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Abstract: We study partitions (equitable, externally equitable, or other) of graphs that describe
physico-chemical systems at the atomic or molecular level; provide examples that show how these
partitions are intimately related with symmetries of the systems; and discuss how such a link can
further lead to insightful relations with the systems’ physical and chemical properties. We define
a particular kind of graph partition, which we call Chemical Equitable Partition (CEP), accounting
for chemical composition as well as connectivity and associate it with a quantitative measure of
information reduction that accompanies its derivation. These concepts are applied to model molecular
and crystalline solid systems, illustrating their potential as a means to classify atoms according to
their chemical or crystallographic role. We also cluster materials in meaningful manners that take
their microstructure into account and even correlate them with the materials’ physical properties.

Keywords: equitable partitions; externally equitable partitions; quotient graphs; molecular topology;
information compression

1. Introduction

The concept of graph partition, stated in the context of algebraic graph theory, is
applied to molecules and other chemical entities, and the implications are studied in the
broader context of structure–property relations in materials. Graph partitions generalise the
partitioning schemes based on groups of atoms defined by chemical reasoning (e.g., methyl,
hydroxyl, carboxyl, etc.) and can be very insightful when it comes to the definition of
groups of materials and the study of their properties. Some partitions can reveal symmetries
and regularities that are not evident at first glance; others encode important chemical and
topological information in a condensed manner. A special case of partitioning graphs that
represent chemical entities is shown to combine several of the above features.

The building blocks of molecular, ionic and other materials are the atoms in their
electrically neutral or charged state. We consider individual molecules as an example to
introduce the core concepts of this work. Atoms in them are connected together through
so-called covalent chemical bonds that can be of single or multiple order (usually up to
three). This is certainly reminiscent of a weighted graph where atoms are the nodes and
bonds play the role of edges with bond order being the edge weight. Thus, graphs come
up as an entirely natural description of chemical entities. In fact, this representation is
well-known to chemists who call it syntactic formula of a given molecule. Depending on
its kind (the chemical element it belongs to) an atom can be bonded to a specific number
of other atoms (thus hydrogen is linked to just one other atom, carbon can be linked to
up to four atoms, and so on). This is the valence of the chemical element and determines
the graph-theoretical valence or node degree. Sometimes, atoms of the same chemical
element can have different valence, depending on the atom’s ‘chemical environment’. From
a graph-theoretical perspective, these instances of the same element can be distinguished
and taken as different kinds of atoms.
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Atoms can be arranged in an orderly manner in space, especially in infinite periodic
crystal solids where a basic unit containing a finite number of them, the unit cell, is repeated
in all directions, tiling the whole space. This gives rise to infinite periodic graphs that can
be represented by the graph of their unit cell subjected to toroidal boundary conditions, as
explained in subsequent paragraphs. In these materials, atoms are arranged in space in
very specific ways thanks to the balance of total repulsive and attractive forces among them.
Quite often, these atoms are not bonded through covalent bonds as in molecules. However,
from a graph-theoretical viewpoint, we can consider the nearest neighbours of each atom
to be ‘bonded’ to it, so a graph can be constructed to model the material. The number of
these nearest neighbours, known in chemistry as coordination number, is the node’s degree.

We often find that atoms tend to gather in specific groups that are repeated many
times and combined with each other to form the material. Some of these groups play
an important role in chemistry and physical chemistry; they are called functional groups.
Others are building blocks that can be repeated and recombined in many ways to form
different kinds of all molecules. By way of examples, linear hydrocarbons such as butane
or octane consist of groups called methyl (one carbon and three hydrogens) and methylene
(one carbon, two hydrogens); ethanol contains a methyl, a methylene and the functional
group of hydroxyl (just one oxygen and one hydrogen atom) and so on.

Then, it is customary, when looking at a molecule and studying its properties, to
consider it as an assemblage of such groups. We can still use a graph (or syntactic formula,
in the chemists’ language) to draw a molecule using its groups rather than atoms as building
blocks. Chemically, these are ‘coarse-grain’ graphs that neglect some details to the extent to
which they do not matter much. Mathematically, this ‘group decomposition’ of a molecule
is a partition that is well known to chemists and makes sense to them because these groups
are intimately related with the physical and chemical properties of the materials. However,
as we intend to show, many other partition schemes are also possible and could give rise to
insightful relations connecting the structure and topology of materials with their properties.

The concept of quotient graph in a broad sense can be introduced here by considering a
partition scheme P, which gives rise to a coarser representation of a molecule, e.g., when
using groups of connected atoms instead of the atoms themselves. The particular ways
in which the nodes of the quotient graph are connected are specified subsequently, with
regards to the nature of the system and the partition applied to it.

Chemists are tempted to partition molecules in terms of functional groups and to define
quotient graphs accordingly. This approach has been fruitfully exploited by Hajiabolhassan
et al. [1] to improve application of graph neural networks in the prediction of molecular
properties, being able to condense the original molecular graphs to much smaller sizes
while retaining essential information about their chemistry.

In the literature concerning solid materials and crystal structures, the term ‘quotient
graph’ has been used to describe specifically the contraction operations that map an
infinite periodic structure to a finite graph that preserves all essential information about
the structure and connectivity of the crystal’s fundamental periodic units. The relevant
definitions take advantage of the system’s translational symmetry to do so. One such
definition is employed in a line of research that was initiated by Chung et al. [2], who
termed their approach the ‘vector method’. According to it, an infinite three-dimensional
periodic lattice is partitioned into sublattices, each of them containing all periodic replicas
of a lattice point of the minimum unit that can reproduce the whole lattice by repeating
itself via translation symmetries. The sublattices are mapped to corresponding nodes of
the quotient graph, while the edges in it are defined by all possible connections between
any inter- or intra-sublattice point pairs, respecting the lattice structure and periodicity.
A multigraph with loops can arise as a result of this process in the general case. This
quotient graph is completed by annotating the edges with triplets of integers to indicate
whether the node pairs represent lattice point pairs within a translational periodic unit or
ones shared by neighbouring units along all three translation directions. This approach is
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useful, among others, in devising algorithms for the computational prediction and design
of crystal structures, as Gao et al. have shown [3].

