (i.e., signals or features are reduced). Thus, the
combination of KNPE and Standard_SBC is recommended for constructing the SBC-based
rolling bearing fault diagnosis system.
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Figure 12. Effectiveness analysis of KNPE for rolling bearing fault diagnosis (k = 10, σ0 = 5,
γ = 50%): (a) KNPE fuses the TFW features; (b) KNPE fuses the W features; (c) KNPE fuses the
TF features.
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4.2. Case Study 2: Rotating Shaft Fault Diagnosis
4.2.1. Experimental Introduction

In this section, the rotating shaft of the suspended hull of pirate ship is analyzed. The
experimental setup for the collection of rotating shaft data with a working condition is
shown in Figure 13. The test rig contains five modules: (1) main frame, (2) suspended
hull, (3) bearing pedestal, (4) rotating shaft, and (5) power take-off. The rotating shaft is
used to generate the experimental data with different damages: normal shaft (healthy),
unbalanced shaft and cracked shaft, as shown in Figure 14. Figure 14a shows the normal
shaft, and the maximum outer diameter and maximum length of the shaft are 55 mm
and 620 mm, respectively. Figure 14b shows the unbalanced shaft, and the dimensions of
the iron blocks are 53 mm in length, 39 mm in width, and 24 mm in height. Figure 14c
shows the cracked shaft, and the cracked shaft is artificially formed by cutting a gap with
a width of 0.2 mm and length of 20 mm. The vibrations of rotating shafts are collected
by an accelerometer (CT1005L), constant current source (CT5201), data acquisition card
(MCC USB-231), and computer. The type and function of the key components are shown
in Table 11. The accelerometer is utilized to convert vibration signals into voltage signals.
The constant current source is utilized to stable the voltage signal or amplify the voltage
signal by 10 times. The data acquisition card is utilized to collect the voltage signal.
Accelerometer, constant current source, data acquisition card, and computer are wired as
shown in Figure 15; the accelerometer and constant current source are wired by a “M5
to BNC” cable. The constant current source and data acquisition card are wired by the
“BCN to terminal” cable. The data acquisition card is connected to the computer through
a “Hi-speed Micro-USB” cable. The accelerometer is adsorbed on the side of the bearing
pedestal through the magnetic base, as shown in Figure 13b.
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Table 11. The type and function of the key components of the experimental platform.

No. Name Type Parameter Function

1 Accelerometer CT1005L Measure range: ±100 g, Frequency
response: 1~10 kHz

Convert vibration signals into
voltage signals.

2 Constant current source CT5201 Frequency range: 1~100 kHz Stabilize the voltage signals.

3 Data acquisition card MCC USB-231
Analog input range: ±10 V,
Resolution ratio: 16-bit; Sample
frequency: 50 kS/s

Collection of the voltage signals.
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4.2.2. Data Collection Introduction

In this section, the data collection and the procedure of the experiments have been
introduced. The experimental data obtained from the three types of rotating shaft are listed
in Table 12. The sampling frequency for the vibration information of the rotating shafts
is set to 10 kHz. According to Nyquist’s theorem, we set the cut-off frequency at 4 kHz
of a low-pass filter [37]. A total of 330 measurements are obtained and saved as CSV files.
In each file, the data length is 30 s. A total of 110 signals were collected for three kinds of
the shaft, respectively. A total of 110 signals × 3 shafts = 330 signals were collected. Each
signal was divided into 10 segments for the first 5 s. This resulted in a total of 3300 samples,
with 1100 samples in each category, and for each category, the 1100 samples have the same
level of damage.

Table 12. Categorization for the three shafts and the corresponding amount of data that was collected
by the accelerometer.

Normal Shaft Unbalanced Shaft Cracked Shaft

Categorization Class 1 Class 2 Class 3
Amount of data 110 110 110
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The procedure of data collection in the pirate ship experiment as shown in Figure 16;
the steps are as follows.
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Figure 16. The Pirate Ship Data Collection Experiment.

Step 1. Raise the pirate ship to the initial position, with an angle of 45◦ from the
vertical line.

Step 2. Release the pirate ship, and let it swing freely.
Step 3. After the pirate ship swings to the terminal position, let it return freely.
Step 4. The pirate ship returned to the initial position and was blown up with com-

pressed air.
Step 5. Collect the signals of the pirate ship shaft.
Step 6. Repeat the step 3 to step 5.
The initial power for the suspended hull is generated by lifting it to the initial position,

with an angle of 45◦ from the vertical line, and released to swing freely. The follow-up
power for the suspended hull is generated by an air valve which will provide the power
take-off when the pirate ship swings back to its initial position. The energy was added by
blowing air to compensate for the energy lost during the swing process. The accelerometer
collects the vibration signals generated by the rotating shaft.

