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Received: 19 September 2023

Revised: 19 October 2023

Accepted: 20 October 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Convolutional Models with Multi-Feature Fusion for Effective
Link Prediction in Knowledge Graph Embedding
Qinglang Guo 1,2 , Yong Liao 1,*, Zhe Li 3 , Hui Lin 2 and Shenglin Liang 4

1 School of Cyber Science and Technology, University of Science and Technology of China, Heifei 230027, China
2 National Engineering Research Center for Public Safety Risk Perception and Control by Big Data (RPP),

CETC Academy of Electronics and Information Technology Group Co., Ltd., China Academic of Electronics
and Information Technology, Beijing 100041, China; linhui@cetc.com.cn

3 Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University,
Hong Kong SAR, China

4 School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
* Correspondence: yliao@ustc.edu.cn

Abstract: Link prediction remains paramount in knowledge graph embedding (KGE), aiming to
discern obscured or non-manifest relationships within a given knowledge graph (KG). Despite
the critical nature of this endeavor, contemporary methodologies grapple with notable constraints,
predominantly in terms of computational overhead and the intricacy of encapsulating multifaceted
relationships. This paper introduces a sophisticated approach that amalgamates convolutional
operators with pertinent graph structural information. By meticulously integrating information
pertinent to entities and their immediate relational neighbors, we enhance the performance of
the convolutional model, culminating in an averaged embedding ensuing from the convolution
across entities and their proximal nodes. Significantly, our methodology presents a distinctive
avenue, facilitating the inclusion of edge-specific data into the convolutional model’s input, thus
endowing users with the latitude to calibrate the model’s architecture and parameters congruent
with their specific dataset. Empirical evaluations underscore the ascendancy of our proposition
over extant convolution-based link prediction benchmarks, particularly evident across the FB15k,
WN18, and YAGO3-10 datasets. The primary objective of this research lies in forging KGE link
prediction methodologies imbued with heightened efficiency and adeptness, thereby addressing
salient challenges inherent to real-world applications.

Keywords: link prediction; knowledge graph embeddings; convolution-based

1. Introduction

Link prediction is a critical task in the field of knowledge graph embedding (KGE) to
uncover potential missing or unknown relationships between entities in a knowledge graph
(KG) [1–3]. Knowledge graphs are structured representations of real-world knowledge,
where entities are nodes and their relationships are edges. The primary objective of link
prediction is to infer new edges by leveraging the existing graph structure, entity attributes,
or embeddings obtained with KGE methods. The importance of link prediction stems
from its broad range of applications across various domains, such as social network analy-
sis [4–6], recommender systems [7,8], bioinformatics [9], and knowledge base completion
(KBC) [10,11]. By identifying missing or unknown links, link prediction enhances the
quality and completeness of knowledge graphs, enabling more effective reasoning and
decision making in various AI and NLP tasks [12–15].

Link prediction in knowledge graph embedding presents several challenges that must
be addressed to ensure their effectiveness in real-world scenarios. One critical aspect of
these challenges is ensuring that link predictors scale in a manageable way regarding the
number of parameters and computational costs. Real-world knowledge graphs often consist
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of millions of entities and relations, resulting in considerable computational overhead for
link predictors [2]. Designing link prediction algorithms that can efficiently handle large-
scale knowledge graphs is crucial for their practical applicability. Many existing link
prediction methods involve complex models with numerous parameters, especially graph-
based neural networks, such as GCNs [16] and R-GCNs [17]. Managing the number of
parameters is essential to avoid overfitting and ensure the efficient training of models
on large-scale knowledge graphs. The link prediction process can be computationally
expensive due to the need to compute scores for many potential links. Developing link
prediction methods with reduced computational costs is essential for their deployment in
real-world applications, especially when working with large-scale knowledge graphs and
limited computational resources.

Previous research has attempted to address the challenges associated with link pre-
diction scalability in knowledge graph embeddings. However, despite these efforts, some
limitations still exist. Techniques like negative sampling have been adopted to reduce the
computational cost by limiting the number of negative samples used during training [18,19].
While negative sampling can significantly decrease computational costs, it may introduce
sampling bias and result in sub-optimal model performance. To address the computational
cost and large-scale knowledge graph challenges, approximate methods such as locality-
sensitive hashing (LSH) [20] and adaptive sampling [21] have been employed. While these
methods can reduce the computational cost, they may introduce approximation errors and
compromise the quality of predictions. Some research has focused on developing simplified
models, such as DistMult [22] and ComplEx [23], which maintain fewer parameters and
require less computation. However, the trade-off between model complexity and expres-
siveness can lead to limitations in capturing more complex relationships and patterns in
the data. Incremental learning techniques, such as Know-Evolve [24] and EvolveGCN [25],
have been proposed to address the challenge of dynamic updates in knowledge graphs.
These methods update the embeddings online without retraining the entire model. While
incremental learning can efficiently handle dynamic updates, it may not account for the
knowledge graph’s long-term dependencies and complex relationships.