Another similar way to define finite graphs for periodic crystal materials is based on
the partition of space into what is known as the crystal unit cell, i.e., a volume element
containing an adequate subset of lattice points, which can tile the space and reproduce
the whole lattice. In this case, the so-called toroidal or periodic boundary conditions allow
one to define edges between atoms that are situated far apart within the unit cell but
linked to periodic replicas of each other residing in the adjacent unit cell copies (a simple
example is given in the next section). The validity of toroidal conditions as an adequate
description of periodic systems has a sound basis in solid-state physics [4], and their usage
is also extensive by the material modelling community [5]. The so-called minimum image
convention [5] can then be used to choose the copy closest to a given atom among all the
periodic replicas of another nearby site and define their pair in a unique unambiguous
manner. This technique can then be used to define edges of a graph where its nodes
correspond to the atoms in the unit cell (a recent work claims to use this approach to define
unit cells, in a broader sense, even for nonperiodic quasicrystals [6]).

Apart from the above approaches, there are many more ways to partition a system,
such as infinite periodic, finite molecular or others. From a purely algebraic standpoint,
a work by Neuberger et al. [7] summarises neatly the underlying framework in terms of
invariant subspaces of suitably selected matrices that can be readily transferred to the
adjacency, Laplacian and various other matrices that describe graphs.

In this work, we use an alternative scheme for the contraction of a finite graph that
describes a material system at the molecular and atomic level. This scheme emanates
from the concept of equitable partition (EP), which is intimately related with the system’s
underlying generalised symmetries. (The first author of the present work has successfully
used in the past such a notion to condense the directed graph of cliques of a trace monoid
that represented a parallel system [8]). Importantly, two or more kinds of partitions and
corresponding methods for the extraction of quotient graphs can be combined together,
e.g., functional group-based together with equitable partitioning. In a similar vein, the
above-described quotient graphs of periodic systems are, in fact, used by us as a starting
point for further partitioning and contraction of the graph that describes a given material.

In the following sections, we consider finite graphs G that describe either the connec-
tivity of atoms in a molecule or the coordination of atoms in unit cells subjected to toroidal
conditions, as described above; all of them are collectively termed ‘molecular graphs’, for
the sake of simplicity.

We consider a simple (undirected, loopless, lacking multiple edges) graph G(V, E),
where V is the set of vertices and E is the set of edges. An externally equitable partition (EEP)
P = {C1, . . . , Ci, . . . , Cj, . . . , Cp} is a partition of V with the property that every vertex of
each ‘cell’ Ci ⊆ V is connected with the same fixed number bij of vertices in another cell Cj,
for all i 6= j [9]. An EEP is equitable (EP) when the same condition holds among elements
of the same cell. Given an EEP P of a graph G, the quotient graph QG(P) is the weighted
directed graph, with the cells of P as its nodes and with an arc of weight bij from cell Ci to
cell Cj for all i 6= j. When P is an EP, arcs in the form of loops are also possible for i = j.
EP-derived quotient graphs are akin to the so-called divisors of graphs in [10]. In this work,
we also introduce a special case of (E)EP, termed Chemical Equitable Partition. Its definition
is given in detail in the next section.

2. Materials and Methods
2.1. Molecular Systems

In this subsection, we consider individual molecules without boundary conditions
and we introduce a specific case of an EEP (which turns out to be an EP) that is referred to
as Chemical Equitable Partition (CEP). This is defined by starting from the initial partition
of the atoms in the molecule, based on their valence and chemical element, and then
iteratively applying steps similar to those in an algorithm described in [11], leading to a
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specific partition which, in the general case, further divides the atoms of identical chemical
elements into subgroups of nodes sharing common connectivity profiles.

We give a formal definition of CEP before presenting a simple algorithm to derive
Chemical Equitable Partitions of molecular systems.

Definition 1 (Chemical Equitable Partition). Let there be a graph G(V, E), with the partition
D of its vertices grouped by their degree, and a refinement of D, referred to as ‘Chemical Partition’,
CP. A partition P of G is termed Chemical Equitable Partition if the following are true:

• It is the coarsest, not necessarily unique, EEP of G;
• Additionally, it is a refinement of CP.

The term ‘Chemical Partition’ obviously originates from the wider context of the
problems discussed in the present article. Thus, the CP of a molecular graph can be one
in which atoms are partitioned according to their valence and chemical element. Similar
chemical partitions can also be defined when considering groups of neighbouring atoms,
as the basic building blocks of a molecule.

A simple step-by-step example serves to illustrate the concept of CEP and its appli-
cation to molecular and ionic systems. We consider n-propane, a simple hydrocarbon
molecule, with its syntactic formula shown in Figure 1a. It consists of a linear backbone
chain of three carbon atoms (C), numbered 1 to 3, connected to eight hydrogen atoms (H),
numbered 4 to 11. In graph-theoretical terms, carbon and hydrogen atoms are nodes of
degrees 4 and 1, respectively, equal to their chemical valence; these are adjacent when the
atoms are connected by single covalent bonds, which form the graph edges with weight
equal to 1. The molecule resembles a tree graph, but the concepts and steps illustrated
below are applicable to physico-chemical systems of arbitrary topology.