4.2.3. Feature Extraction and Fusion

When shaft faults occur, non-stationary signals and noise signals will appear abun-
dantly. The key of the rotating shaft fault diagnosis is to how to extract effective features
and remove the noises simultaneously. In this section, the feature extraction is the same
as that in Section 4.1.2. The 8 time-domain (T) features, 2 frequency-domain (F) features
and 32 wavelet-domain (W) features, as can be observed in Table 1, are extracted from
the measurements (i.e., CSV files). The first 5 s of the data files are adopted for feature
extraction. The sampling interval for feature extraction is set to 0.5 s, and can augment 1
sample to 10 samples. Altogether, 3300 samples can be obtained: 10 samples × 110 data
files × 3 categories. They are randomly divided into a training dataset (1650) and test
dataset (1650). The corresponding shaft fault, as shown in Table 12, is adopted as the target
value. The features need to be normalized according to Equation (36).

KNPE is utilized to fuse the features (TFW features, TF features, and W features). The
parameter k and the parameter σ0 of KNPE are set to 10 and 5, respectively. In this section,
the cumulative contribution rate γ (see Equation (16)) is set to 2%. KNPE is utilized to
extract more effective features and remove the noise and redundancy features.
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4.2.4. Effectiveness of KNPE

In this section, the extracted features (TFW features, TF features, and W features) and
the fused features of KNPE are adopted for model construction, respectively. Standard_SBC
is utilized to realize a rotating shaft fault diagnosis. The effectiveness of KNPE in improving
the diagnostic performance of the SBC-based rotating shaft fault diagnosis system is shown
in Figure 17. It can be found that KNPE can improve the diagnostic performance of the
SBC-based system, especially in the case of less features (TF features). Moreover, W features
perform far better than TF features in prediction accuracy. With the case of KNPE fusing
the TFW features, the prediction accuracy of the SBC-based rotating shaft fault diagnosis
system reaches up to 99.64%. Test results of the rotating shaft fault diagnosis system based
on KNPE and Standard_SBC by using the TFW features are shown in Figure 18. There are
only six misclassification samples in the 1650 test samples.
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4.3. Comparison with KPCA

KNPE is a novel feature dimension-increment method. To show the superiority
of KNPE, KPCA [25] is utilized to feature fusion. The radial basis function (RBF) (see
Equation (17)) is adopted as the kernel function of KPCA. The kernel parameter is also set
to σ0 = 5. In this section, KPCA is utilized to fuse the TFW features, TF features and W
features, respectively. Performance comparison between KNPE and KPCA is carried out
when the cumulative contribution rate γ (see Equation (16)) is selected from different orders
of magnitude (10−1 ∼ 100, 100 ∼ 101, and 101 ∼ 102). The KNPE-based fusion features
and KPCA-based fusion features are adopted as the input, respectively. The same training
and test dataset in Sections 4.1 and 4.2 are adopted for model construction, respectively.
The performance of KNPE and KPCA are shown in Figures 19–21. The olive dashed lines
in some subfigures (see Figures 19c, 20a–c and 21b,c) represent the threshold which is
obtained from the SBC-based system by utilizing the pre-fusion features.

Note that the effectiveness of KNPE and KPCA is dependent on sufficient signals,
sufficient features (TFW features), or relatively sufficient features (W features). It can be
found that, when the features are sufficient (see Figures 19a and 21a) or relatively sufficient
(see Figures 19b and 21b), the effectiveness of KNPE is superior to KPCA.

When the signals are sufficient (C1 + C2 + V), feature absence (see Figure 19c) has
little effect on the performance of KNPE. When the signals are reduced (see Figure 20,
only the vibrations (V) are adopted), KNPE is still effective with most of the cumulative
contribution rates and performs better than KPCA. There are some discontinuities (drops)
in the prediction accuracy that corresponds to KNPE, as shown in Figure 20b,c. This may
be because Standard_SBC does not find the correct ‘relevance dimensions’ (RDs). On the
whole, the stability of the KNPE-based fusion features is less affected by insufficient signal
or feature absence, in comparison with KPCA.

It can be found from the prediction accuracy of Figures 19–21 that KNPE is effective at
most cumulative contribution rates. Furthermore, KNPE is less affected by an insufficient
signal or feature absence in comparison to KPCA.

