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Abstract: Rotary machines often exhibit nonlinear behavior due to factors such as nonlinear stiffness,
damping, friction, coupling effects, and defects. Consequently, their vibration signals display nonlin-
ear characteristics. Entropy techniques prove to be effective in detecting these nonlinear dynamic
characteristics. Recently, an approach called fuzzy dispersion entropy (DE–FDE) was introduced
to quantify the uncertainty of time series. FDE, rooted in dispersion patterns and fuzzy set theory,
addresses the sensitivity of DE to its parameters. However, FDE does not adequately account for
the presence of multiple time scales inherent in signals. To address this limitation, the concept of
multiscale fuzzy dispersion entropy (MFDE) was developed to capture the dynamical variability of
time series across various scales of complexity. Compared to multiscale DE (MDE), MFDE exhibits
reduced sensitivity to noise and higher stability. In order to enhance the stability of MFDE, we
propose a refined composite MFDE (RCMFDE). In comparison with MFDE, MDE, and RCMDE,
RCMFDE’s performance is assessed using synthetic signals and three real bearing datasets. The
results consistently demonstrate the superiority of RCMFDE in detecting various patterns within
synthetic and real bearing fault data. Importantly, classifiers built upon RCMFDE achieve notably
high accuracy values for bearing fault diagnosis applications, outperforming classifiers based on
refined composite multiscale dispersion and sample entropy methods.

Keywords: fuzzy dispersion entropy; refined composite multiscale; fault feature extraction; bearing
fault diagnosis

1. Introduction

Rotating machines, such as gas turbines, industrial fans, aero-engines, gearboxes, and
wind turbines, are widely used in different industrial and mechanical applications [1].
Rolling bearings are one of the most crucial and extensively used components in most
rotating machines [2]. Because of improper initial assembly, low accuracy in manufacturing,
and repetitively applied stress, bearing faults are unavoidable in long-term operations [3]. If
bearings are not diagnosed and replaced promptly, it can cause disruptions in the operation
of machines. For instance, bearing failures are accountable for around 40–50% of all failures
that occur in electrical motors [4]. Thus, early fault detection using vibration data decreases
maintenance costs and increases reliability [5,6].

Vibration signals involve the information on the dynamic features of machines and
structures. Hence, their analysis is one of the conventional fault detection methods in
rotating machines. Vibration signals generally represent nonlinear behavior due to effects
associated with coupling, interactions, friction, damping, and nonlinear stiffness [7,8].
Therefore, the capabilities of linear feature extraction techniques have been limited in fault
diagnosis [9], and researchers have focused on detecting nonlinear dynamical characteristics
to improve fault diagnosis capabilities [10,11].
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Due to various faults in ball bearings, including inner race faults, outer race faults, and
rolling element faults, impacts with frequencies associated with the faults are generated.
These impacts lead to the resonant excitation of the bearing. As a result, in each fault signal,
the impacts are modulated by the much higher resonant frequencies of the bearing [12]. As
a result, each fault creates different changes in signal complexity at different time scales.
Hence, measuring signal complexity by calculating entropy over different scales (multiscale
algorithms) is extensively applied to bearing fault diagnoses [13–15].

Entropy, as a measure of the irregularity and unpredictability of signal, is a powerful
concept employed for evaluating the nonlinear features of a signal [16]. Sample entropy
(SE), fuzzy entropy (FE), permutation entropy (PE) and fuzzy entropy (FE) are common
entropy methods. Their advantages, disadvantages and some references of biomedical and
mechanical applications are presented in Table 1.

Table 1. Advantages, disadvantages and some applications of the most popular conventional entropy
methods (SE, FE, PE and DE).

Methods Advantages Disadvantages Some of
Applications

SE

SE deals with the
self-matching problem of
approximate entropy and

eliminates the bias in
approximate entropy

algorithm [17].

(1) SE may result in
undefined or unreliable

entropy values,
especially for short time

series [18]; (2) SE has
high computational

cost [19].

Mechanical [20],
biomedical [21],

civil engineering [22]

FE
FE, compared with SE,

leads to more stable and
accurate results [23].

(1) FE may result in
undefined or unreliable

entropy values,
especially for short time

series [19].
(2) Computational cost

of FE is higher than
SE [19].

Mechanical [24],
biomedical [25],

PE

(1) PE is faster than SE
and FE [16,26]; (2) PE
value is more reliable

than that for SE or FE for
short signals [19].

(1) PE only captures
order relations between
amplitude values and
ignores some signal
information [18,27];

(2) PE neglects equal
values in a signal;

(3) PE is sensitive to a
high SNR noise [18,27].

Mechanical [28],
biomedical [29],
economy [30],

geophysics [31],
hydrology [32]

DE

(1) Unlike SE, DE does
not lead to undefined
results in short signals

[33]; (2) DE is less
susceptible to the effects
of noise [7]; (3) unlike PE,
DE considers amplitude

values [18]; (4) DE
addresses the issue of

equal adjacent amplitude
values in PE [16];

(5) compared to SE and
FE, DE is considerably

faster [1,7].

DE is sensitive to its
parameters, particularly
the number of classes

and embedding
dimension [19].

Mechanical [7],
biomedical [34],
economy [35]
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Nevertheless, DE is sensitive to its parameters, particularly the number of classes and
embedding dimension [19]. To overcome these limitations, we have recently developed
fuzzy DE (FDE) based on fuzzy membership functions for signal quantization and DE [19].
However, similarly to SE, FE, PE, and DE, FDE is unable to consider the multiple time
scales that are present in data.

In order to overcome this limitation, Costa et al. [36] proposed multiscale SE (MSE)
as a method for estimating the complexity of univariate data using the coarse-graining
(CG) process. However, MSE inherits the SE limitations. Similarly, multiscale PE [37] and
multiscale FE [38] have the shortcoming of PE and FE, respectively.