Figure 1. Definition of CEP and an algorithm for its derivation. (a) Example: n-propane. (b) Atoms
split into cells, according to their chemical element and node degree (in the case of molecular graphs:
chemical valence). (c) Split further, as in O’Clery (2013) [11], until eliminating all violations of same
cell-to-cell out-degree condition. The resulting EEP is easily shown to be an EP. (d) Quotient graph,
QG (CEP): Nodes are classified according to their connectivity to their surroundings.

An algorithm for determining the CEP of a given molecule consists of three kinds of
steps. First, the partition is initialised. Then, steps, alternating in pairs, follow, determining
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‘connectivity profiles’ for the nodes and re-defining the molecular partition based on these
profiles. Finally, the concept of CEP is applied to n-propane as follows (see also Table 1):

Step 0 (Initialisation): The graph nodes or atoms are partitioned according to the
corresponding valence and chemical element. Thus, we come up with two partitions or
‘cells’, one of them containing all carbon atoms, and one containing all hydrogen atoms, as
shown in Figure 1b. The cells are numbered 1 and 2 and the corresponding column, ‘Step
0’, in Table 1, is filled accordingly;

Step 1 (Node profiles): Following a process similar to the one described by O’Clery [11],
we add two columns next to the Step 0 column, corresponding to the two cells, under the
common header ‘Step 1’. Their entries are filled as follows: for each atom or node i from 1
to 11, the number of edges going to nodes belonging to each cell j, from 1 to 2, is introduced
in the corresponding column’s entry. Thus, carbon number 1 is connected to one node in
cell 1 (the carbon atom number 2, adjacent to it) and three nodes in cell 2 (hydrogen atoms
4 to 6). The rest of the entries are filled in a similar manner;

Step 2 (Re-partitioning): Nodes are regrouped according to their ‘connectivity profile’
formed by the cell columns, i.e., all nodes sharing identical rows under the previous step’s
header, are said to belong to the same cell, and cells are redefined accordingly. In this
example, the end carbons form cell 1, the middle carbon belongs to cell 2, and all hydrogen
atoms comprise cell 3. If the new partition coincides with the last one, the algorithm is
terminated; else, the last two steps are repeated;

Step 3 (Node profiles): In this example, the new partition differs, so we re-iterate the
procedure of finding node connectivity profiles. Three cells have been defined; therefore,
three columns are added and the corresponding profiles are determined;

Step 4 (Re-partitioning): New cells are defined according to the most recent profiles.
This time, hydrogen atoms are split into two cells according to whether they are bonded to
the middle or one of the end carbons.

Step 5 (Node profiles): The partition determined in the last step differs from the one in
Step 2 and features four cells instead of three, so new node profiles have to be determined;

Step 6 (Re-partitioning): The new molecular partition defined on the basis of the last
node profiles, Step 5, is identical to the one in Step 4. Therefore, the algorithm is terminated.

Table 1. Construction of the Chemical Equitable Partition for individual molecules through the
example of a small linear hydrocarbon (n-propane).

Atom Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

1 2 1 2 3 1 2 3 4

C1 1 1 3 1 0 1 3 1 0 1 3 0 1

C2 1 2 2 2 2 0 2 2 2 0 0 2 2

C3 1 1 3 1 0 1 3 1 0 1 3 0 1

H4 2 1 0 3 1 0 0 3 1 0 0 0 3

H5 2 1 0 3 1 0 0 3 1 0 0 0 3

H6 2 1 0 3 1 0 0 3 1 0 0 0 3

H7 2 1 0 3 0 1 0 4 0 1 0 0 4

H8 2 1 0 3 0 1 0 4 0 1 0 0 4

H9 2 1 0 3 1 0 0 3 1 0 0 0 3

H10 2 1 0 3 1 0 0 3 1 0 0 0 3

H11 2 1 0 3 1 0 0 3 1 0 0 0 3

The final cells are as shown in Figure 1c. The corresponding quotient graph is the
weighted directed graph of Figure 1d, depicting the connectivity of the cells. The above-
determined partition is an EEP by construction, with the additional merit that it takes the
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chemical composition into account since it started by splitting the atoms according to their
chemical elements.

An important point has to be mentioned here: unlike existing versions of chemi-
cal graph theory [12], the degree of chemical bonds is not ignored. Thus, for instance,
double and triple carbon–carbon bonds correspond to graph edges with weight 2 and 3,
respectively, whereas the aromatic carbon–carbon bonds in such a molecule as benzene
are mapped to edges with a fractional weight of 1.5; otherwise, important chemical infor-
mation can be lost. It is also worth noticing that the same procedure can be carried out
using functional groups or coarse-grain ‘united atoms’ instead of atoms, e.g., methyl and
methylene groups.

Finally, it is noted that, as in [11], the above-described algorithm generates the coarsest
possible EEP given the initial partition, according to valences and chemical elements. Now,
we proceed to show that an EEP defined via the above algorithm, i.e., a CEP, is also an EP.

Proposition 1. The CEP of an individual molecule is an EP.

Proof. Let us consider a cell Ci of the CEP of a molecule partitioned into p cells, as in the
above-described procedure. For a given vertex v of G in Ci, its degree equals

dv =
p

∑
j=1
j 6=i

dvj + dvi,

where dvj denotes the number of edges going from v to elements of other cells Cj (inter-cell
edges), according to the given partition, and dvi is the number of remaining edges going
to elements w in Ci itself (intra-cell edges). By construction, our CEP is one in which all
vertices in a given cell C have the same degree dC (the valence of their chemical element);
therefore, for every v in Ci, we obtain

dvi = dCi −
p

∑
j=1
j 6=i

dvj,

so that the intra-Ci subgraph is dvi-regular.