4.4. Comparison with RVM

To show the superiority of Standard_SBC, RVM (i.e., Kernelized_SBC) [32] is utilized
to construct the SBC-based system in this section. In RVM, the initialization for the weights
w, the hyper-parameters α and the parameters β are the same as that in Section Model
Construction and Evaluation by Using the Original Features. Moreover, the maximum
iterations and the convergence condition in the iterative process are also the same as that
in Section Model Construction and Evaluation by Using the Original Features. The RBF
kernel function in RVM is given by:

K
(
xi, xj

)
= exp

(
−ϕ·

∥∥xi − xj
∥∥2
)

(37)

where ϕ is the kernel parameter, ϕ > 0.
In RVM, a 3-fold cross-validation and grid-search are utilized to optimize the kernel

parameter ϕ. The interval range of ϕ is set to
[
10−10, 100]. The ∆ϕ is set to 100.5. In the

3-fold cross-validation, the classification rate of the SBC-based system is adopted as an
evaluation indicator. An average of the 3 classification rates is adopted as the fitness. The
optimal ϕ∗ that corresponds to the maximum fitness is selected from the one-dimension
grid space (formed by ϕ) when the grid-search is finished.

The same training dataset and test dataset in Sections 4.1 and 4.2 are adopted for
the model construction. As for the rolling bearing fault diagnosis, TFW features of
C1 + C2 + V are adopted. As for the rotating shaft fault diagnosis, TFW features of vibra-
tions are adopted. Moreover, KNPE is utilized for feature fusion so as to further analyze
the performance of RVM. The parameter k, the kernel parameter σ0 (see Equation (17))
and the cumulative contribution rate γ (see Equation (16)) of KNPE are set to 10, 5 and
0.2%, respectively.
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Figure 19. Performance comparison of KNPE (𝑘 = 10, 𝜎0 = 5) and KPCA (𝜎0 = 5) for rolling bear-

ing fault diagnosis: (a) KNPE fuses the TFW features of C1 + C2 + V; (b) KNPE fuses the W features 

of C1 + C2 + V; (c) KNPE fuses the TF features of C1 + C2 + V. 

Figure 19. Performance comparison of KNPE (k = 10, σ0 = 5) and KPCA (σ0 = 5) for rolling bearing
fault diagnosis: (a) KNPE fuses the TFW features of C1 + C2 + V; (b) KNPE fuses the W features of
C1 + C2 + V; (c) KNPE fuses the TF features of C1 + C2 + V.

Comparative analysis for the time consumption of Standard_SBC and RVM is carried
out. The comparison results of Standard_SBC and RVM are listed in Table 13. CV_time
represents the time consumption of the parameter optimization for determining the kernel
parameter ϕ of RVM. The training_time represents the amount of time it takes to construct a
model by utilizing the determined model parameters. The test_time represents the amount
of time it takes to test the model.

The obvious advantage is that Standard_SBC is not required to carry out the ker-
nel parameter optimization in model construction. In addition, with the assumption of
guaranteed prediction accuracy, the Test_time of Standard_SBC is significantly less than
that of RVM. In summary, Standard_SBC has the advantages of prediction accuracy, less
Training_time, and less Test_time, which make it suitable for industrial applications. This
explains why Standard_SBC is utilized for model construction in this work.
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Figure 20. Performance comparison of KNPE (𝑘 = 10, 𝜎0 = 5) and KPCA (𝜎0 = 5) for rolling bear-

ing fault diagnosis: (a) KNPE fuses the TFW features of vibrations (V); (b) KNPE fuses the W features 

of vibrations (V); (c) KNPE fuses the TF features of vibrations (V). 

Figure 20. Performance comparison of KNPE (k = 10, σ0 = 5) and KPCA (σ0 = 5) for rolling bearing
fault diagnosis: (a) KNPE fuses the TFW features of vibrations (V); (b) KNPE fuses the W features of
vibrations (V); (c) KNPE fuses the TF features of vibrations (V).

Table 13. Comparison between Standard_SBC and RVM.