Apart from that, the CG procedure causes the signal length to be shorter as the
scale factor increases. As a result, the higher the scale factor, the lower the accuracy of
entropy [39]. To address this problem, Wu et al. [40] proposed composite MSE (CMSE) to
improve the accuracy of MSE. Afterwards, proposing refined composite MSE (RCMSE),
Wu et al. [41] decreased the probability of the undefined values of SE in the multiscale
algorithm in addition to improving the accuracy of MSE. Multiscale algorithm refinement
is also conducted in other studies, including refined composite multiscale fuzzy entropy
(RCMFE) by Azami et al. [42], refined composite multiscale permutation entropy (RCMPE)
by Humeau-Heurtier et al. [43], and refined composite multiscale dispersion entropy
(RCMDE) by Azami et al. [33].

Wang et al. [44] used MDE to extract the features of bearing vibration signals, while
Congzhi et al. [45], Zhang et al. [46], and Luo et al. [47] employed RCMDE for this purpose.
Also, different techniques are applied with RCMDE, including fast ensemble empirical
mode decomposition [48], adaptive sparest narrow-band decomposition [49], improved
empirical wavelet transform [50,51], variational mode decomposition (VMD) [52], and
improved VMD [14].

Nevertheless, all above-mentioned multiscale algorithms have the shortcomings of
their corresponding entropy algorithms. To address these shortcomings, based on the
advantages of FDE over existing entropy algorithms, multiscale fuzzy dispersion entropy
(MFDE) and refined composite MFDE (RCMFDE) are developed in this article. The ability
of these methods is evaluated by various synthetic and real datasets.

This paper is structured as follows: In Sections 2.1 and 2.2, the descriptions of MFDE
and RCMFDE are provided, respectively. Section 3 briefly describes the synthetic and
real datasets used in this study. In Sections 4.1–4.3, the ability of RCMFDE to calculate
complexities associated with white noise, logistic map series, and chirp signal is compared
to MDE, RCMDE, and MFDE. In Sections 4.4 and 4.5, the sensitivity to the signal length
and the computation time of RCMFDE are investigated. Sections 4.6 and 4.7 present
the proposed method’s capability to distinguish between faulty and healthy bearings for
simulated signals and the effect of noise on its performance. Section 4.8 evaluates the
performance of the proposed method in fault diagnosis using three different datasets.
Finally, Section 5 provides a conclusion.

2. Methods

In this paper, FDE is extended to RCMFDE and MFDE. This method is explained
as follows.

2.1. Multiscale Fuzzy Dispersion Entropy
2.1.1. Coarse-Graining

The assessment of complexity in univariate signals is often accomplished via the
utilization of a multiscale entropy framework, which encompasses two fundamental steps:
the process of coarse graining to encompass multiple temporal scales and the evaluation of
irregularity for each of these scales using entropy estimators.
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x(τ) =
{

x(τ)1 , x(τ)2 , . . .
}

at scale τ of series u = {u1, u2, . . . , uL} of length L is defined
as follows:

x(τ)j =
1
τ ∑τ j

b=τ(j−1)+1 ub, 1 ≤ j ≤
⌊

L
τ

⌋
(1)

2.1.2. Multiscale Fuzzy Dispersion Entropy Calculation

MFDE calculates FDE over some consecutive temporal scales. The FDE of each coarse
graining signal x(τ) is calculated. What is of note is that the average and standard deviation
(SD) of the original signal remain unchanged for all scale factors, in agreement with keeping
parameter r constant when calculating MSE [36].

2.1.3. Fuzzy Dispersion Entropy

Fuzzy dispersion entropy (FDE) for time series x = {x1, x2, . . . , xN} of length N can
be calculated using six steps [19]:

Step (1): First, time series x is normalized between 0 and 1 to obtain y = {y1, y2, . . . , yN}.
Different linear and non-linear methods can be employed for this normalization [16,18].
However, the utilization of a linear mapping technique may result in an issue where the
majority of xi values are assigned to only a few classes, especially when the maximum or
minimum values deviate significantly from the signal’s mean/median values [16]. Conse-
quently, DE with linear mapping exhibits poor performance in characterizing signals [16,18].
Many natural processes follow a pattern that starts slowly and accelerates, ultimately ap-
proaching a climax over time, similarly to a sigmoid function [7,53,54]. In cases where a
detailed description is unavailable, a sigmoid function is commonly used [53,55]. Various
sigmoid functions are available [18]. In accordance with the original formulation of DE [16],
the normal cumulative distribution function, as a widely recognized sigmoid, was used.
Series y is obtained from the normal cumulative distribution function of series x according
to Equation (2):

yi =
1

σ
√

2π

∫ xi

−∞
e
(t−γ)2

2σ2 dt (2)

where σ and γ are the SD and average of time series x.
Step (2): In this step, time series y is mapped onto classified time series zc [16]. Each yi

is multiplied by c and summed with 0.5.

zc
i = c · yi + 0.5 (3)

where zc
i is the ith member of series zc, and c ∈ N is the class parameter indicating the

number of all classes that can belong to zc
i [16].

Step (3): In DE, zc
i belongs to the kth class if it is closer to integer k [16]. Since ambiguity

in allocating the members of series zc occurs in the boundaries of two classes, a fuzzy
membership function Mk is defined for each class, and µMk (z

c
i ) represents the degree of

membership of zc
i with respect to the kth class. Every zc

i is assigned to one or two classes
(using integer indexes where k = 1, . . . , c).

For designing a fuzzy membership function related to each class, the following condi-
tions must be met:

1. There is no boundary at the starting points of class 1 and end points of class c with
other classes. Therefore, if zc

i is lower than 1 and higher than c, its degree of member-
ship to classes 1 and c is equal to 1.

