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Abstract: In cases where a client suffers from completely unlabeled data, unsupervised learning has
difficulty achieving an accurate fault diagnosis. Semi-supervised federated learning with the ability
for interaction between a labeled client and an unlabeled client has been developed to overcome this
difficulty. However, the existing semi-supervised federated learning methods may lead to a negative
transfer problem since they fail to filter out unreliable model information from the unlabeled client.
Therefore, in this study, a dynamic semi-supervised federated learning fault diagnosis method with
an attention mechanism (SSFL-ATT) is proposed to prevent the federation model from experiencing
negative transfer. A federation strategy driven by an attention mechanism was designed to filter out
the unreliable information hidden in the local model. SSFL-ATT can ensure the federation model’s
performance as well as render the unlabeled client capable of fault classification. In cases where
there is an unlabeled client, compared to the existing semi-supervised federated learning methods,
SSFL-ATT can achieve increments of 9.06% and 12.53% in fault diagnosis accuracy when datasets
provided by Case Western Reserve University and Shanghai Maritime University, respectively, are
used for verification.

Keywords: fault diagnosis; semi-supervised federated learning; attention mechanism; dynamic
federation; model reliability

1. Introduction

As an important part of modern industrial systems, the fault diagnosis of a rolling
bearing is crucial [1-3]. Data-driven fault diagnosis methods can extract fault features
directly from massive collections of data and allow for the construction of a fault diagnosis
model for rapid equipment monitoring [4,5]. As a data-driven method, deep learning is
more powerful in terms of representing complex nonlinear mapping relationships, so fault
diagnosis methods based on deep learning are becoming more and more widely applied [6].
In practical industrial applications, the process of labeling a large quantity of data often
demands significant human and material resources. Therefore, the construction of fault
diagnosis models utilizing extensive unlabeled data has received a copious amount of at-
tention from academics and industry experts [7,8]. Although unsupervised methodologies
can solve the issue of unlabeled data, establishing a link between input data and output
results is challenging due to the lack of known labels [9,10]. On the other hand, semi-
supervised deep learning methods can optimize fault diagnosis models developed with
minimal labeled data by utilizing a large quantity of unlabeled data, offering important
engineering significance [11,12]. However, the pressing issue lies in how semi-supervised
learning can be implemented in a single-client setting where no labeled data are present.
Semi-supervised federated learning offers a solution, enabling clients bereft of labeled data
to fortify their classification capabilities using information from other clients possessing
labeled data. This response carries substantial engineering significance in addressing a
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critical concern in the semi-supervised deep learning modeling process when certain clients
only have access to unlabeled data [13].

The existing semi-supervised federated learning methods are constrained by unreliable
information hidden in the corresponding local model and struggle to optimize the perfor-
mance of the federation model. Therefore, it is important to design a reliable screening
mechanism for the local model and guide the federated learning process.

This paper starts from the perspective of a reliable information-screening mechanism
for the corresponding local model. Then, a dynamic semi-supervised federated learning
method based on an attention mechanism is proposed, aiming to solve the problem of
negative migration for federated learning due to unreliable information from a low-quality
local model and improve the classification ability of clients without labeled data.

The main contributions of this work are as follows:

1. A dynamic semi-supervised federated learning fault diagnosis method based on an
attention mechanism is proposed to solve the problem of negative transfer due to
unreliable information hidden in a local model. This guarantees the performance of the
federation model and enhances the classification ability of clients without labeled data.

2. Afederation strategy driven by an attention mechanism is designed to filter out unreli-
able information so that the federation model can incorporate useful information from
an unreliable local model. A new loss function related to supervised classification,
unsupervised feature reconstruction, and the reliability of the local model is designed
to train the federation model. According to the reliability of the federation model, the
local model can be optimized by dynamically adjusting how the unlabeled data are
utilized and the extent to which they can contribute.

3. In cases where there are certain clients without labeled data, the method proposed
in this study can still ensure the performance of the federation model and render it
capable of fault classification for local clients without labeled data.