Utilizing convolutional operators for link prediction in knowledge graph embed-
ding (KGE) presents a compelling solution to address the limitations of shallow models
and fully connected deep architectures. These operators offer several key advantages,
including parameter efficiency, scalability, robustness to overfitting, and flexibility. The
parameter-efficient nature of convolutional operators allows for increased model expres-
siveness without the need to scale up the embedding size, which is particularly beneficial
for large knowledge graphs where the number of embedding parameters is proportional
to the number of entities and relations [26]. Additionally, convolutional operators’ highly
optimized GPU implementations enable efficient computation, ensuring faster training
and inference processes that can handle larger knowledge graphs without significantly
increasing computational costs. Moreover, the established methodologies for controlling
overfitting in multi-layer convolutional networks [27,28] can be applied to KGE link pre-
diction tasks, effectively mitigating the overfitting issues commonly encountered in fully
connected deep architectures. Lastly, composing convolutional operators into deep net-
works provides flexibility in designing more sophisticated models capable of capturing
complex patterns and relationships within knowledge graphs. In conclusion, adopting
convolutional operators for link prediction tasks in KGE offers a promising approach that
addresses existing models’ challenges.

Existing convolutional algorithms primarily focus on mining triplet information,
utilizing convolutional neural networks (CNNs) to take the embeddings of head entities
and relations as input and predict tail entities. However, as demonstrated in ConvE [29],
this approach cannot explore complex graph structure information between entities within
triplets. The learning and parameter update processes treat each input triplet relatively
independently, neglecting the entities’ connections.
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To address this limitation, we propose incorporating graph structure information into
the convolution by adding structural information about entities and their neighboring enti-
ties to improve model performance. Specifically, we construct edges based on co-occurrence
relationships between entities in triplets or use a global graph structure to obtain the neigh-
boring entity information for each entity. In addition to the original triplets, we introduce a
new graph structure task incorporating the head entity’s neighboring information as new
input during training, using a CNN to predict the corresponding tail entities. We utilize
the average embedding of neighboring nodes for convolution. Furthermore, we provide
the option to include edge information in the input of the convolutional model, allowing
users to adjust the model’s structure and parameters based on their data.

The contributions of our work are as follows:

• We innovatively introduce convolutional operators to knowledge graph embedding
(KGE) link prediction. This advancement bridges the gap between the shortcomings of
shallow and densely connected architectures, harnessing the benefits of convolutional
operators, such as parameter efficiency, superior scalability, robustness against overfit-
ting, and the flexibility to craft intricate models deciphering complex relationships in
knowledge graphs.

• We propose assimilating graph structure information into the convolutional frame-
work. By leveraging edges constructed from co-occurrence patterns or a broader graph
structure, our model incorporates the rich context of neighboring entity information.
The introduction of a new graph structure task and the provision to integrate edge
information in the convolutional input further bolster the model’s predictive prowess.

2. Related Work

This section reviews recent advancements in knowledge graph embeddings, par-
ticularly emphasizing the application of convolutional neural networks (CNNs), includ-
ing Conv2D. Knowledge graph embeddings aim to represent entities and relations in a
knowledge graph as continuous low-dimensional vectors. Numerous methods have been
proposed, from traditional embedding techniques to graph-based neural networks.

2.1. Graph-Based Neural Networks for Knowledge Graph Embeddings

Traditional embedding approaches: Techniques such as TransE, DistMult, and Com-
plEx have laid the foundation in this domain. However, the focus has shifted towards
capturing complex dependencies and patterns in the graph structure more effectively.
Graph Convolutional Networks (GCNs) have gained popularity in the knowledge graph
embedding domain. For instance, Liu et al. [30] integrated GCNs with attention mecha-
nisms, while Zhang et al. [31] introduced a hierarchical structure into GCNs for capturing
multi-scale features. Recent works, such as those by Li et al. [32,33], have expanded on
these concepts, highlighting the versatility of graph-based neural networks in knowledge
graph embeddings.