2.2. Crystalline Solids and Toroidal Conditions

The above example showed how to extract the CEP of individual molecules with a
well-defined structure, based on covalent chemical bonding of atoms. Another example
serves to extend the applicability of the above scheme to different kinds of materials
like crystalline solids. In this case, the material consists of a so-called unit cell (of cubic,
parallelepiped or other form, characterised by three main axes) which contains a number
of atoms of various chemical elements in well-defined fully occupied positions (situations
such as partial and mixed occupancy are routinely encountered by crystallographers, but
they would require a treatment of statistical nature and are not considered in this work).
The material is built by replicating the unit cell along its axes so as to tile the entire space.

Atoms in such materials as ionic crystals or metals are usually held together by means
of non-directional electrostatic forces among ions or ions and free electrons, instead of
covalent bonds that form molecules. There are also cases of crystals formed by means of
covalent bonds as for instance carbon allotropes (graphite, diamond) or silicon carbide, or
even other kinds of interactions (for an overview of the kinds of crystals with respect to the
forces that form them see [13]). Still, the result is the same in the sense of atoms ordered in
a regular manner in space, which can be described by the replication of a basic unit along
all directions. In all these periodic systems, adjacency can be defined in another manner.
For each chemical element in the system, we consider a radius of the corresponding atoms
(assuming they are of spherical shape). Then, we use these radii to detect overlapping atom
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pairs that are marked as adjacent. Non-overlapping atom pairs are considered non-adjacent.
The radii are defined such that, for each atom, we determine its nearest neighbours. The
number of nearest neighbours of a given atom is known as its coordination number.

When calculating atom pair distances to compare them with the sum of the atoms’
radii, the cell’s periodicity has to be taken into account. Thus, a given atom near a face of
the cell will also have neighbours from the adjacent replica of the cell. These neighbours
are ‘periodic images’ of atoms of the unit cell that may appear to be situated far apart
within that cell (i.e., near the opposite face). An example is shown in Figure 2. The cell
contains four atoms numbered 1 to 4, of which atoms 2, 3, 4, near the rightmost face, form
two overlapping pairs (2–3 and 3–4), while atom 1, near the leftmost face, does not overlap
with any of them. However, the replica of the unit cell, on the left, contains a copy of atom
2 (denoted as 2′) which overlaps with 1. Then, we also consider atoms 1 and 2 as adjacent
and obtain the graph shown in the figure. This way of defining adjacency, i.e., selecting the
nearest neighbour bprox to an atom a among all the periodic images of an atom b, constitutes
the so-called minimum image convention and is an essential part of the way periodic boundary
conditions are commonly employed in many computational applications [5].

Figure 2. A fictitious unit cell with four atoms, illustrating the definition of adjacency under toroidal
conditions. Atom pairs 2–3 and 3–4 overlap; thus, they are adjacent. Atoms 1 and 2 do not overlap;
however, atom 1 overlaps with the periodic image 2’ of 2 on the left. Thus, atoms 1 and 2 are adjacent
too. This is illustrated in the resultant path graph on the right.

As a concrete example of crystalline materials, we look at the micro-structure of iron.
Under ambient conditions, iron crystallises into a body-centered cubic structure with lattice
constant a = 0.2861 nm, as shown in Figure 3. The unit cell is a cube that contains two
atoms, one of them occupying a corner of the cell and the other one situated in the centre.
By replicating this cell along its axes, the whole space is tiled. Also, the other seven corners
of each cell are occupied by the atoms of the neighbouring cells. It is easy to see that each
atom in the lattice has exactly eight nearest neighbours and, thus, a coordination number
equal to eight. Given the appropriate toroidal conditions, we come up with a simple graph,
which, in this case, turns out to be a path graph with two nodes corresponding to the two
atoms. Applying the procedure outlined in the case of propane, it is very easy to come up
with the quotient graph, also shown in Figure 3. This quotient graph contains just one cell
encompassing all the atoms in the system and corresponds to a so-called trivial equitable
partition. Since all nodes are adjacent to nodes belonging in that same cell, there is just one
arc in the form of a loop, with weight equal to 1.

The above construction is mathematically sound but suffers from one drawback: the
node degree in the original graph and the arc degree in the quotient graph do not agree with
the actual coordination number of the atoms. Thus, some important physical information
has been lost in the process. To address this issue, we now consider a so-called supercell
obtained by replicating the unit cell a certain number of times along the cell axes. Here,
we consider the 2× 2× 2 supercell in which all atoms are surrounded by eight nearest
neighbours, as in the actual material. Indeed, all nodes of the resultant graph shown in the
bottom row of Figure 3 have the same degree (8) coinciding with bcc iron’s coordination
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number—this is also the weight of the arc in the corresponding quotient graph, which, once
again, corresponds to a trivial equitable partition.