2. The sum of the membership values of zc
i in different classes must be equal to 1.

∑c
k=1 µMk (z

c
i ) = 1 (4)

3. For a series of random numbers, the fuzzy membership functions possess equal
relative cardinality.
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4. The overlap of the fuzzy membership function of each class with that of the adjoining
classes can be 1 at most.

As mentioned above, different membership functions can be applied. This study
employs triangular membership functions for classes k = 2, . . . , c − 1 and trapezoidal
membership functions for classes 1 and c. The applied fuzzy functions are expressed
as follows:

µM1(α) =


0 α> 2
2−α 1 ≤ α ≤ 2
1 α< 1

(5)

µMk (α) =


0 α < k+1

k + 1− α k ≤ α ≤ k + 1
α− k + 1 k− 1 ≤ α ≤ k

0 α < k−1

k = 2, . . . , c− 1 (6)

µMc(α) =


1 α > c
α− c + 1 c− 1 ≤ α ≤ c
0 α < c− 1

(7)

Step (4): Time series zm,c
j with time delay d and embedding dimension m is constructed

according to Equation (8):

zm,c
j =

{
zc

j , zc
j+(1)d, . . . , zc

j+(m−1)d

}
, j = 1, 2, . . . , N − (m + 1)d (8)

Step (5): Dispersion patterns πv0v1 ...vm−1 in the context of dispersion entropy refer
to the distribution of data points within each embedded time series of length m. These
embedded time series are generated by embedding the digitized versions of the original
time series data into discrete classes [16,18].

For each time series embedded into the dimensions of m and a given number of classes
c, there exists a potential for the occurrence of cm dispersion patterns. Figure 1 illustrates
all potential dispersion patterns for m = 2 and c = 4.
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Each vector zm,c
j is mapped onto different dispersion patterns πv0v1 ...vm−1 based on its

membership values so that the following is the case:
zc

j is class v0 and zc
j+(1)d is class v1, . . . , and zc

j+(m−1)d is class vm−1 , if and only if zm,c
j

is πv0v1 ...vm−1 . When multiple states need to be true simultaneously (i.e., AND operator),
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t-norm is applied. The algebraic product operator is a t-norm, which is applied in the above
fuzzy expression [19]:

µπvov1...vm−1

(
zm,c

j

)
=

m−1

∏
i=0

µMvi

(
zc

j+i·d

)
(9)

According to Equation (9), the degree of membership of zm,c
j with respect to the pattern

πv0v1 ...vm−1 is equal to the product of the degree of membership of each zc
j+i·d with respect

to class vi, where i = 0, 1, . . . , m− 1 and j = 1, 2, . . . , N − (m− 1)d.
Step (6): For each cm of dispersion pattern πv0v1 ...vm−1 , the probability of presence

in the time series is calculated. For this purpose, the sum of the membership degrees of
dispersion patterns πv0v1 ...vm−1 , attributed to all series zm,c

j , must be divided by the total
number of embedded signals with embedding dimension m:

p(πv0v1 ...vm−1) =
∑

N−(m−1)d
j=1 µπv0v1...vm−1

(
zm,c

j

)
N − (m− 1)d

(10)

Step (7): Finally, based on Shannon entropy, FDE is calculated as follows:

FDE(x, m, c, d) = −
cm

∑
π=1

P(πv0v1 ...vm−1) · ln P(πv0v1 ...vm−1) (11)

2.2. Refined Composite Multiscale Fuzzy Dispersion Entropy

In calculating RCMFDE, for scale factor τ, different τ time series are created, cor-
responding to different starting points of the CG process. The kth coarse-grained time
series x(τ)k =

{
x(τ)k,1 , x(τ)k,2 , . . .

}
of the original time series u = {u1, u2, . . . , uL} is obtained

as follows:

x(τ)k,j =
1
τ

k+τ j−1

∑
b=k+τ(i−1)

ub, 1 ≤ j ≤ L, 1 ≤ k ≤ τ (12)

The relative frequency of the fuzzy dispersion patterns of each of the τ time series
is calculated.

The Shannon entropy of the average relative frequencies of fuzzy dispersion patterns
for the τ time series created by different beginning points in the CG process is equal to
RCMFDE. Therefore, RCMFDE for each scale factor is defined as follows:

RCMFDE(x, m, c, d, τ) = −∑ p(πv0v1 ...vm−1). ln(p(πv0v1 ...vm−1)) (13)

In this equation, p
(
πv0v1 ...vm−1

)
= 1

τ ∑τ
1 p(τ)k

(
πv0v1 ...vm−1

)
, where p(τ)k

(
πv0v1 ...vm−1

)
is the

relative frequency of fuzzy dispersion pattern πv0v1 ...vm−1 in time series x(τ)k .
The number of possible dispersion patterns is recommended to be lower than the

signal length (cm < L). For MFDE, the CG process decreases the signal length to
⌊

L
τmax

⌋
.

Thus, for MFDE, it is suggested that cm <
⌊

L
τmax

⌋
. In RCMFDE, the τ coarse-grained

time series of length
⌊

L
τmax

⌋
are taken into account. Therefore, the number of all samples

calculated in RCMFDE is τ ×
⌊

L
τmax

⌋
≈ L, and RCMFDE with the same length of cm < L

gives reliable results. This particular feature is a matter of importance in short signals.
This study utilizes parameters m = 2, c = 3, and d = 1 to compute MDE, RCMDE,

MFDE, and RCMFDE.
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3. Evaluation Signals

To evaluate the effectiveness of RCMFDE to characterize different univariate time
series and bearing fault diagnosis, we employ the following synthetic and bearing datasets.