2.2. Applications of Convolutional Neural Networks in Various Domains

The application of CNNs, especially Conv2D, in knowledge graph embeddings has
garnered interest. Wang et al. [34] and Liu et al. [35] have demonstrated the potential of
CNNs in this domain.

Zhang et al. [36] introduced a hybrid convolutional spatial–temporal recurrent net-
work for traffic flow prediction. While adept at capturing spatial and temporal character-
istics of traffic data using a combination of convolutional and recurrent neural networks,
their method is primarily tailored to traffic data. It may not directly apply to the intricacies
of KGs. Y. et al. [37] focused on modeling relation paths for knowledge graph completion.
Though innovative in understanding and predicting entities and relationships in KGs,
their approach might struggle with multifaceted relationships and scalability. Lu et al. [38]
delved into extracting and fusing multi-scale features of images and text for visual question
answering. While their method enhances performance by integrating multiple feature
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extraction techniques, its application is primarily in visual data and might not be directly
translatable to KGs. Guo et al. [39] proposed a path extension similarity link prediction
method based on matrix algebra. Their approach, considering the directionality of net-
works, offers a fresh perspective but might encounter computational challenges when
applied to large KGs. Di Wu et al. [40] introduced a graph-incorporated latent factor analy-
sis model tailored for high-dimensional sparse data. By merging graph theory with factor
analysis, their method captures data structures effectively. However, its application might
be limited by the inherent complexities of integrating graph structures with latent factors.
Di Wu et al. [41] presented a double-space and double-norm ensembled latent factor model
for precise web service QoS prediction. Considering multiple service characteristics, their
innovative approach might face challenges when applied outside web services.

In summary, while traditional embedding methods have laid the groundwork, recent
research has delved deeper into the potential of graph-based neural networks and CNNs,
especially Conv2D, in knowledge graph embeddings. This work aims to contribute to this
growing body of research by proposing a novel Conv2D-based method for knowledge
graph embeddings, considering the potential benefits of capturing local patterns, translation
invariance, and hierarchical learning. Unlike the aforementioned methodologies, our ap-
proach amalgamates convolutional operators with pertinent graph structural information,
offering a more comprehensive solution for link prediction in KGs. Our method captures
intricate relationships between entities and provides flexibility in model architecture and
parameter adjustments, outperforming existing benchmarks on multiple datasets.

3. Methodology

Most existing link prediction methods only use triplet-based knowledge, and they
usually ignore the neighborhood subgraph knowledge of entities, which implies richer
alignment information for aligning entities.

3.1. Problem Statement

A knowledge graph, denoted by G = (s, r, o) ⊆ E ×R× E , can be defined as a set of
triples (facts), with each triple consisting of a relationship r ∈ R and two entities s, o ∈ E .
The entities are referred to as the subject and object of the triple, respectively. Each triple
(s, r, o) represents a relationship of type r between entities s and o.

The link prediction problem can be framed as a pointwise learning-to-rank problem,
where the objective is to learn a scoring function ψ : E ×R× E 7→ R. Given an input triple
x = (s, r, o), its corresponding score ψ(x) ∈ R is proportional to the likelihood that the fact
encoded by x is true.

Neural link prediction models are multi-layer neural networks comprising encoding
and scoring components. Given an input triple (s, r, o), the encoding component maps
entities s, o ∈ E to their distributed embedding representations es, eo ∈ Rk. We present
scoring functions ψr(es, eo) from the neural link predictors found, along with their relation-
dependent parameters and space complexity. Here, ne and nr denote the number of entities
and relation types, respectively, such that ne = |E | and nr = |R|. In the scoring component,
the two entity embeddings es and eo are evaluated by a function ψr. The score of a triple
(s, r, o) is defined as ψ(s, r, o) = ψr(es, eo) ∈ R.

3.2. Convolutional 2D Knowledge Graph Embeddings

As shown in Figure 1, this work proposes a neural link prediction model in which
convolutional and fully connected layers model interactions between input entities and
relationships. Specifically, the neighbor entity information of each entity is obtained based
on the entity co-occurrence relationship in the triple information or the global graph
structure. Based on the original triplet, a new graph structure task is introduced; that is, the
neighbor information of the head entity is used as a new input during training, and the
corresponding tail entity is predicted using a convolutional neural network. This provides
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two schemes: direct convolution with neighbor nodes and convolution with the average
embedding of neighbor nodes.
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Figure 1. Here depicted is our model architecture. The entity and relation embeddings are initially
reshaped and concatenated while considering the neighboring nodes concurrently. This resultant
matrix subsequently serves as the input for a convolutional layer. The resulting feature map tensor
is then vectorized and projected into a k-dimensional space, where it is matched with all potential
object embeddings.