Case Studies Methods Accuracy (%) CV_Time (s) Training_Time (s) Test_Time (s)

Rolling bearing fault
diagnosis Standard_SBC 99.88 × 13.5940 0.0090

RVM 99.96 1.0669× 104 42.3480 0.1560

KNPE + Standard_SBC 100 × 0.2700 0.0090
KNPE + RVM 100 2.7469× 104 48.9790 0.2050

Rotating shaft fault
diagnosis Standard_SBC 98.67 × 4.3220 0.0040

RVM 99.52 4.8212× 103 28.8570 0.0220

KNPE + Standard_SBC 99.58 × 17.3770 0.0050
KNPE + RVM 99.16 1.1088× 104 13.6910 0.1000

Note: As for rolling bearing fault diagnosis, TFW features of C1 + C2 + V are adopted. As for rotating shaft fault
diagnosis, TFW features of vibrations are adopted. As for KNPE (k = 10, σ0 = 5), the parameter γ is set to 0.2%.
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Figure 21. Performance comparison of KNPE (𝑘 = 10, 𝜎0 = 5) and KPCA (𝜎0 = 5) for rotating shaft 

fault diagnosis: (a) KNPE fuses the TFW features of vibrations; (b) KNPE fuses the W features of 

vibrations; (c) KNPE fuses the TF features of vibrations. 
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3-fold cross-validation, the classification rate of the SBC-based system is adopted as an 

evaluation indicator. An average of the 3 classification rates is adopted as the fitness. The 

Figure 21. Performance comparison of KNPE (k = 10, σ0 = 5) and KPCA (σ0 = 5) for rotating shaft
fault diagnosis: (a) KNPE fuses the TFW features of vibrations; (b) KNPE fuses the W features of
vibrations; (c) KNPE fuses the TF features of vibrations.

5. Discussion

In this work, Standard_SBC is proposed on the basis of sparse Bayesian classification
(SBC). Sparseness is an attribute of SBC. As for Kernelized_SBC (i.e., RVM), sparseness
is directed against the training samples. However, as for Standard_SBC, sparseness is
directed against the dimensions of training samples. In comparison with Kernelized_SBC,
the superiority of Standard_SBC is that no kernel parameter needs to be optimized in model
construction, which is conductive to rapid modeling.

It is worth noting that the sparsity connotation of Kernelized_SBC and Standard_SBC
is different. As for Kernelized_SBC (i.e., RVM), its sparsity refers to only the ‘relevance
vectors’ (RVs) are involved in decision making, as given by Equation (35). However, all the
dimensions of the test points need to be involved in the calculation for decision making.
As for Standard_SBC, its sparsity refers to only the ‘relevance dimensions’ (RDs) being
involved in decision-making, as given by Equation (34), i.e., only a small percentage of the
dimensions of the test points need to be involved in the calculation for decision making.
From the perspective of the number of the dimensions of the test points involved in decision
making, the proposed Standard_SBC belongs to a true sparse predictive model.
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Moreover, KNPE is proposed by the combination of KPCA and NPE. In this work,
the parameters (k and σ0) of KNPE are determined by training. There is no doubt that a
selection of the model parameters (k and σ0) will affect the effectiveness of the KNPE-based
fusion features. In the following research, the selection and optimization of the parameters
(k and σ0) of KNPE will be carried out.

As mentioned in the previous sections, KNPE is a novel feature dimension-increment
method. It means that the dimension of the KNPE-based fusion features may be much
larger than that of the original features, which greatly enriches the valid information related
to the rotating machinery fault. However, a large number of features will greatly increase
the complexity of the diagnostic model. Fortunately, Standard_SBC can automatically select
more important features from the fused features of KNPE, which avoids the generation of
more complex diagnostic models that may be caused by a dimension-increment operation.
This greatly simplifies the SBC-based fault diagnosis system of rotating machinery.

In future research, the fault diagnosis system of rotating machinery based on KNPE
and Standard_SBC will be validated through more case studies, such as rotor fault diagnosis
and gear fault diagnosis. In addition, KNPE and Standard_SBC will be applied to other
fields as well.

6. Conclusions and Future Works
6.1. Conclusions

In this paper, Standard_SBC is comprehensively analyzed with the aim to construct an
effective and feasible SBC-based fault diagnosis system of rotating machinery by drawing
support from KNPE. To reveal the effectiveness of the fault diagnosis system of rotating
machinery based on KNPE and Standard_SBC, two application cases (rolling bearing fault
diagnosis and rotating shaft fault diagnosis) are analyzed in detail. The main conclusions
are as follows:

(1) Experimental results of rolling bearing fault diagnosis show that the combination
of multiple signals is conductive to improving the diagnostic performance of the
SBC-based system.

(2) Experimental results of the two application cases show that sufficient features (TFW
features) are necessary for guaranteeing better diagnostic performance of the SBC-
based system.

(3) KNPE is conductive to guaranteeing the diagnostic performance of Standard_SBC.
When using sufficient features (TFW features) of the vibrations, experimental results
of the two application cases show that KNPE can make the prediction accuracy of the
SBC-based system more than 99.5%.

(4) In comparison with Kernelized_SBC (i.e., RVM), Standard_SBC can realize rapid
modeling (no kernel parameter needs to be optimized) and has less testing time,
which make it suitable for industrial applications.