3.1. Synthetic Signals
3.1.1. White Gaussian Noise and 1/f Noise

White Gaussian noise (WGN) and 1/f noise (pink noise) have been widely used for
evaluating multiscale entropy techniques since WGN is less complex but more irregular
than pink noise [33,56–58].

3.1.2. Logistic Map

The logistic map is a simple mathematical model that plays a key role in chaos theory
since it illustrates the emergence of chaotic behavior from a relatively simple nonlinear
equation. It is often used as a prototype example to understand the dynamics of chaotic
systems [59]. The logistic map time series x = {x1, x2, . . . , xn} is defined as follows [60,61]:

xi+1 = r · xi · (1− xi), x1= 0.1, i= 1, 2, 3, . . . (14)

where xi shows the logistic map at time step i, and it symbolizes the population at year i.
As a result, x0 signifies the initial population at time step 0, specifically set as x0 = 0.1. The
parameter r functions as a control factor, representing a positive combined rate that encom-
passes both reproduction and starvation effects [62]. The first 105 iterations of Equation (14)
are ignored due to the transient behavior of the solution [63]. Chaotic behaviors occur for
3.57 ≤ r ≤ 4 [61]. The logistic map was used to evaluate the performance of MFDE and
RCMFDE in estimating the complexity of data.

3.1.3. Chirp Signal and Amplitude-Modulated Chirp Signal

To investigate the relationship of the proposed methods with variations in time and
frequency domains, two types of signals were synthesized. For the first type of signal, a
constant-amplitude chirp signal was selected, with its frequency logarithmically varying
within the range of 2 to 15 Hz. For the second type, the same signal as the first type was
modulated with a pure sinusoidal wave. These two signals were generated with a sampling
frequency of 100 Hz and a duration of 40 s.

3.1.4. Faulty Bearing Simulation

A local fault in a bearing produces a periodic impact signal that leads to the resonant
excitation of the bearing; therefore, it is modulated by the significantly higher resonant
frequencies of the bearing [12]. The simulated vibration signal for a bearing of a rotating
machine with outer ring damage is defined as follows [8]:

x(t) = xseries of impulses + xharmonic component + n(t) (15)

where xseriesofimpulses and xharmoniccomponent are the series of impulses and the harmonic
component, respectively. Also, n(t) represents noise. Based on previous studies [8,64,65],
xseriesofimpulses is modeled by Equation (14) [8].

xseries of impulses =
m

∑
k=1

n′

∑
n=1

Ae
−2ξπ fn(t− k

f f
−∑k

i=1 τk)
sin(2π fn

√
1− ξ2(t− k

f f
−∑k

i=1 τk)) (16)

τk is a representation of a small and random fluctuation in the time interval between
two successive impulses. The frequency of the impulse train signal is considered equal to
f f without taking into account the impact of accidental slipping by the balls and taking into
account a constant period. Nevertheless, considering the ball, the slipping effect changes
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the period randomly to k
f f
− τk [8]. For each k, τk is assumed to be a random number from

a normal distribution of zero average and SD στ = 0.005× 1
f f

[8].
Equation (17) defines the harmonic component with two sine functions [12,66]:

xharmonic component =
2

∑
m=1

Bm sin(2πm frt) (17)

This paper assumes the fault characteristic frequency and damping coefficient as
f f = 100Hz and ξ = 0.03, respectively. Also, f1 = 2kHz and f2 = 3.5kHz are the resonant
frequencies of the bearing. The impulse amplitude magnitude factors are A1 = 0.4 and
A2 = 0.5, which specifies the damage intensity. The first and second harmonic amplitudes
of the rotor are B1 = 0.2 and B2 = 0.12, respectively.

3.2. Bearing Datasets
3.2.1. Paderborn University Dataset

Ball bearing data were provided by the KAT datacenter in Paderborn University [67,68].
The experimental setup includes an electric motor, a torque meter, a flywheel, a bearing
test module, and motor load. Bearings with different fault conditions are mounted on the
test module to produce experimental data.

Datasets used in this paper involve four different bearing fault conditions: (1) healthy
condition (H), (2) sharp trench on the outer ring (STO) by electrical discharge machining,
(3) drilling on the outer ring (DO), and (4) artificial pitting on the outer ring (PO) by electric
engraver. The used datasets are listed in Table 2. The vibration signals of rolling bearings
in different operational states were gathered using a sampling frequency of 64,000 Hz, as
demonstrated in Table 3.

Table 2. Applied datasets for four different bearing fault conditions.

Condition of Bearing

H STO DO PO

Bearing Code K001 KA01 KA06 KA07

Table 3. Operational conditions.

No. Rotational Speed (rpm) Load Torque (Nm) Radial Force (N)

1 1500 0.7 1000

2 1500 0.1 1000

3 1500 0.7 400

3.2.2. PHMAP 2021 Data Challenge Dataset

A subset of the PHMAP 2021 data challenge dataset [54] was utilized. The equipment
under investigation comprises an oil injection screw compressor featuring a 15 kW motor
operating at 3600 rpm and a screw axis rotating at 7200 rpm. The data collected for
this study were acquired using an accelerometer installed on the motor, with a sampling
frequency of 10,544 Hz.

Datasets used in this paper involve three different fault conditions: (1) high V-belt
looseness, (2) defective bearing, and (3) fault-free state.

3.2.3. Case Western Reserve University Dataset

The Case Western Reserve University (CWRU) dataset [69] was also employed to
evaluate the proposed method’s performance in the discrimination of bearing faults. The
dataset prepared by the bearing data center of CWRU is a standard reference in the field
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bearing fault diagnosis [70]. The experimental setup used in data acquisition includes a
three-phase electric motor of 2 hp power, a dynamometer, and a self-aligning coupling.