3.2.1. Motivation for Incorporating Neighboring Information

Entities within a knowledge graph are not isolated nodes; they inherently form con-
texts with their neighbors. The motivation for incorporating this neighboring information
arises from several core insights:

1. Richer semantic capturing: Each entity’s relationship with its neighbors provides
valuable semantic information that is otherwise overlooked if only direct embeddings
are used. By tapping into this, we ensure that subtler, context-specific nuances in
relationships are captured.

2. Enhanced predictive power: Knowledge graphs often have complex and interwo-
ven relationships. Considering the surrounding context (i.e., neighboring entities),
our model gains more predictive power, especially in densely interconnected graph
regions where simple entity–relation–entity predictions might be ambiguous.

3. Robustness to sparse data: In scenarios where certain entities have limited direct
relationships, leveraging neighboring information can supplement the lack of direct
data, making predictions more robust and informed.

4. Model generalization: Incorporating neighboring information can lead to better
generalization. By understanding the broader context in which an entity exists,
the model is less likely to overfit specific triples and can generalize better to unseen or
rare triples.

5. Handling dynamic knowledge graphs: Entities may form new relationships as knowl-
edge graphs evolve. A model cognizant of neighboring contexts can adapt more
swiftly to such changes, ensuring that predictions remain relevant even as the graph’s
topology evolves.

While direct embeddings provide a snapshot of individual entities and their relations,
neighboring information offers a panoramic view, placing entities within a broader, inter-
connected context. This holistic perspective is pivotal in crafting a more comprehensive
and nuanced representation, indispensable for robust link prediction in knowledge graphs.

3.2.2. Extraction and Processing of Neighbor Information

Neighbor entity information for each entity is extracted based on entity co-occurrence
relationships within triples or from the overall graph structure. For the said neighboring
information, we contemplate two strategies:

• Direct convolution with neighbor nodes.
• Convolution with the average embedding of neighbor nodes, wherein we first calculate

embeddings for each neighbor and then compute their average. This is designed
considering potential weight differences amongst neighbors.
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The main feature of our model is that a convolution over 2D-shaped embeddings
determines the score. The scoring function is formally defined as follows:

ψr(es, eo) = f (vec( f ([es; rr] ∗ω))W)eo, (1)

ψr(esneig, eo) = f (vec
(

f (
[
esneig; rr

]
∗ω

)
)W)eo, (2)

ψr = ω1 · ψr(es, eo) + ω2 · ψr(esneig, eo) (3)

where f (·) refers to the convolution operation, esneig represents the neighbor node of node
s, rr ∈ Rk is a relation parameter dependent on r. The symbols es and rr represent 2D
reshaped versions of es and rr, respectively. If es, rr ∈ Rk, then es, rr ∈ Rkw×kh , where
k = kwkh.

3.2.3. Detailed Feed-Forward Process

During the feed-forward pass, the model carries out a row–vector lookup operation
on two embedding matrices: one for entities, denoted by E|E |×k, and the other for relations,
denoted by R|R|×k′ . Here, k and k′ represent the entity and relation embedding dimensions,
while |E | and |R| signify the numbers of entities and relations, respectively. The model
concatenates es and rr and uses the result as input for a 2D convolutional layer with filters ω.
This layer produces a feature map tensor T ∈ Rc×m×n, where c is the number of 2D feature
maps with dimensions m and n. Tensor T is then reshaped into a vector vec(T ) ∈ Rcmn,
which is subsequently projected into a k-dimensional space using a linear transformation
parameterized by matrix W ∈ Rcmn×k. Object embedding eo is then matched using an inner
product. The parameters of the convolutional filters and matrix W are independent of the
parameters for entities s and o, as well as relationship r.

3.2.4. Rationale behind 2D Convolution

In the realm of knowledge graphs, where the latent relationships are deeply embedded
within high-dimensional spaces, utilizing 2D convolutions gives multiple advantages:

1. Pattern recognition: Traditional embeddings, while effective, may fail to capture
intricate patterns when considering higher dimensions. Two-dimensional convolu-
tions excel in identifying localized patterns within embeddings, which better captures
nuanced relationships between entities in the context of knowledge graphs.

2. Spatial hierarchies: Two-dimensional convolutional layers can identify hierarchical
structures within the embedding space. This is particularly important in knowledge
graphs, where relationships can have hierarchical or layered nuances. For instance,
“being a part of” versus “being affiliated with” might manifest differently in the
embedding space, and 2D convolutions can tease these differences.