Figure 3. Body-centered cubic iron (bcc Fe) as an example of a crystalline periodic material. Top
(left to right): bcc iron unit cell; graph of the cell under toroidal conditions; corresponding quotient
graph. Bottom (left to right): Same for a 2× 2× 2 supercell replicating the unit cell twice along each
axis. Note: Numbers in parentheses in the quotient graph cells denote the numbers of graph nodes
grouped together in the corresponding cells

The above discussion shows that the procedure of extracting the CEP of a given
chemical system can be easily extended to crystalline systems, but care should be taken
when selecting the appropriate unit cell to determine the system’s graph and quotient
graph. A distinction exists in crystallography between the conventional unit cell and the
primitive cell of a system. The latter is the smallest possible cell that reproduces the lattice
when appropriately replicated to cover the whole space. However, the full symmetry of
the system is not always apparent through the primitive cell and the conventional unit cell
is commonly used to reveal that symmetry. Conventional unit cells may contain more than
one primitive cells and can be large enough to replicate the actual local environment of each
atom so that node degrees and arc weights are consistent with the coordination numbers
and chemical valences. Thus, they are a safe choice in many cases when trying to extract
graphs and quotient graphs capable of encoding physically meaningful information.

Concisely, the procedure to extract the CEP of an infinite periodic crystal includes
the following:

1. Imposing periodic boundary conditions, with the aid of the minimum image conven-
tion, to the unit cells under consideration;

2. Taking the conventional unit cell or defining a large enough supercell, as discussed above;
3. Deriving the finite graph G of the chosen cell by detecting nearest neighbours of atoms

under the above boundary conditions.

Proposition 2. The CEP of an infinite periodic crystal derived under the above conditions (1 to 3)
is an EP.

Proof. The minimum image convention implies that any vertex is adjacent to a well-defined
number of nearest neighbours, equal to the coordination number dictated by the nature of
the corresponding atom (chemical element, crystallographic position, immediate ‘chemical
environment’). Then, the same logic as in the case of individual molecules applies to the
finite graph G of the unit cell under consideration, and its CEP, under the above conditions,
is an EP.
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2.3. Equitable Partitions as Information Compression Operations

The usage of different kinds of cells when partitioning the microstructure of crystalline
materials brings to the fore another aspect with interesting implications. A conventional
unit cell or a supercell may contain redundant information about the lattice structure as
compared to the primitive cell. Other kinds of information redundancy are associated with
the symmetries or regularities present in the system. These symmetries correspond to the
automorphism group of the corresponding graph. When determining the CEP (or the (E)EP
in general) an information reduction operation is actually carried out.

Let P be a CEP or another (E)EP partition of a molecular or crystalline material graph,
G. The simpler the QG(P), the richer the symmetry of the original graph; thus, (E)EP, and
its associated QG, pave the route to a characterisation of a graph’s symmetry. Some of the
information related to the original graph is lost in the partitioning process, but an important
part thereof (a subset of the spectrum) is transferred invariably to the QG [9,10]. Thus, an
(externally) equitable partition can be thought of as a lossy compression scheme. In this
respect, it would be interesting to quantify the information compression associated with
CEP, or (E)EP in general, as a means to quantify the symmetries of the graph that describes
a system.

An attempt to quantify redundancy in graphs with respect to their equitable partitions
has already been described by [14]. Alternative definitions were given, therein, for the
cases of sparse graphs and strongly nonsparse graphs, with the information compression
expected to vary between these two extremes in the general case. In the present work,
we quantify the information compression associated with an (E)EP in the general case
by defining a compression ratio based on the building blocks of the original and quotient
graph, namely, their nodes and edges or arcs. A crude compression measure would be
simply to divide the number of nodes in the QG by the number of nodes in G (much
akin to the ‘abstraction ratio’ defined by Hajiabolhassan et al. in [1]). The arcs of the QG,
however, introduce an extra layer of complexity that offsets, to some extent, the information
compression quantified by the nodes. We take this into account by introducing the ratio of
the arcs over edges alongside the corresponding % ratio of the nodes in our definition.

Then, we come up with the following expression for the compression ratio in the
general case (regardless of the graph sparsity):

%CR = 100 ·
nQG

nG
·

aQG

mG
, (1)

where nG and nQG are the numbers of nodes; mG is the number of edges in the original
(undirected) graph G and aQG is the number of arcs in the (generally directed) quotient
graph QG(P). The ratio 100 · nQG/nG expresses the % decrease in graph size; aQG/mG
accounts for the increase in complexity associated with the edges and arcs of the graph and
the quotient graph, respectively.

Finally, to account for the information redundancy arising when using larger than
primitive cells for crystalline materials, a factor is introduced to counterbalance this kind of
information excess. Thus, the fully fledged definition used in our calculations is given by
the following expression [15]:

%CR = 100 ·
nQG

nG
·

aQG

mG
· Z · f . (2)

The Z · f product concerns crystalline materials that exhibit periodicity, and their finite
contracted graph has been derived from the material’s conventional unit cell; otherwise, it
is set to 1. Thus, Z is the number of formula units in the conventional unit cell [16] and f is
the number of lattice points per cell [17]. In other words, Z · f is a reweighting factor that
renders the compression ratio consistent with the smallest unit that, under the appropriate
symmetry operations, can reconstruct the system (reduced cell) when the conventional unit
cell has been used to derive the structural graph. Molecules in isolation and amorphous
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cells subjected to periodic boundary conditions, like the ones used in molecular simulations,
do not need this kind of reweighting (Z · f = 1).

3. Results
3.1. Examples of Molecular Systems

Now, we are ready to apply the procedures described in the previous section to look at
the chemical equitable partitions of molecular and crystal systems and gain insights about
their microstructure. First, we look at the prototypical example of saturated hydrocarbons,
which are simple in terms of chemical composition and yet can have a rich topology
(though the aforementioned concepts are readily applicable to chemical systems of arbitrary
composition and structure). Figure 4 shows the syntactic formulae and CEP-quotient graphs
of some linear, branched and cyclic hydrocarbons. The corresponding compression ratios
obtained from Equation (1) are also shown.