In this study, 6205-2RS JEM SKF ball bearings were used. Single-point faults with
different diameters were created on bearings via electrical discharge machining. Bearing
vibration signals were gathered from an accelerometer mounted on the casing at the drive
end of the motor.

4. Results and Discussion
4.1. Analysis of White Gaussian Noise and 1/f Noise

One hundred independent white Gaussian and one hundred independent pink noise
series of 1000 data point length were created. MFDE, MDE, RCMDE, and RCMFDE were
then applied to these signals for scale factors 1–20 (Figures 2 and 3).
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Figure 3. RCMFDE and MFDE at 20 scales for white and pink noises.

In all the examined methods, the entropy of the time series of coarse-grained pink
noise is kept almost constant, while it is reduced uniformly by increasing the scale for the
WGN. Consequently, at low scale factors (τ ≤ 3), the entropy of white noise is higher than
the pink one. At high scale factors (τ > 3), the entropy of pink noise is higher than that for
the white noise. These results confirm the fact that the complexity of pink noises is higher
than WGN while the uncertainty of WGN is more than that for the pink noise [56,57,71].

To assess the stability of the MDE, MFDE, RCMDE, and RCMFDE results, we calcu-
lated the SD of their results at each scale factor (Figure 4). The SD values suggest that
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MFDE and RCMDE, respectively, are more stable than MDE and RCMDE, and the lowest
SD was obtained based on RCMFDE.
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and (b) pink noise time series.

4.2. Analysis of Logistic Map

Three logistic map series x =
{

x105+1, x105+2, . . . , x105+500
}

of length 500 samples with
parameters of r = {3.7, 3.8, 3.9} based on Equation (14) are created, as shown in Figure 5.
Theoretically, the complexity of four signals increases by increasing r.
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RCMFDE, MFDE, MDE, and MFDE are calculated for these three series and one WGN
for scales 1–20 (Figure 6). The results show that RCMFDE is the only method that, after
scale 5 (6 to 20), exhibits curves that conform with the arrangement of complexity among
different r values. The results suggest that RCMFDE is the most appropriate measure of
complexity in comparison with MDE, RCMDE, and MFDE.
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4.3. Analysis of Chirp signals and Amplitude-Modulated Chirp Signal

One chirp signal and one modulated chirp signal, as described in the section, are used
to investigate the impact of domain and frequency variations of sinusoidal signals. These
two signals are depicted in Figure 7a,b. A moving window of length of 500 samples slid
over the signals with an 80% overlap between windows. For each isolated signal, the values
of RCMFDE, MFDE, RCMDE, and MDE were computed.

As depicted in Figure 7c,e,g,i, all methods adeptly capture frequency variations. In
the initial segments of the signals where the frequency is lower, smaller scale values
exhibit higher entropy. Conversely, as frequency increases, the entropy in higher scales
also increases. Furthermore, Figure 7d,f,h,j. demonstrate that all methods exhibit domain
variations in the modulated signal. However, in scales smaller than 10 and window sizes
ranging from 1 to 150, while both RCMFDE and MFDE are capable of indicating domain
changes, RCMDE and MDE are less effective at detecting these domain variations within
this segment of the signal and for scales below 10.

4.4. Sensitivity to Signal Length

In this section, we conduct a comparative analysis of RCMFDE, MFDE, RCMDE, and
MDE in terms of their sensitivity to signal length. To achieve this objective, we employ
WGN and 1/f noise with varying sample points denoted as N. The signal lengths are
systematically varied, spanning from 100 to 5000 samples. For each unique value of N,
100 independent WGN and 1/f noise signals are generated.

The standard deviation (SD) of the obtained results at scale τ = 5, 10, and 15 is
computed and presented in Figure 8. The findings underscore several key observations:
Firstly, as the values of N increase, the corresponding SDs decrease, yielding more stable
outcomes. Secondly, when comparing the SD of outcomes obtained via RCMFDE and
MFDE with those of RCMDE and MDE, it becomes evident that the former exhibits lower
SDs. Consequently, the outcomes obtained from RCMFDE and MFDE demonstrate greater
stability compared to those of MDE and RCMDE.
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4.5. Computation Time

To assess the computational efficiency of RCMFDE and RMFDE in comparison to
RCMSE, MSE, RCMDE, and MDE, we employ the white Gaussian noise (WGN) sequences
of varying lengths, ranging from 500 to 5000 sample points. The outcomes of these evalua-
tions are illustrated in Figure 9. The simulations were executed on an Asus laptop equipped
with an Intel(R) Core(TM) i5-8250U processor operating at 1.6 GHz and 8 GB of RAM,
utilizing MATLAB R2021a.

As illustrated in Figure 9, although the computation time for RCMFDE is greater
than that of RCMDE, and similarly, the computation time for MFDE exceeds that of MDE,
the computation time for RCMFDE in comparison to RCMSE, as well as for RMFDE in
comparison to RMSE, is significantly lower. These results are in agreement with the fact
that the computational complexity of calculating SE is O(N2), while DE approaches have
the computational complexity of O(N2) [18,72].

4.6. Simulated Bearing Signal Analysis

According to Section 3.1.3, fifty independent signals of faulty and healthy bearings
with a length of 2048 data points and a sampling frequency of 40 kHz are simulated in this
section. Also, n(t) is assumed to be a WGN so that the variance of the signal-to-noise ratio
(SNR) is 0.257 [73]. By eliminating the fault impulses, the healthy bearing signal is modeled.
Figure 10 depicts an instance of simulated signals with and without noise.
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The MFDE, RCMFDE, MDE, and RCMDE of the simulated signals are calculated at
20 time scales. Based on the means and SDs of the results, as depicted in Figure 11, only the
results of RCMFDE at three specific scales are distinctly separable without overlap, while
the results of other methods exhibit overlap across all scales.
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For each scale factor, Student’s t-test is used to examine statistical differences. The
scale factors with a p-value between 0.05 and 0.01 (significant) and lower than 0.01 (very
significant) are indicated with symbols + and ∗ in Figure 11. The RCMDE-based results have
very significant difference at 18 scale factors (all scales except scales 9 and 10). However,
MFDE, RCMDE, and MDE, respectively, lead to (very) significant differences at only
16, 16, and 14 scale factors. This fact suggests that RCMFDE has a higher capability of
discrimination between the simulated signals of faulty and healthy bearings than MFDE,
RCMDE, and MDE.