(5) The cumulative contribution rate of KNPE has a much larger selectable region than
KPCA. Therefore, the determination of a suitable cumulative contribution rate for
KNPE is much easier than KPCA.

6.2. Future Works

It can be found that how to obtain ‘good’ features plays an important role in improving
the diagnostic performance of the fault diagnosis system of rotating machinery. For the
application, with the efficient advantages of KNPE, the fault of rotating machinery can be
found in a timely manner, and the maintenance measures can be taken in a timely manner.
The KNPE method can be utilized to monitor the bearing and motor of a high-speed railway,
semiconductor production line, generator status, and so on. For future works, KNPE can
be combined with ANN, LSTM, and so on to further improve the fault diagnosis accuracy
of rotating machinery. Moreover, we can also combine the KNPE with KPCA; firstly, KNPE
is utilized to increase the dimension of features, and then KPCA is utilized to decrease the
dimension of features; thus, we can extract the most useful features.
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A theoretical framework for the diagnosis of faults in rotating machinery for industrial
production is provided in this paper.
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Appendix A

In step 6 of KNPE as shown in Table 2, Equation (9) needs to be solved. Singular value
decomposition (SVD) [34,35] is applied on Kcenter with the aim to remove some invalid
information.

In step 6 of SBC training as shown in Algorithm 1, the matrix
(
ΦTBΦ + A

)
(see

Equation (29)) may be a singular matrix. If that happens, SVD will be applied on the matrix(
ΦTBΦ + A

)
for finding its approximate inverse matrix so as to speed up the training of

SBC.

Appendix A.1. The Fundamentals of SVD

Suppose X ∈ Rm×n represents the matrix to be preprocessed by SVD, m represents the
number of samples, and n represents the dimensionality of samples. The matrix X can be
decomposed into the following forms:

X = UΣVT (A1)

where U ∈ Rm×m represents the left singular matrix, V ∈ Rn×n represents the right singular
matrix, Σ ∈ Rm×n represents the singular value matrix. UUT = Im×m and VVT = In×n,
I represents the unit matrix. The main diagonal elements of Σ are the singular values,
σ1 ≥ σ2 ≥ · · · ≥ σs > 0, s = min(m, n).

Appendix A.2. The Application of SVD in KNPE

As for Equation (9), the centralized kernel matrix Kcenter ∈ Rm×m can be expressed by
partial SVD as the following:

Kcenter = Um×mΣm×mVT
m×m

= Um×rΣr×rVT
m×r + Um×(m−r)Σ(m−r)×(m−r)VT

m×(m−r)
(A2)

where Σr×r contains the first r largest singular values and σ1 ≥ σ2 ≥ · · · ≥ σr. Σ(m−r)×(m−r)
contains the remaining m− r smaller singular values, σr+1 ≥ σr+2 ≥ · · · ≥ σm.

r can be determined by the threshold method as the following:

σr+1

σ1
< τ (A3)

where τ is the threshold.
The centralized kernel matrix Kcenter can be approximated by Equation (A4). To retain

the critical information, the threshold τ in Equation (A3) is set to 10−5.

Kcenter ≈ Um×rΣr×rVT
m×r (A4)
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Next, Equation (A5) is obtained by substituting Equation (A4) into Equation (9),

UT
m×r MUm×rβ = λβ (A5)

where β = Σr×rVT
m×rα ∈ Rr is the eigenvector of Equation (A5).

Then, the eigenvector α ∈ Rm of Equation (9) can be approximated by:

α = Vm×rΣ−1
r×rβ (A6)

Finally, α needs to be standardized so as to make it as the unit vector,

α′ =
α

‖α‖ (A7)

Appendix A.3. The Application of SVD in SBC

As mentioned in Sections 2.3.1 and 2.3.4, the matrix Φ ∈ RN×(M+1). Thus, the
matrix

(
ΦTBΦ + A

)
∈ R(M+1)×(M+1). As for Equation (29), the matrix

(
ΦTBΦ + A

)
∈

R(M+1)×(M+1) can be approximated by a partial SVD as the following:(
ΦTBΦ + A

)
≈ U(M+1)×rΣr×rVT

(M+1)×r (A8)

The determination of r is the same as that in Appendix A.2. To reduce the singularity,
the matrix

(
ΦTBΦ + A

)
is modified as the following:(

ΦTBΦ + A
)
≈ U(M+1)×rΣr×rVT

(M+1)×r + 10−5 ∗ diag(1, · · · , 1) (A9)
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