2. Related Work
2.1. Semi-Supervised Deep-Learning-Based Fault Diagnosis Method

Semi-supervised deep-learning methods can achieve the full utilization of massive
collections of unlabeled data to optimize fault diagnosis models built with a small quantity
of labeled data [14]. The existing semi-supervised deep-learning methods can mainly be
classified into generative semi-supervised methods, semi-supervised methods based on
consistency regularization, graph-based semi-supervised methods, and semi-supervised
methods based on pseudo-label self-training [15].

In generative semi-supervised methods, it is assumed that all samples are from the
same latent model, and unlabeled data are treated as missing parameters of the potential
model. An expectation maximization algorithm (EM) is usually used to determine the pa-
rameters [16,17]. Semi-supervised methods based on consistent regularization are designed
to improve model robustness using unlabeled data by making predictions as consistent
as possible for unlabeled data with different perturbations [18,19]. In graph-based semi-
supervised learning methods, the connections among data are used to map a dataset into
a graph, and then the similarity among samples is used for label propagation to achieve
label prediction for unlabeled data [20,21].

Compared to the above semi-supervised deep-learning methods, the process of the
semi-supervised learning method based on pseudo-label self-training is simpler and more
effective [22]. Model performance can be improved via supervised learning using unlabeled
data. Yu et al. [23] proposed a semi-supervised learning method that enhances the consistency
of feature distribution between labeled and unlabeled data and improves the accuracy of fault
diagnosis. Liu et al. [24] proposed a semi-supervised deep-learning method that alternately
optimizes the pseudo-label and model parameters. The above methods use unlabeled data
to improve the performance of a model through supervised learning, but the quality of
the pseudo-label greatly affects the fault diagnosis performance of a model. A model’s
performance can be increased by improving the quality of the pseudo-label. Ribeiro et al. [25]
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used a model’s prediction results to estimate reliability and then added the unlabeled data
with the highest reliability to the model’s retraining process. Pedronette et al. [26] proposed
a method consisting of determining a model’s reliability using marginal scores to find the
most reliable pseudo-label from the unlabeled data and adding it to the labeled dataset.
The above methods improve fault diagnosis performance by improving the quality of the
pseudo-label, but the impact of feature accuracy on the quality of the pseudo-label is not
emphasized. Zhang et al. [27] extracted data features using a variational self-encoder, which
improved the fault diagnosis accuracy of the corresponding model. Tang et al. [28] used
an unsupervised network to extract unlabeled data features and then fine-tuned the model
jointly with the supervised network to improve semi-supervised fault diagnosis accuracy.
When clients cannot achieve adequate labeling of data, it is expected that considering the
utilization of labeled data from other clients to assist the client may solve the problem of
difficulty in training fault diagnosis models caused by a lack of labeled data.

2.2. Semi-Supervised Federated Learning Fault Diagnosis Method

Semi-supervised federated learning is a method that combines semi-supervised learn-
ing and federated learning [29] to address the difficulty of achieving satisfactory fault
diagnosis for clients with few labeled data and a massive number of unlabeled data. Al-
baseer et al. [30] proposed a semi-supervised federated learning method called FedSem,
which used a federation model to assign pseudo-labels to unlabeled data and added them to
the model retraining process. Diao et al. [31] proposed a semi-supervised federated learning
method that is executed via alternating training by fine-tuning a federation model with
labeled data and assigning pseudo-labels to unlabeled data using the federation model.
However, poor quality of the pseudo-label leads to the degradation of model performance,
and the problem of the pseudo-label being unreliable can be eliminated using active learning.
Presotto et al. [32] combined active learning and label propagation algorithms to improve
model performance by periodically using unlabeled data assigned a pseudo-label for local
model training and then aggregating the models. However, the above methods only con-
sider how to assign a high-quality pseudo-label, ignoring the fact that the potential fault
feature information hidden in unlabeled data can also be used to assist in model building.
Hou et al. [33] proposed a semi-supervised federated learning model called ANN-SSFL.
In this approach, clients without labeled data acquired fault features through an autoen-
coder, and clients with labeled data trained the classifier through supervised learning. Both
clients without labeled data and those with labeled data could contribute to the federation
model. However, the above methods only consider how to make full use of fault feature
information from unlabeled data, ignoring the model optimization effect from the infor-
mation interaction occurring in federated learning. Shi et al. [34] proposed a personalized
semi-supervised federated learning method called UM-pFSSL. This method allows each
client to select models from other clients that contribute to the prediction of unlabeled data.
The model performance of each client is improved by aggregating only the parameters
of selected models. Itahara et al. [35] improved the fault diagnosis ability of a model by
exchanging the model output of clients based on the idea of knowledge distillation, using it
to label data in the public dataset, and then the local model was further trained using the
newly labeled data. The above method improves the federation model’s performance from
a feature extraction perspective. However, unreliable information hidden in clients” data
will inevitably degrade the performance of the federation model, so determining how to
filter out unreliable information is an urgent problem that needs to be solved.

3. Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an
Attention Mechanism

When there are certain clients without labeled data, existing semi-supervised federated
learning methods can suffer from performance degradation due to an inability to screen
for unreliable information. To ensure the performance of a federation model, a federation
aggregation strategy based on an information reliability screening mechanism is necessary.
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This paper proposes a dynamic semi-supervised federated learning method for fault
diagnosis based on an attention mechanism, whose main processes include a dynamic local
training mechanism based on model performance, with the aim of dynamically adjusting
the way and degree to which unlabeled data are used according to the performance of
the federated model. On the other hand, local model optimization is achieved through
supervised and unsupervised loss. An optimal federation aggregation strategy driven
by reliable information screening is designed to filter reliable information by measuring
the difference between the local model and the federated model through the attention
mechanism and reflecting the contribution of each client using the attention score. The aim
of this process is to filter out unreliable information through the attention mechanism and
thus ensure the federated model’s performance. The block diagram of the dynamic semi-
supervised federated learning fault diagnosis method based on an attention mechanism is
shown in Figure 1.

Model aggregation in the federation center
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3.1. Dynamic Local Optimization Mechanism Based on Federation Performance

In this section, a dynamic unlabeled data utilization strategy is designed to dynami-
cally adjust the way and the extent to which unlabeled data are used based on the perfor-
mance of the federation model. The specific steps are as follows.

Step 1: When the federation model is unreliable, the recursive optimization of the local
model is achieved using unlabeled data.

After receiving model parameters from the federation center, they are used as the
initialization parameters of the local model, as shown in Equation (1).

0i0 =0prLo 1

Client j uses local data D; = {{x;, 1}, {x,,}} for model training. The feature extrac-
tion network is trained via multi-scale recursive feature reconstruction using unlabeled
data. The forward propagation and parameter update processes are shown in Equations (2)
and (3), respectively:

Featurey, ; = fen(Xu,j, Oen,j0) )
Ryj = fae(Featurex, ;,04.0)
Gen,j,l = 6611,]',0 - ”a(ejjo) LOSSu,]',O (3)

S '
Qde,],l = 9de,],0 n 3(9,13,]-,0) LOSSu,/,O

where fen(+,-) and fz.(-, ) denote the encoding and decoding networks, respectively; 1
denotes the learning rate; Loss, j denotes the multi-scale recursive feature reconstruction
loss obtained using unlabeled data; 6., ;o and 6, ;1 denote the parameters of the encoding
network before and after updating, respectively; and 6, ;o and 6,1 denote the parameters
of the decoding network before and after updating, respectively.

Step 2: Dynamic local semi-supervised training based on the degree of pseudo-label
utilization.

In the 7" round of federated learning, the federation center distributes model param-
eters to the clients. Client j uses the received federation model to predict the category
information of unlabeled data, as shown in Equation (4).

yu,j,pre = fclassifier (fen (xu,j/ Gen,Fl,r) ’ Gclassifier,l-"l,r) (4)

Above, 8, r; , denotes the encoding parameters of the rth-round federation model,
while 61455 fier,F1,» denotes the classifier parameters of the r"-round federation model. The
category with the maximum probability is taken as the federation model’s pseudo-label, as
shown in Equations (5) and (6), where C is the total number of categories.

o [Le=argmax(yyjpre)
Yuje = {0 c= argmaX(]/u,j,pre) v

yu,]’ = []211,]',1/ ]?u,j,Zr' e /]?u,j,C] (6)

The local loss function is constructed using the classification loss of the labeled data
and that of the unlabeled data with a pseudo-label, as shown in Equation (7):

Lossj, = Loss (xl,]', 91,r> + a(r)Loss (xy,j, 0; 1) 7)

where «a(r) is a balance parameter between the classification loss of labeled data and the
classification loss of unlabeled data with a pseudo-label, which can be dynamically adjusted
according to the performance of the federation model, allowing the utilization degree of
the unlabeled data to be changed during the training of the local semi-supervised model.