Furthermore, the Hedges’ g effect size [74] was employed to assess the distinguishing
capability between simulated signals from faulty and healthy bearings. The results are
presented in Table 4. The effect sizes of the RCMFDE and MFDE outcomes, when compared
to RCMDE and MDE, consistently exhibit higher values across nearly all scales, except
for three specific scales. This observation underscores the superior ability of RCMFDE
and MFDE in distinguishing between simulated faulty bearings and healthy bearings.
Moreover, the effect size of RCMFDE results consistently exceeds that of MFDE across all
scales. Consequently, RCMFDE exhibits a greater capacity, relative to MFDE, in effectively
distinguishing between simulated faulty bearings and healthy ones.

Table 4. Differences in results for faulty bearing vs. healthy bearing obtained by RCMFDE, MFDE,
RCMDE, and MDE based on Hedges’ g effect size.

Feature
Extractor

Scale

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RCMFDE 1.21 1.19 1.65 1.96 1.85 1.48 1.06 0.59 0.18 0.19 0.58 0.97 1.36 1.67 1.89 2.05 2.17 2.28 2.37 2.43

MFDE 1.21 0.82 0.78 1.41 1.09 0.95 0.81 0.21 0.36 0.01 0.41 0.74 0.96 1.41 1.46 1.85 2.04 1.66 1.96 2.05

RCMDE 1.06 0.65 1.00 1.34 1.24 1.08 1.06 0.80 0.67 0.58 0.39 0.16 0.11 0.17 0.37 0.46 0.48 0.56 0.64 0.69

MDE 1.06 0.58 0.36 0.77 0.52 0.77 0.74 0.53 0.72 0.29 0.21 0.01 0.18 0.17 0.483 0.61 0.37 0.45 0.46 0.45

4.7. Noise Effect

In order to indicate the effect of adding noise to bearing signals, 50 independent
realizations of WGNs were added to faulty bearing signals at different SNRs, and the
sensitivities of MFDE, RCMFDE, MDE, and RCMDE to noise are evaluated. According to
Section 3.1.3, fifty faulty bearing signals of 2048 data point length and a sampling frequency
of 40 kHz are simulated without adding noise.

NrmEntN(i) is the measure of sensitivity to WGN in scale i [18].

NrmEntN(i) =
entropy of a series with noise in scalei

entropy of a series without noise in scalei
(18)

NrmEntN is calculated for MFDE, RCMFDE, MDE, and RCMDE for five scales by
adding the WGN of different SNRs (0, 5, and 40 dB) to simulated signals. Figure 12 shows
a simulated signal with/without the noise of different SNRs. Figure 13 and Table 5 present
the average and SD of NrmEntN for different entropy methods over five scales.

The NrmEntN values obtained based on MFDE and RCMFDE, compared with MDE
and RCMDE, have average values closer to 1 and also have a lower SD values. Therefore,
MFDE and RCMFDE have lower sensitivities relative to WGN than MDE and RCMDE, and
they are more resistant to noise. In addition, the SD of NrmEntN values in the RCMFDE
method is lower than that for MFDE, indicating that RCMFDE is less sensitive to noise
than MFDE.
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Figure 13. Average and SD of NrmEntN obtained via MDE, RCMDE, MFDE, and RCMFDE from
50 simulated faulty bearing signals with 50 independent additive realizations of WGNs relative to
different noise power. NrmEntN compares the sensitivity of MDE, RCMDE, MFDE, and RCMFDE to
WGN with different SNRs.
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Table 5. Average and SD of NrmEntN obtained via MDE, RCMDE, MFDE, and RCMFDE from 50
simulated faulty bearing signals.