3. Parameter efficiency: By reshaping embeddings into 2D structures and applying
convolutions, the model can capture spatial relationships with fewer parameters than
fully connected layers. This can lead to faster training and less overfitting.

4. Translational invariance: One of the hallmark features of convolutional layers is their
ability to detect features irrespective of their position in the input. In the context of
our embeddings, this ensures that important relational cues are captured irrespective
of their positioning within the high-dimensional space.

5. Adaptive feature learning: Two-dimensional convolutions automatically learn fea-
tures from the data rather than relying on handcrafted features. This adaptability is
essential in knowledge graphs, where the diversity of relationships and entities can
be vast and unpredictable.
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While traditional embeddings capture a static representation of entities and relation-
ships, 2D convolutions breathe life into these embeddings by capturing dynamic and
spatially relevant patterns. This added layer of analysis is instrumental in accurately un-
derstanding and predicting the rich tapestry of relationships present in knowledge graphs.

3.3. Loss Function

To train the model parameters, we apply the logistic sigmoid function, σ(·), to the
scores, such that p = σ(ψr(es, eo)), and minimize the following binary cross-entropy loss:

L(p, t) = − 1
N ∑

i
(ti · log(pi) + (1− ti) · log(1− pi)), (4)

where t is the label vector with dimension R1×1 for 1− 1 scoring or R1×N for 1− N scoring
(refer to the next section for 1− N scoring). The elements of vector t are ones for existing
relationships and zeros otherwise.

4. Experiments
4.1. Knowledge Graph Datasets

We assess our proposed model using a variety of link prediction datasets from the
literature.

WN18 [42] is a subset of WordNet comprising 18 relations and 40,943 entities. Most
151,442 triples are based on hyponym and hypernym relations, giving WN18 a primarily
hierarchical structure. However, due to its composition, WN18 contains many inverse
relations, which allows some models to achieve high accuracy simply by memorizing these
inverse relations rather than truly learning meaningful representations. To address this,
WN18RR was introduced, removing these easy-to-memorize inverse relations and offering
a more challenging model benchmark.

FB15k [42] is a subset of Freebase that contains 14,951 entities and 1345 distinct
relations. Much of this knowledge graph is dedicated to facts about movies, actors, awards,
sports, and sports teams. While it serves as a common evaluation benchmark, researchers
identified data leakage issues among its training, validation, and test sets that might inflate
the performance of models. To remedy this, FB15k-237 excluding triples that could lead to
leakage was proposed, providing a fairer and more challenging evaluation standard.

YAGO3-10 [43] is a YAGO3 subset consisting of entities with at least 10 relations
each. It includes 123,182 entities and 37 relations, with most triples concerning descriptive
attributes of people, such as citizenship, gender, and profession.

4.2. Experimental Setup

We employ rectified linear units (ReLUs) as the non-linearity f for accelerated training
and use batch normalization after each layer to stabilize, regularize, and improve con-
vergence speed. Our model is regularized by incorporating drop out at various stages,
specifically on the embeddings, the feature maps following the convolution operation, and
the hidden units after the fully connected layer. We utilize the Adam optimizer and imple-
ment label smoothing to mitigate overfitting caused by output non-linearity saturation at
the labels.

4.3. Results and Analysis

Table 1 presents the link prediction results for the WN18 and FB15k datasets. Multiple
benchmark algorithms, including TransE, DistMult, CompEx, Gaifman, ANALOGY, R-
GCN, and ConvE, are evaluated alongside our proposed methodology. Key metrics used
for this assessment are Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits@n for
n = 10, 3, and 1.



Entropy 2023, 25, 1472 8 of 16

Table 1. Link prediction results for WN18 and FB15k.

WN18 FB15k

Hits Hits

MR MRR @10 @3 @1 MR MRR @10 @3 @1

TransE [42] - 0.495 0.943 0.888 0.113 - 0.463 0.749 0.578 0.297
DistMult [22] 902 0.822 0.936 0.914 0.728 97 0.654 0.824 0.733 0.546
CompEx [23] - 0.941 0.947 0.936 0.936 - 0.692 0.840 0.759 0.599
Gaifman [44] 352 - 0.939 - 0.761 75 - 0.842 - 0.692

ANALOGY [45] - 0.942 0.947 0.944 0.939 - 0.725 0.854 0.785 0.646
R-GCN [46] - 0.814 0.964 0.929 0.697 - 0.696 0.842 0.760 0.601
ConvE [29] 374 0.943 0.956 0.946 0.935 51 0.657 0.831 0.723 0.558