Entropy 2023, 25, 1470 6 of 19

In this study, the number of communication rounds was used as a measure of federation
model performance, and «(r) was determined according to the maximum utilization of
unlabeled data &,;,,y, the current number of federation communications 7, and the maximum
number of federation communications R, which are calculated as shown in Equation (8).

a(r) = ocmax% 8

In this step, the local model parameters are updated, as shown in Equation (9).

d 0
Oirr1 =0, —1 (WLOSS <xl,j, 9]7) + oc(r)WLoss (xu/]-, 9j,r)> 9)

The above steps enable the utilization of labeled and unlabeled data in a supervised
learning manner, and the differential utilization of unlabeled data can achieve the goal of
the full use of large collections of unlabeled data from each client for model optimization.

3.2. Federation Strategy Driven by Screening of Reliable Information

Unreliable information is hidden in the local model because it is difficult to achieve
high-quality model building for clients without labeled data. Therefore, at this stage,
a semi-supervised federation aggregation strategy based on an attention mechanism is
designed. The specific steps are as follows.

Step 1: Semi-supervised federation model aggregation.

After receiving the local model uploaded by all clients, the federation center aggregates
all local models using the initialized federation aggregation parameters, as shown in
Equation (10).

/
O = Z Pk]' © 9]' (10)
j=1
Above, 0p/ is the federation model, and Pk; is the aggregation weight of Client j.

Step 2: Establish model reliability metrics based on the degree of consistency.

The local model parameters are used as query values to query the attention distribution
between each local model and federation model in turn, and the attention score is scaled to
between 0 and 1. The contribution degree of the local model 6; is calculated as shown in
Equation (11):

s(6;,0
Att; (6. r1)

= (11)
Pl I dl e |

where s(-, -) is the attentional evaluation function, which is the dot product, as shown in
Equation (12):
s(q,k) =q"k (12)

where g is the query vector in the attention mechanism, k is the key vector in the attention
mechanism, and s(g, k) represents the attention score between g and k.

Step 3: The federation aggregation process is driven by the performance of the federation
model and the reliability of the local model.

The loss function of the dynamic semi-supervised federation aggregation process is
designed by integrating federation model performance and the local model reliability of
the clients, as shown in Equation (13):

] J I 1
Lossp; = Z Lossy, ; + Z Lossy, ;j + Z A + Lo pk (13)
=1 j=1 j=1 4]
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where Loss,, ; denotes the supervised loss for Client j, as shown in Equation (14); Lossy, ;
denotes the unsupervised loss for Client j, as shown in Equation (15); and | denotes the total
number of clients. L, py is the regularization term that restricts the sum of the federation
aggregation weights to 1, as shown in Equation (16):

M,
1 /]
Lossy, j = M Y yimlog(fonw,re(Xim, 0FL)) (14)
Jm=1
Mu,j
Lossx,j = 31— Y (Fae i (fon,rr (Xum, Oen i), O Fr) — Xum)* (15)
Ul m=1
J 2
Lypk =] 1~ ) Pk;|| (16)
i=1

where M, ; and M, ; denote the volume of labeled data and the volume of unlabeled

data for Client j, respectively; x; ,, is the m!" labeled sample for Client j; ; ,, is the label
corresponding to the m" sample for Client j; x,, , is the m'" unlabeled sample for Client j;
foNn,FL(+, -) denotes the DNN model obtained via aggregation; fo, rr.(,-) and fy, pr.(+, )
denote the encoding and decoding networks of the federation model, respectively; and the
corresponding network parameters are denoted by 6., r;, and 0, r1., respectively.