WGN Method
Scale

1 2 3 4 5

SNR = 40 db

MDE
mean 1.0016 1.0010 1.0005 0.9987 0.9998

SD 0.0026 0.0019 0.0028 0.0028 0.0023

RCMDE
mean 1.0016 1.0010 1.0000 0.9997 0.9997

SD 0.0026 0.0015 0.0015 0.0013 0.0012

MFDE
mean 1.0003 1.0001 1.0001 1.0001 1.0000

SD 3.2605 × 10−4 2.9003 × 10−4 2.5598 × 10−4 2.4340 × 10−4 2.1888 × 10−4

RCMFDE
mean 1.0003 1.0001 1.0001 1.0001 1.0000

SD 3.2605 × 10−4 2.7657 × 10−4 2.3455 × 10−4 2.1962 × 10−4 1.9927 × 10−4

SNR = 5 db

MDE
mean 1.4262 1.2168 1.1234 1.0792 1.056 0

SD 0.0115 0.0138 0.0166 0.0179 0.0215

RCMDE
mean 1.4262 1.2142 1.1243 1.079 0 1.0535

SD 0.0115 0.0127 0.0122 0.0125 0.0125

MFDE
mean 1.2057 1.1186 1.0756 1.0557 1.0452

SD 0.0055 0.0056 0.0061 0.0067 0.0048

RCMFDE
mean 1.2057 1.1176 1.0767 1.0557 1.0441

SD 0.0055 0.0053 0.0052 0.0049 0.0044

SNR = 0 db

MDE
mean 1.5310 1.3157 1.2028 1.1404 1.1078

SD 0.0067 0.0093 0.0142 0.0191 0.0183

RCMDE
mean 1.5310 1.3165 1.2038 1.1412 1.1069

SD 0.0067 0.0064 0.0081 0.0118 0.0122

MFDE
mean 1.2741 1.1767 1.1207 1.0877 1.0709

SD 0.0038 0.0046 0.0059 0.0059 0.0075

RCMFDE
mean 1.2741 1.1777 1.1212 1.0883 1.0698

SD 0.0038 0.0030 0.0035 0.0042 0.0048

4.8. Experimental Data Analysis
4.8.1. Fault Diagnosis with respect to the Paderborn University Bearing Dataset

There are 60 measured datasets for each fault condition of the bearings. Five sam-
ples with a length of 2048 were separated from each measured dataset, thus generating
300 samples for each fault condition. MSE, RCMSE, MDE, RCMDE, MFDE, and RCMFDE
were calculated for all signals over 20 scales. The results of each method were classified.
From the signals for each fault condition, 480, 120, and 600 samples are utilized as training,
validation, and test data, respectively.

A multiclass adaptive neuro-fuzzy inference system with fuzzy c-means clustering
(FCM-ANFIS) [8] was used as the classifier in this study. A binary vector was applied as
the target vector for each fault condition. Since four fault conditions were examined in this
section, the length of each binary vector was 4, and the applied classifier was composed of
four FCM-ANFIS; each determines one entry of the target vector.

The classification approach was repeated twenty times. The results are presented in
Figure 14 and Table 6, indicating the higher average classification accuracy of features
resulting from RCMFDE and MFDE compared to RCMDE and MDE, respectively. This
suggests that MFDE and RCMFDE are more appropriate than MDE and RCMDE for pattern
detection in bearing fault conditions. The highest average classification accuracy is 98.11%,
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obtained for features extracted by RCMFDE. This fact indicates that RCMFDE is the most
suitable feature extraction method. Details of fault classification with the highest accuracy
conducted by RCMFDE are presented in Table 7.
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multiclass FCM-ANFIS.

Table 6. Classification results of bearing fault conditions: H, STO, DO, and PO conditions.

Feature Extractor
Accuracy (%)

Min Mean Max

RCMFDE 97.17 98.11 99.17

RCMDE 96.00 96.93 97.83

RCMSE 95.67 96.37 96.83

MFDE 95.17 96.02 96.50

MDE 92.33 93.18 94.17

MSE 94.00 94.64 95.17

Table 7. Confusion matrix of results with the highest classification accuracy using RCMFDE.

True Condition

H STO DO PO Sensitivity (%)

Predicted
condition

H 150 0 1 0 99.34

STO 0 150 0 0 100

DO 0 0 147 2 98.66

PO 0 0 2 148 98.67

Precision (%) 100 100 98 98.67 A * = 99.17
* A is accuracy.
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4.8.2. Fault Diagnosis on PHMAP 2021 Data Challenge Dataset

In this section, we utilized three fault conditions from the PHMAP 2021 Data Challenge
Dataset, as outlined in Section 2.2. For each of these conditions, we extracted three hundred
independent signal samples, each consisting of 1024 data points.

We employed various multiscale entropy-based techniques, specifically MSE (m = 2,
r = 0.15 × SD of original signal), RCMSE (m = 2, r = 0.15 × SD of original signal),
MDE, RCMDE, MFDE, and RCMFDE, to analyze all signals across 20 different scales.
The resulting values from these methods were employed as features for the purpose of
fault diagnosis.

For the classification process, we utilized the multiclass FCM-ANFIS classifier [31].
Since we examined three distinct fault conditions, the target binary vector length was set
to 3. The classifier was constructed using three FCM-ANFIS models. For each specific
condition, we allocated 120 samples for training, 30 samples for validation, and 150 samples
for testing. These data were classified 20 times using multiclass FCM-ANFIS.

The accuracies of this classification process are visualized in Figure 15 and summa-
rized in Table 8. The results demonstrate the superior performance of RCMFDE when
compared to other multiscale entropy algorithms in extracting relevant bearing features.
Detailed information about the fault classification with the highest accuracy achieved using
RCMFDE is presented in Table 9.
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Figure 15. Accuracies of classifying the three fault conditions using multiclass FCM-ANFIS with
different inputs.

Table 8. Classification results for different fault conditions (high looseness of the V-belt, faulty bearing,
and fault-free condition) using multiclass FCM-ANFIS with different inputs.

Features
Accuracy (%)

Min Mean Max

RCMFDE 96.89 97.83 98.67

MFDE 93.56 94.60 96.22

RCMDE 93.56 94.444 95.33

MDE 90.44 91.19 92.67

RCMSE 92.22 93.72 94.89

MSE 88.89 90.74 91.78
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Table 9. Confusion matrix of results with the highest classification accuracy using RCMFDE.

True Condition

Belt Looseness
High

Bearing
Fault Normal Sensitivity

(%)

Predicted
condition

Belt Looseness
High 147 0 3 98

Bearing fault 2 150 0 98.68

Normal 1 0 147 99.32

Precision (%) 98 100 98 AC * = 98.67
* AC is the accuracy.

4.8.3. Fault Diagnosis on the Case Western Reserve University (CWRU) Bearing Dataset

All 16 fault conditions from the CWRU bearing dataset were used when the sampling
frequency was 12,000 Hz. The examined fault conditions are demonstrated in Table 10. For
each of these conditions, we extracted 220 independent signal samples, each consisting
of 2048 data points. In each condition, the motor shaft rotated at 1730, 1750, 1772, and
1797 rpm speeds.

Table 10. Description of the bearing dataset.