Figure 4. Examples of molecular and quotient graphs of saturated linear, branched and cyclic
hydrocarbons. Subscripts in the condensed syntactic formulae denote the number of atoms of a
given type, whereas non-subscripted numbers in QG(CEP) graphs distinguish among different
cells consisting of atoms of the same chemical element. Loops that turn CEPs from EEPs to EPs are
coloured red. Compression ratios have been calculated according to Equation (1).

Methane has the highest compression ratio as it is the smallest and simplest of all
hydrocarbons, and, as such, it does not leave room for substantial compression as compared
to other molecules of the same family. As we move to larger and more complicated
molecules, though, we observe that the highly symmetrical neopentane, with five carbon
atoms, exhibits a remarkably low CR of 4.4%, as compared to 15.4% and 18.5% of smaller
(four carbon atoms) but less symmetrical butane and isobutane, respectively. If we write
their syntactic formulae in a planar form, the latter two would have a C2 symmetry,
whereas neopentane features a C4 symmetry. The more that atoms are unchanged under
the symmetry operations characterising a molecule, the more condensed its QG(CEP)
will be.

Remarkably, there is a one-to-one correspondence between linear or branched satu-
rated hydrocarbons and their QG(CEP) graphs, as can be shown easily. On the contrary,
cyclohexane is not unambiguously determined by its QG(CEP); the same quotient graph
can be obtained using any other saturated cyclic hydrocarbon. Although such molecules
have a Cn symmetry, where n is the number of carbons, their closed-loop form allows us to
look at them as linear chains subjected to periodic boundary conditions. Here, methylene,
-CH2-, is the basic periodic unit bonded to two adjacent identical groups of atoms. In this
way, cyclic saturated hydrocarbons can be said to exhibit translational symmetry along
their carbon–carbon chain, which is broken in the case of (finite) linear or branched hydro-
carbons. Of note, the same quotient graph as QG(CEP) of cyclohexane can be obtained by
applying CEP to ethylene, H2C=CH2, if we stick to our convention that double chemical
bonds correspond to molecular graph edges with a weight of 2.
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3.2. CEP as a Classifier of Atoms

The effect of broken translational symmetry is to further differentiate graph nodes with
respect to their placement relative to other existing symmetry elements like inversion cen-
tres or mirror planes. This can be seen in a simple yet instructive example: the generic case
of linear saturated hydrocarbons or n-alkanes. These are simple chain molecules consisting
of methylene, -CH2-, groups bonded together in a row and two methyl, -CH3-, groups
situated at the two ends of the chain. To further simplify the problem, we take advantage
of the previously mentioned fact that (E)EPs can be combined with other partitioning
schemes by, for instance, breaking down into functional groups and other subsets of atoms
connected together. In this example, we adopt a ‘united-atom’ approach by viewing all
methyl and methylene groups as single structureless sites. In this simplified representation,
a given alkane chain containing n carbon atoms will consist of n− 2 methylene sites and 2
methyl sites situated at its two ends, instead of n carbon atoms and 2n + 2 hydrogen atoms
in the ‘fully atomistic’ case.

Figure 5 displays the CEP of linear alkanes in general in their united atom represen-
tation. Each cell contains exactly two groups, except the one marked with an ω, which
contains one or two groups, depending on n, the number of carbons, being odd or even,
respectively. Overall, there are m = d n

2 e cells in QG(CEP). For odd n, we obtain a loop-
less path graph, with arcs of weight 1, except one that has weight 2, whereas, for even
n, QG(CEP) has a loop at the end and all its arcs have weight 1. The derivation and
significance of this quotient graph can be explained by the following reasoning.

A linear alkane containing n carbon atoms can be written as

CH3 −CHα
2 −CHβ

2 − · · · −CHψ
2 −CHω

2 −CHω
2 −CHψ

2 − · · · −CHβ
2 −CHα

2 −CH3

if n is even, or

CH3 −CHα
2 −CHβ

2 − · · · −CHψ
2 −CHω

2 −CHψ
2 − · · · −CHβ

2 −CHα
2 −CH3

if n is odd, where superscripts α, β, . . . , ω denote positions of methylene groups relative
to the methyl ones. The difference among groups α, β, . . . and so on becomes evident
when we consider the possibility of a substitution reaction in which a hydrogen atom of a
methylene group is replaced with a chlorine (or other haloge)n atom. Thus, for instance,
said substitution in α or β methylene groups of n-pentane will yield 2-chloro-pentane
and 3-chloro-pentane, respectively. This is in stark contrast with cycloalkanes, where all
methylene groups are equivalent and substitution of one hydrogen atom anywhere on the
ring molecule will yield the same product due to the high symmetry of the reactant. CEP
will group all chemically equivalent atoms together in their respective partition cells, as
shown in Figure 5 (also, compare with cyclohexane in Figure 4 as a case where all carbon
atoms are equivalent); thus, CEP is a classification scheme. Furthermore, this scheme works
for arbitrary system topologies, thus opening a new way to extract ‘chemically meaningful’
information from systems of any size and complexity.

Figure 5. General form of QG(CEP) of linear saturated hydrocarbons with more than two carbons.
Greek letters denote cells with chemically identical groups that differ by place and connectivity.

3.3. Examples of Solid Crystals

The above examples concerned molecular systems with well-defined chemical bonds
connecting the atoms. The same concepts hold, though, for solid-state crystal systems,
where the adjacency is defined with the aid of overlapping atom pairs of nearest neighbours.
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Figure 6 shows the conventional unit cell of a so-called defect perovskite, Cs2SnI6 [18], the
corresponding graph and the resultant QG(CEP) graph. The material has a rich symmetry,
which is also reflected in its finite contracted graph, as evidenced by the relatively small and
simple quotient graph, and a compression ratio of 5.03%. Adjacent atom pairs have been
identified by determining overlaps when assigning the material’s chemical elements with
the van der Waals radii proposed by Alvarez [19]. The atoms remain partitioned according
to their chemical element, and no further splitting to same-element subsets took place.