Step 4: Joint optimization of local model parameters and federation aggregation weights.

The joint optimization of local model parameters and federation aggregation weights
based on the loss function of the federation center can further improve the fault diagno-
sis performance of the federation model by improving the reliability of the local model.
The gradients of the local model parameters and the federation aggregation weights are
calculated as shown in Equations (17) and (18), respectively.

2 2 2 1 9
VPR = 5k, L0 T 5px; 0% T 5Pk Art; T 9k, 2P 17)
2 5 2 1 2
V¥, 0ssy, j + 0SSy, ;i + %6; At + 3Pk, 2 Pk (18)

99 99

Pk;, 9]-( j=1,2,---,]) can be optimized according to the obtained gradient. Thus, the
federation model performance and local model reliability can be used to jointly drive the
federation aggregation process. The parameter-updating process is shown in Equations (19) and
(20):

ij,r+1 = ij,r - qVPk] (19)

041 =0, —1V0; (20)

where Pk;, and 6;, denote the aggregation weights and local model parameters of Client
j in round r, while Pk;, 1 and 6;, 1 denote the aggregation weights and local model
parameters of Client j after updating.

The joint optimization process can dynamically update the federation aggregation
weights and local model parameters, which improves the reliability of local models and thus
reduces the impact of unreliable local models on the performance of the federation model.

3.3. Fault Diagnosis Based on SSFL-ATT

This section highlights the detailed steps of the SSFL-ATT fault diagnosis method
proposed to solve the problem of reliable information screening for local models.

A flowchart of the dynamic semi-supervised federated learning algorithm based on
the attention mechanism is shown in Figure 2. Fault diagnosis is divided into offline
training and online diagnosis. In the offline training part, the green box is a dynamic
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local training mechanism based on model performance, and the blue box is the optimal
federation aggregation strategy driven by both model performance and consistency metrics.
In the fault diagnosis part, clients feed the preprocessed data into the federation model to
obtain fault features, and the fault features are fed into the classifier to obtain the diagnosis
results. The detailed steps are formally represented in Algorithm 1.

Start Online Diagnosis

"

Offline Training

| Federation center initialize model parameters |

r=0

Online Data

!

Dynamic local model
training based on federation
model performance

¥ l v

Federation center issue model parameters

Client 1 download Client j download Client J download
federation model oo fEderation model federation model
parameters parameters parameters
Yes Yes Extracting online

Client 1 uses local
unlabeled data for multi-
scale recursive pre-
training of feature
extraction network

Client j uses local
unlabeled data for multi-
scale recursive pre-
training of feature
extraction network

Client J uses local
unlabeled data for multi-
scale recursive pre-

training of feature

data features layer

by layer using
DNN

extraction network

Client J uses the federation
model to assign pseudo-
label to unlabeled data

Client 1 uses the federation
model to assign pseudo-
label to unlabeled data

Client j uses the federation
model to assign pseudo-
label to unlabeled data

Construct the loss function
of client and train model
Loss; . = Loss(x;,;,0; )

Construct the loss function
of client and train model
Lossy . = Loss(x; 1,0, )

+a(r)Loss(x,1,01,.)

Construct the loss function
of client and train model
Loss ;. = Loss(x; 7,6 )

+ a(r)Loss(xu’j , Hj’r)

+a(r)Loss(x, ;.07 )

Client 1 uploads well Client j uploads well Client J uploads well Fault diagnosis
trained local model trained local model trained local model using classifiers
parameters parameters parameters
- 7
r ] | Federation Center receives parameters |
| Dynamic | uploaded E)V clients
federation |
aggregation driven Federation center for |
| by both model paramete; aggregation:
| performance and Opr = z Pk 00;, |
r=r+1 | |consistency metrics J |
The federation center sends model parameters to |
_——— get the loss values of each client
| Construct the loss function for federation edlewion |
| aggregation weights optimization SR | Output fault
S ; parameter di i It
| Losspy = /-=1L035x,,/ + z]_=ll‘0ssij optimization | 1agnostic resuits
I g1 I
+), . ——+L
| ZFI Att; 2Pk |
| No |
| Loss gy <threshold |
| Yes |
| No |
| Save federation model l
- e e . = — — = = = — ]

End

Figure 2. Flowchart of the dynamic semi-supervised federated learning fault diagnosis method based
on an attention mechanism.
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Algorithm 1: Fault diagnosis based on SSFL-ATT

Require: local data X

Server executes: Initializing federation model 0y

Stepl: Model training for semi-supervised federated learning

Dynamic local training mechanism based on federation model performance

Clients dynamically adjust how to use local unlabeled data based on federation model
performance.