Bearing Condition Fault Diameter
(mm)

Fault Position Relative
to Load Zone

Label of
Classification

Normal 0 - 1

Rolling element 0.1778 - 2

Rolling element 0.3556 - 3

Rolling element 0.5334 - 4

Rolling element 0.7112 - 5

Inner race 0.1778 - 6

Inner race 0.3556 - 7

Inner race 0.5334 - 8

Inner race 0.7112 - 9

Outer race 0.1778 Centered @ 6:00 10

Outer race 0.3556 Centered @ 6:00 11

Outer race 0.5334 Centered @ 6:00 12

Outer race 0.1778 Orthogonal @ 3:00 13

Outer race 0.5334 Orthogonal @ 3:00 14

Outer race 0.1778 Opposite @ 12:00 15

Outer race 0.5334 Opposite @ 12:00 16

Multiclass FCM-ANFIS was also used as the classifier for this dataset. Since 16 fault
conditions were examined in this section, the target binary vector length was assumed to
be 16, and the classifier is made from 16 FCM-ANFIS. The training dataset consisted of
80 signals, the validation dataset consisted of 20 signals, and the testing dataset consisted
of 120 signals for each bearing fault condition.

MSE (m = 2, r = 0.15×SD of original signal), RCMSE (m = 2, r = 0.15×SD of original
signal), MDE, RCMDE, MFDE, and RCMFDE were calculated for all signals, and the values
of these methods were employed as features for the fault diagnosis.

These data were classified by multiclass FCM-ANFIS. The results are presented in
Figure 16 and Table 11, indicating the higher average classification accuracy based on



Entropy 2023, 25, 1494 21 of 26

RCMFDE. It suggests that RCMFDE is more appropriate than the other existing multiscale
entropy algorithms for extracting bearing features. The details of fault classification with
the highest accuracy using RCMFDE are presented in Table 12.

Table 11. Classification of different bearing fault conditions.

Features
Accuracy (%)

Min Mean Max

RCMFDE 98.91 99.39 99.58

RCMDE 97.03 97.73 98.12

RCMSE 97.86 98.23 98.65

MFDE 96.20 97.17 97.66

MDE 90.68 92.38 93.65

MSE 93.23 94.13 95.21

Table 12. Confusion matrix of results with the highest classification accuracy using RCMFDE.

True Condition

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sensitivity

Pr
ed

ic
te

d
co

nd
it

io
n

1 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

2 0 120 0 2 0 0 0 0 0 0 0 0 0 0 0 0 98.36

3 0 0 118 0 0 0 0 0 0 0 0 0 0 0 0 0 100

4 0 0 2 115 0 0 0 0 0 0 0 0 0 0 0 0 98.29

5 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 100

6 0 0 0 0 0 120 0 0 0 0 1 0 0 0 0 0 99.17

7 0 0 0 1 0 0 120 0 0 0 0 0 0 0 0 0 99.17

8 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 100

9 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 100

10 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 100

11 0 0 0 0 0 0 0 0 0 0 119 0 0 0 0 0 100

12 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 100

13 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 100

14 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 100

15 0 0 0 2 0 0 0 0 0 0 0 0 0 0 120 0 98.36

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 100

Precision 100 100 98.33 95.83 100 100 100 100 100 100 99.17 100 100 100 100 100 A* = 99.58

* A is accuracy.

Considering the satisfactory results achieved with real and synthetic signals, the
proposed method can find practical industrial applications. However, in future research
endeavors, RCMFDE can be employed to utilize the processed data via other signal process-
ing methods, such as wavelet, VMD, etc., further enhancing its fault detection capabilities
in industrial applications.
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Figure 16. The classification results of bearing fault diagnosis using multiclass FCM-ANFIS with
various inputs.

5. Conclusions

This paper introduced RCMFDE as a measure of signal complexity and recommended
using it when extracting the features of bearing vibration signals. RCMFDE, compared with
MDE, MFDE, and RCMDE, calculated signal complexity with more reliability and stability,
which was confirmed using different synthetic and real datasets. Although the behavior
of (RC)MFDE was similar to (RC)MDE for white and pink noise, the former led to lower
SDs and consequently was more stable than the latter. In simulated bearing signals, the
results of RCMFDE indicated a significant difference between faulty and healthy conditions
over the majority of scales. Additionally, (RC)MFDE resulted in higher resistance against
noise than (RC)MDE. In fault diagnosis by three empirical datasets, features obtained from
RCMFDE resulted in higher classification accuracy than MSE, RCMSE, MDE, RCMDE, and
MFDE. Overall, these findings suggest the superiority of RCMFDE over the conventional
multiscale entropy methods in bearing feature extraction.
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Abbreviations

CG Coarse graining
CMSE Composite multiscale sample entropy
CWRU Case Western Reserve University
DE Dispersion entropy
DO Drilling on the outer ring
FDE Fuzzy dispersion entropy
FCM-ANFIS Adaptive neuro-fuzzy inference system with fuzzy c-means
FE Fuzzy entropy
H Healthy condition
M. Multiscale
MDE Multiscale dispersion entropy
MFDE Multiscale fuzzy dispersion entropy
MPE Multiscale permutation entropy
MSE Multiscale sample entropy
PE Permutation entropy
PHMAP 2021 Asia Pacific Conference of the Prognostics and Health Management Society 2021
PO Pitting on the outer ring
RC Refined composite
RCMDE Refined composite multiscale dispersion entropy
RCMFDE Refined composite multiscale fuzzy dispersion entropy
RCMFE Refined composite multiscale fuzzy entropy
RCMPE Refined composite multiscale permutation entropy
RCMSE Refined composite multiscale sample entropy
SE Sample entropy
SD Standard deviation
SNR Signal-to-noise ratio
STO Sharp trench on the outer ring
VMD Variational mode decomposition
WGN White Gaussian noise
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