Ours 293 0.954 0.962 0.951 0.942 47 0.717 0.884 0.788 0.711

Our methodology outperforms all other techniques on the WN18 dataset regarding
MRR with a score of 0.954. The closest competitor is ConvE, with a score of 0.943. Our
method also achieves the lowest MR, 293, suggesting that our predicted entities tend to rank
closer to the top. For the Hits@10 metric, our approach, with a score of 0.962, is narrowly
outperformed by R-GCN, which has a score of 0.964. However, our method surpasses all
other methods in Hits@3 and Hits@1 metrics, demonstrating its effectiveness in ranking
the correct entities very high in the predictions.

On the FB15k dataset, our method shines again. It achieves the lowest MR at 47,
indicating that our predictions rank the correct entities near the top significantly better
than the competitors. For MRR, our method scores 0.717, coming in second to ANALOGY,
which has the highest MRR, 0.725. Nevertheless, our method outstrips all other methods in
Hits@10, Hits@3, and Hits@1, with scores of 0.884, 0.788, and 0.711, respectively. It is worth
noting the significant improvement our approach exhibits in the Hits@1 metric, registering
a score of 0.711, compared with Gaifman, the next best, which scores 0.692.

The results underscore the superiority of our approach, especially when considering
the breadth and depth of the relationships it captures. Including convolutional operators
integrated with graph structural information provides a comprehensive understanding of
the entities and their relationships, thus enhancing prediction accuracy. The consistent per-
formance across different datasets, such as WN18 and FB15k, validates our methodology’s
robustness and general applicability.

Table 2 delineates the results for link prediction on the WN18RR and FB15k-237
datasets. Multiple benchmark models, including TransE, DistMult, ComplEx, R-GCN,
and ConvE, are juxtaposed against our proposed approach. The metrics employed for
evaluation are Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits@n (where n = 10,
3, and 1).

Table 2. Link prediction results for WN18RR and FB15k-237.

WN18RR FB15k-237

Hits Hits

MR MRR @10 @3 @1 MR MRR @10 @3 @1

TransE [42] - 0.23 0.52 0.36 0.06 - 0.310 0.495 0.345 0.218
DistMult [22] 5110 0.43 0.49 0.44 0.39 254 0.241 0.419 0.263 0.155
ComplEx [23] 5261 0.44 0.51 0.46 0.41 339 0.247 0.428 0.275 0.158
R-GCN [46] - - - - - - 0.248 0.417 0.258 0.153
ConvE [29] 4187 0.43 0.52 0.44 0.40 244 0.325 0.501 0.356 0.237

Ours 3245 0.47 0.51 0.47 0.44 189 0.427 0.615 0.466 0.333
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Our proposed methodology sets a new benchmark on the WN18RR dataset. Regarding
MRR, our approach achieves a score of 0.47, overtaking the closest competitor, ComplEx,
which has a score of 0.44. Our method realizes the lowest MR, standing at 3245, which
implies that our predictions rank the correct entities closer to the top, comparatively
superior to other methods. While ConvE leads the pack in the Hits@10 metric with a score
of 0.52, our method matches this performance, also scoring 0.51. Importantly, our approach
outstrips other techniques in the Hits@3 and Hits@1 metrics, underscoring its robustness in
pinpointing the correct entities.

Our methodology showcases dominance on the FB15k-237 dataset as well. The
method’s MR is exceptional, landing at 189, making it the front-runner in positioning
the correct entities at higher ranks. Regarding MRR, our method clinches the top position
with a score of 0.427, considerably better than the runner-up ConvE, which records 0.325.
Our approach’s supremacy is further evident in Hits@n metrics, as it consistently surpasses
other models across Hits@10, Hits@3, and Hits@1. The following are general observations.

Table 3 portrays the link prediction outcomes on the YAGO3-10 dataset. Our proposed
approach sets a precedent in the YAGO3-10 dataset as well. With respect to the MR metric,
our method establishes a new benchmark, with a score of 1396. This suggests that our
predictions place the correct entities considerably higher in rank, showcasing superior
performance compared with the other models. The closest competing model is ConvE,
which records an MR value of 1676. In the MRR evaluation, our methodology emerges
as the leader, with a score of 0.47, outstripping ConvE’s second-best score of 0.44. The
supremacy of our technique is further emphasized in the Hits@n metrics. Our method
consistently leads, recording scores of 0.65, 0.54, and 0.43 for Hits@10, Hits@3, and Hits@1,
respectively. In each of these metrics, our methodology eclipses the results of the benchmark
models, solidifying its robustness and inaccurate predictions.