Figure 6. Unit cell and quotient graph of an inorganic perovskite, Cs2SnI6. Number of formula units
in conventional cell, Z = 4; lattice points per cell, f = 4; compression ratio: 5.03%

An interesting class of solid materials includes crystals consisting of an inorganic
framework enclosing or combined with organic ions or molecules, such as hybrid organic–
inorganic perovskites and metal–organic frameworks (MOF). The coexistence of a molecule-
like part having well-defined chemical bonds and an inorganic part where atoms are
coordinated together via non-directional forces calls for a careful definition of the adjacency
criterion. However, mixing the two kinds of species in a periodic lattice does not pose any
serious difficulty. We simply observe that bonded atom pairs always overlap if we use
large enough atom radii, appropriate for the detection of non-bonded overlapping atom
pairs. In fact, bonded atom pairs are generally closer than non-bonded ones—even more
so for bonds of higher than single order. Thus, we are entitled to treat both inorganic and
organic components in a unified manner, if so desired, using the same overlapping atoms
criterion combined with the appropriate periodic boundary conditions and the minimum
image convention.

In this work, we considered MOF systems with well-defined fully occupied positions
for all crystallographically determined atoms and used Alvarez’s van der Waals radii to
identify bonded and non-bonded adjacent atom pairs. Usually, the coexistence of low-
symmetry organic species with the inorganic cage would result in highly complex CEPs,
and the corresponding QG(CEP) would be extremely convoluted, while the compression
ratios would amount to values such as 50% (in some rare cases, they even exceeded 100%).
These results are not without merit, as they convey information in the form of classification
of atoms in ‘chemical’ or crystallographic equivalence classes, as previously explained. On
the other hand, not all such classes of equivalent atoms are of interest to the chemist who
wants to compose known or novel MOFs or to modify existing ones via intervention to
specific parts of the lattice.

One way to simplify the graph representations (both molecular and quotient) would
be to disregard the parts of the material that are deemed of lesser interest, e.g., the organic
molecules can be replaced by the single lattice points to which they actually correspond
(in such a case, though, the adjacency criterion should be carefully redefined). Other
alternatives would be to combine CEP with united-atom or functional-group partitioning
of the organic species or discarding them altogether and only looking at the inorganic
framework. However, we have found that, even without such drastic simplifications, some
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systems admitted considerable information compression—one such example is shown in
Figure 7, where a large MOF unit cell, containing more than 500 atoms, is mapped to a much
smaller quotient graph with only 15 vertices, with a compression ratio of a mere 2.4%.

Figure 7. Example of a metal–organic framework (MOF) unit cell with 528 atoms (number of formula
units in conventional cell, Z = 6; lattice points per cell, f = 3). Its QG(CEP) contains only 15 nodes
and the compression ratio is 2.4%. EPs can squeeze out information (Perron–Frobenius eigenvalue,
upper bound of Fiedler eigenvalue, etc.) that would be cumbersome to compute in the original graph.
Displayed compound: Catena-[tris(dimethylammonium) tris(µ-4,4′-oxydibenzoato)-bis(µ-oxo)-bis(µ-
hydroxo)-tri-yttrium(iii) [20]. Left panel: crystal unit cell. Right panel: corresponding QG(CEP),
where black = weight 1, blue = weight 2, green = weight 3 and red = weight 4 (original molecular
graph omitted, as it would be too complex to allow insightful observations).

3.4. CEP as a Classifier of Materials

The examples in the previous subsections illustrate how CEP classifies atoms of a
given molecule or crystal in an insightful manner and provide a quantitative measure of
the molecular graph symmetries through the compression ratio of the QG(CEP). The same
examples have already demonstrated that CEP is also capable of classifying molecules
based on their symmetry. Thus, for instance, all cycloalkanes can be said to form one class,
as they share the same CEP. On the other hand, molecular graphs of linear alkanes have a
one-to-one correspondence with their CEP, so, in a sense, each linear alkane is a class in its
own right; we notice, though, that linear-alkane CEPs in a united-atom representation are
also differentiated by the odd or even number of carbon atoms.

We use the above observations to show how CEP and its associated compression
ratio can classify materials by clustering them together in different manners, depending
on their symmetry. We return to the example of linear and cyclic alkanes in their united-
atom representation to illustrate the argument. As previously mentioned, E(EP) is known,
from spectral graph theory, to inherit important information from the original graph. The
spectrum of the adjacency matrix of QG(EP) is a subset of the one of the molecular graph
G [10]; the same holds for the Laplacian matrix of QG(EEP) [9]. Furthermore, QG(EP)
and G share the same Perron–Frobenius eigenvalue, whereas the Fiedler eigenvalue of the
former bounds from above the Fiedler eigenvalue of the latter. In the present example,
we combine the CEP-based compression ratio with the size of the molecular graph G
(number of nodes or carbon atoms) and the Perron–Frobenius eigenvalue shared by G and
its QG(CEP) to investigate the role of equitable partitions and graph spectral information,
especially when combined together.