Lossj, = Loss (xl,j, 6]-,7) + a(r)Loss (xu,]-, 9]-,,)

011 =10, — qﬁLossm

Federation aggregation strategy driven by reliable information screening

Reliable information can be screened from local models based on attention mechanisms

s(0;,0rL
Attj = )
] (ARSI

The loss function can be designed by combining performance of federation model and reliability
of local model

I J J
Losspp = ). Lossy, j+ 'Zl Lossy, j + 121 ﬁtj + Lo pk
= =

=1

Joint optimization of local model parameters and federation aggregation weights.

Joint optimization of local model parameters and coalition aggregation weights can be achieved
based on loss function of federation center

Pkjry1 = Pkj, — U%Lossm, 0jyi1=0;, — ﬁﬁLOSSFL

J
OrL = Y Pk]' ®9j
j=1

Step2: Fault diagnosis for each client
Each client uses well-trained federation model 0r;, to achieve fault diagnosis

4. Experiment and Analysis
4.1. Experimental Analysis of the Bearing Fault Simulation Platform at Case Western Reserve University

Using the benchmark dataset of Case Western Reserve University (CWRU) for experi-
mental verification, this section validates the effectiveness of the proposed method through
specific experimental analysis.

4.1.1. Bearing Data Description

The Case Western Reserve University bearing dataset is widely used in fault diagnosis.
The experimental platform is shown in Figure 3 [36]. It mainly consists of a three-phase
asynchronous motor, a torque transducer or decoder, and a power test meter. A single-
point fault was introduced in the motor bearing using electro-discharge-machining (EDM)
techniques with fault sizes of 0.007 in, 0.014 in, and 0.021 in. Accelerometers were installed
at the drive and fan ends to collect vibration data for motor loads of 0 HP to 3 HP.

-h Dynamometer

Fan end bearing

Drive end bearing

Figure 3. The Case Western Reserve University bearing experiment bench [36].



Entropy 2023, 25, 1470

10 of 19

In this section of the experiment, the monitoring signal of the accelerometer at the drive
end was selected. The motor load was 0 HP, the speed was 1797 rpm, and the sampling
frequency was 48 KHz. The four operation states of the rolling bearing comprise the normal
operation state and the fault states of the inner ring, ball, and outer ring measured at a fault
inch of 0.021. The detailed composition of the dataset is shown in Table 1.

Table 1. Bearing data types.

Fault Type Failure Size (Inch) Label
Normal data 0 Normal
Inner ring failure 0.021 Inner
Outer ring failure 0.021 Outer
Ball failure 0.021 Ball

To verify the superiority of the proposed method, it was compared with various
existing models of semi-supervised federated learning. Table 2 describes the different
models established in this section during the experimental validation and the experimental
parameter settings.

Table 2. Semi-supervised federated learning model and parameter settings.

Model

Feature-Clustering

DNN

FedAvg [29]

Brief Description of the Model Model Parameters Number of Clients
Fault diagnosis is achieved via clustering after
extracting fault features; then, unsupervised learning is Clustering centers: 4 1
used to execute fault diagnosis.
Traditional deep learning fault diagnosis model. 1
The local model is trained using supervised learning.
The federated averaging algorithm is used to obtain a 3

federation model, which is downloaded by all clients
to achieve fault diagnosis.
The federation model assigns a pseudo-label to