Table 3. Link prediction results for YAGO3-10.

YAGO3-10

Hits

MR MRR @10 @3 @1

DistMult [22] 5926 0.34 0.54 0.38 0.24
ComplEx [23] 6351 0.36 0.55 0.40 0.26

ConvE [29] 1676 0.44 0.62 0.49 0.35
Ours 1396 0.47 0.65 0.54 0.43

The YAGO3-10 results further corroborate the effectiveness of our methodology, show-
casing its capability to position correct entities higher in the ranks and achieve higher
accuracy in predictions. Our approach’s lead across all metrics accentuates the value
of amalgamating convolutional operators with graph structural details, especially when
applied to diverse datasets.

The evident success of our method on three datasets reaffirms the potency of inte-
grating convolutional operators with graph structural details. The consistent, leading
performance in multiple metrics demonstrates the comprehensive capability of the ap-
proach, from ranking correct entities closer to the top to ensuring higher accuracy in
predictions. The contrast between our results and benchmark methods accentuates our
approach’s knowledge graph embedding and link prediction improvement.

5. Ablation Study

To validate the effectiveness of our proposed method, we conducted a series of ab-
lation experiments to systematically examine the influence of various parameters on the
model’s performance. Through these experiments, we evaluated the impact of differ-
ent neighbor node aggregation, mean pooling, and neighbor node convolution on the
model’s performance.
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Drawing from the analytical insights given in Table 4, our focus veers towards the
pivotal role of neighbor aggregation during the convolutional process. This, in essence,
pertains to the systematic incorporation of proximate nodal information.

Table 4. Ablation study.

Neighbor
Aggregation Relation Neighbor

Convolution
Mean

Pooling MR MRR Hits10 Hits3 Hits1

raw 233.73 0.4041 0.6003 0.4468 0.3041
raw+agg+conv X X 201.61 0.4234 0.6083 0.4657 0.3285
raw+agg+conv+relation X X X 256.05 0.4090 0.5942 0.4506 0.3156
raw+agg+pooling+relation X X X 216.94 0.4073 0.5980 0.4452 0.3134
raw+agg+pooling X X 189.25 0.4270 0.6149 0.4657 0.3329

Our empirical findings elucidate a notable increase in the model’s efficacy when these
neighboring contextual data are integrated relative to scenarios that eschew such inclusions.
This conspicuously underscores the instrumental role of immediate nodal surroundings in
crafting a richer, more semantically robust representation.

The zenith of our model’s performance was attained when conditioned on the amalga-
mation of both the direct entity representation and the structural nuances of its contiguous
entities. This furnishes empirical credence to the hypothesis that concurrent inclusion of
local (direct entity) and global (neighboring entities) contextual cues can beget superior
model fidelity.

Interestingly, a narrowed focus solely on neighboring nodes—devoid of the principal
entity’s context—still resulted in commendable outcomes, positioning them as the sec-
ond most efficacious. This underlines the cardinal importance of neighborhood-derived
semantics.

However, our investigative journey was not devoid of anomalies. The model’s perfor-
mance trajectory evidenced a decline upon introducing relation nodes. One postulation
attributes this decrement to the inadvertent infusion of noise or, perhaps, tangential data
from these relation nodes. Such superfluous information could potentially occlude or
dilute the primary semantics derived from the focal entity and its neighbors, engendering a
sub-optimal or skewed contextual representation. This observation accentuates the delicate
equilibrium that researchers must strike: seamlessly integrating germane contextual cues
while circumventing the pitfalls of information redundancy from relation nodes.

The Effect of Parameters

To rigorously elucidate the interplay between different hyperparameters and the
resultant efficacy of our model, as shown in Figures 2–4, we embarked on a comprehensive
ablation study. This exploration centered on three pivotal axes: embedding dimensionality,
the capacity of the convolutional channels, and the span of training epochs.

Embedding dimensionality and its implications: The dimensionality of embeddings
is inherently tied to their expressiveness, acting as a conduit that encodes intricate rela-
tionships and complex patterns within the knowledge graph. Intuitively, richer (higher-
dimensional) embeddings potentially offer a more nuanced representation. However, this
also raises the specter of model overfitting and computational inefficiency.