In Figure 8, the homologous series of linear and cyclic saturated hydrocarbons with
three or more carbons are mapped and compared with each other with respect to their
number of carbon atoms, n; the Perro-n-Frobenius eigenvalue, λ1, shared by their molecular
and quotient graphs and their compression ratio, % CR. We use their united-atom repre-
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sentation (i.e., taking methyl and methylene groups as single, structureless sites) so the
molecular graph of a linear hydrocarbon will be a path graph with known spectrum [10,21]
given by

λi = 2 cos(πi/(n + 1)), i = 1, 2, . . . , n (3)

where λi is the i-th eigenvalue. All vertices in these united-atom graphs have the same
degree, two, except the two end vertices of the linear molecules, which have degree equal
to one. Then, using established bounds for the Perron–Frobenius eigenvalue [21], it is easy
to find that 2(n− 1)/n ≤ λ1 ≤ 2 for the path graphs, whereas λ1 = 2 for all cycle graphs,
regardless of their size.

Figure 8. Classification of linear and cyclic saturated hydrocarbons (in their united-atom represen-
tation) based on their number of carbon atoms, n; Perron–Frobenius eigenvalue, λ1 shared by their
molecular and QG(CEP) graphs; compression ratios, % CR, as defined in Equation (1) and physical
properties. Linear hydrocarbons are divided into two groups depending on whether n is even (green
dots) or odd (blue dots). (a) λ1 vs. n; (b) % CR vs. n; (c) % CR vs. λ1; (d) % CR vs. density at
ambient conditions.

As Figure 8a–c shows, % CR, combined with the other two descriptors, is able to
discern between the two families, linear and cyclic, of hydrocarbon compounds and,
even more remarkably, to further divide linear hydrocarbons into two clearly distinct
subgroups, according to their symmetry elements that depend on whether n is even or odd.
Given the known dependence of physical properties of compounds on their size n, similar
correlations should be preserved when comparing % CR with them. This is demonstrated
in Figure 8d, where compression ratios are plotted against hydrocarbon densities at ambient
conditions [22,23]. Thus, a quantitative link between molecular symmetries and physical
properties can be established with the aid of the compression ratio.

Appropriate combinations of CEP-based and spectral information allow chemists to
not only classify materials, but also to differentiate the members of each class in an orderly
manner, e.g., in the case of alkanes shown in Figure 8. This intra-class ordering of materials
based on spectral or other graph-related information can be in direct correspondence
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with the way their properties vary, in a manner reminiscent of the way the members of
a homologous series exhibit varying properties, depending on their order in it. In other
words, CEP opens a route to the generalisation of the concept of homologous series. In a
similar manner, the well-known approach of group contribution methods (as used, for instance,
in van Krevelen’s well-known work [24]) can be generalised to a broader framework of
partition-based contributions. This idea is illustrated in Figure 9 from the perspective of
spectral graph theory.

Figure 9. One of the ways to generalise the concepts of homologous series and group contribution
approaches: a correspondence between spectral graph theory and chemistry. Here, σ(G) denotes the
spectrum of a matrix (adjacency, Laplacian, . . . ) associated with graph G and σ(P) is the spectrum of
the quotient graph arising by applying a partition P, such as CEP, to G.

4. Discussion

In this work, we have discussed the concept of equitable (and externally equitable)
partitions as an aid in the study of the microstructure of molecules and crystalline solid
materials. We have defined appropriate adjacency criteria (chemical bonding, nearest
neighbours) of atoms in these systems, which allowed us to build graphs that capture the
connectivity of the materials at the microscopic level. Then, we introduced the concept of
chemical equitalbe partition (CEP), which accounts for the chemical composition, as well as
connectivity, and was shown to be equitable in the strict sense (akin to a graph divisor).
Using an appropriate algorithm, we have been able to derive the CEP and pertinent quotient
graphs, QG(CEP), of various molecular and solid crystalline systems. The derivation
of these quotient graphs is a kind of information compression operation, which can be
described in a quantitative manner; we defined such a measure, herein termed compression
ratio (% CR). Using simple examples, we demonstrated that CEP classifies the atoms in a
system, molecular or other, in manners that make sense to chemists and crystallographers.
The compression ratio is a measure of the symmetries inherent in the system’s graph-
theoretical representation and can establish a link between these symmetries and the
materials’ properties. In particular, when combined with spectral or other graph-related
information, it can also classify the materials in many meaningful ways that account for
their microstructural symmetries and other features.

Our examples were restricted to systems with well-defined interatomic connectivity.
Our future goals include the extensions of the present approach to disordered lattices as
well as amorphous systems and molecular liquids and the application to the study of
time-varying single- and multi-component model molecular systems generated with the
aid of molecular simulation methods. On another level, we are looking to the incorporation
of information about geometrical and optical isomerism to molecular graphs. This endeav-
our may require drastic extensions and changes to the concepts of adjacency and graph
equitable partition.

Molecular graph symmetries, which play a key role in our study, should not be
confused with molecular or crystal symmetries themselves; the former are related with
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atom connectivity, whereas the latter concern the arrangement of atoms in space. However,
molecular graphs carry, by construction (bonded or nearest neighbours), information
about atomic spatial arrangement, albeit in an indirect manner. Thus, graph-related,
and molecular and crystal symmetries, are actually facets, partly complementary and
partly overlapping, of one and the same ‘reality’ about a system’s microstructure. Thus,
establishing links between graph symmetries and physical properties may lead to a novel
understanding of structure–property relations in molecular and solid materials. This
implies the possibility to back-map properties to graph symmetries and exploit methods of
building new graphs possessing similar symmetries [25] as an intermediate step to new
molecular structures. If such a scheme works, we opine that our findings—combined with
existing experimental, theoretical and modeling methods—may assist in the discovery and
design of novel materials with tailor-made properties.
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