To empirically quantify the trade-offs, we undertook experiments across a spectrum
of embedding dimensions: 20, 50, and 100, culminating at 1000. Our findings revealed an
optimal point at the dimensionality of 200. At this juncture, the model’s performance in the
MR task was unrivaled. This observation suggests that the dimensionality 200 harmonizes
the dichotomy of embedding richness and model generalization, ensuring that while the
model captures the requisite granularity, it remains immune to overfitting.
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Figure 2. The effect of embedding dimensions on the FB15K237 dataset.

Influence of convolutional channel capacity: Convolutional channels act as the con-
duits for feature extraction in neural architectures. Their capacity, thus, inherently affects
the granularity and the diversity of features that the model discerns from the input. We
conducted expansive experiments over various channel dimensions from 4 to 160 to discern
the inflection point where the model maximizes its predictive acumen.

Our empirical results pinpointed 32 as the optimal number of channels. The elucida-
tion of this observation can be anchored in the following intricacies.

Feature extraction depth versus overfitting risk: While increasing the number of channels
intuitively amplifies the model’s ability to unearth a diverse set of patterns, a limit exists
beyond which these gains are offset. Specifically, the model might veer into overfitting
after a certain saturation point, becoming unduly tailored to training nuances and losing
its generalization capabilities. Per our experiments, the threshold of 32 channels appears to
be the juncture where the model extracts a rich set of features without succumbing to the
overfitting pitfall.

Marginal gains and computational trade-offs: Analogous to our insights from the embed-
ding dimension analysis, the convolutional channel capacity also exhibits a diminishing
returns phenomenon. Each incremental increase in channel dimensions yields progressively
marginal enhancements in performance. Beyond the 32-channel mark, our findings indi-
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cated that any minuscule gains in performance were overshadowed by the computational
overhead and increased risk of model overcomplexity.
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Figure 3. The effect of convolutional channels on the FB15K237 dataset.

Given the aforementioned observations, our model seems to flourish in an environ-
ment with 32 convolutional channels, striking an optimal balance between robust feature
extraction and computational efficiency.

The impact of training epochs: The longevity of a model’s training cycle—denoted
by the number of epochs—plays an instrumental role in shaping its learning trajectory and
eventual predictive prowess. To demystify the relationship between the training duration
and the resultant model accuracy, we instituted experiments across various epoch durations,
spanning from a minimalistic 5 epochs to an extended 60 epochs.

Our empirical diagnostics flagged 20 epochs as the sweet spot, and a deeper dive into
the dynamics of training epochs elucidates the following observation.

The convergence dilemma: The trajectory of model training is fundamentally under-
pinned by its convergence behavior. Training epochs too scanty in number might truncate
the model’s learning process prematurely, ensnaring it in the realms of underfitting. Con-
versely, an overextended training duration risks overfitting, as the model might transition
from discerning patterns to rote memorization of training intricacies. Our investigative
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foray revealed that at the 20-epoch mark, the model consummates a learning journey that
adeptly bridges the chasm between underfitting and overfitting.
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Figure 4. The effect of epochs on the FB15K237 dataset.

Performance vs. computational expediency: Beyond the pure predictive acumen, the
operational efficiency of a model, encapsulated by its training duration, holds paramount
importance. Each epoch incrementally escalates the computational and temporal invest-
ments, but the corresponding upticks in performance often follow a law of diminishing
returns. Our experiments illuminated that the 20-epoch configuration championed a
harmonious synergy between computational expediency and model accuracy.

In summation, within our experimental landscape, the training dynamics orchestrated
over 20 epochs manifested as an optimal regimen, balancing the intricacies of model
learning, generalization, and computational pragmatism.

6. Conclusions

We have introduced a link prediction model that leverages convolutional techniques
applied to embeddings, incorporating multiple layers of non-linear features to model
knowledge graphs effectively. Our approach stands out for several reasons: it takes ad-
vantage of neighbor node information, maintains expressiveness through multiple layers
of non-linear features, demonstrates robustness against overfitting thanks to batch nor-
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malization and dropout, and consistently achieves superior results across various datasets.
Our analysis indicates that the improved performance of our model when compared to a
common link predictor like DistMult, can be partially attributed to its capacity to effectively
model nodes with high (recursive) degrees.

While our model has already exhibited promising results, it remains relatively shallow
compared with the convolutional architectures typically encountered in computer vision
applications. Future research endeavors may focus on deepening the convolutional models
we employ. Furthermore, there is room for exploring the implications of convolution within
our context. Additionally, we may investigate methods for enforcing large-scale structural
patterns within the embedding space to facilitate increased interactions among embeddings.
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