FedSem [30] unlabeled data and then adds them to the 3
model-retraining process. Number of network layers: 5
The local model is used to assign a pseudo-label to Number of neurons in each layer:
Sem-Fed unlabeled data, and then the federated averaging 400/500/100/30/4 3
strategy is used to aggregate models. Learning rate: 0.005
The local model is jointly trained by determining
ANN-SSFL [33] unsupervised and supervised loss and then aggregated 3
via the federated averaging algorithm.
Dynamic semi-supervised federated learning fault
SSFL-ATT diagnosis method based on attention mechanism. 3
An experimental scenario of semi-supervised federated learning was designed by
changing the data of the clients. The dataset was obtained by intercepting the vibration
data through a sliding window with a window size of 400 and a step size of 30, and the
number of samples in the test set is 4 x 300. Table 3 shows the design of the experiment.
Table 3. Experimental design.
Quantity of Data for Client 1 Quantity of Data for Client 2 Quantity of Data for Client 3
Experiment
Labeled Unlabeled Labeled Unlabeled Labeled Unlabeled
Experiment 1 4 x 100 0 4 x 50 4 x 1000 0 4 % 5000
Experiment 2 4 x50 0 4 x20 4 x 1000 0 4 x 5000
Experiment 3 4 x20 0 4 x 10 4 x 1000 0 4 x 5000
Experiment 4 4 x 20 0 4 x 10 4 x 1000 0 4 x 3000
Experiment 5 4 x20 0 4 x10 4 x 1000 0 4 x 2000
Experiment 6 4x20 0 4 x10 4 x 1000 0 4 x 1500
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4.1.2. Bearing Experiment Results and Analysis

Experiments 1-3 are designed to verify the effectiveness and superiority of SSFL-ATT
when clients have different quantities of labeled data. The fault diagnosis results are shown
in Table 4.

Table 4. Bearing fault diagnosis results for different quantities of labeled data.

Experiment Client Feature Clustering DNN FedAvg FedSem Sem-Fed ANN-SSFL  SSFL-ATT
Client 1 — 71.50% 75.50% 70.67% 72.67% 76.83% 82.08%
Experiment 1 Client 2 37.17% 64.50% 74.08% 69.17% 73.41% 75.00% 81.50%
Client 3 44.25% — 61.75% 67.33% 68.17% 70.92% 79.50%
Mean — — 70.44% 69.06% 71.42% 74.25% 81.03%
Client 1 — 65.50% 71.92% 66.08% 68.83% 72.92% 77.58%
Experiment 2 Client 2 36.67% 57.33% 69.67% 65.75% 69.00% 71.08% 78.58%
Client 3 44.17% — 56.33% 62.50% 65.58% 67.50% 78.75%
Mean — — 65.97% 64.78% 67.80% 70.50% 78.30%
Client 1 — 56.92% 67.83% 63.41% 67.58% 68.25% 74.83%
Experiment 3 Client 2 35.41% 51.67% 66.33% 62.17% 66.08% 68.83% 7517%
Client 3 44.92% — 54.41% 60.08% 65.00% 66.92% 75.58%
Mean — — 62.86% 61.89% 66.22% 68.00% 75.19%

As can be seen in Columns 3 and 4 of Table 4, the use of only unsupervised and
supervised learning methods resulted in some clients failing to achieve fault diagnosis. As
shown in Columns 4 and 5, supervised learning was used to train local models. Then, the
federated averaging algorithm was used to aggregate the models. Finally, the federation
model was distributed to all the clients. Client 3 realized fault diagnosis without labeled
data, but the diagnostic accuracy was poor. This was because the data for Client 3 were not
involved in the model training to extract the corresponding fault information. As gleaned
when comparing Columns 5 and 6, FedSem used the federation model to assign pseudo-
labels to the unlabeled data of all the clients, in which the fault information hidden in the
unlabeled data of Client 3 was fully utilized. However, negative transfer occurred in the
federation model due to the unreliability of the pseudo-label. This led to the aggregation of
unreliable information during the federation process. When comparing Columns 6 and 7,
it is clear that Sem-Fed utilized the local model to assign a pseudo-label to unlabeled data,
and therefore, ensured that the pseudo-label was not affected by unreliable information
from other clients, enhancing the reliability of the pseudo-label and thus improving the
performance of the federated model. As observed upon comparing Columns 7 and 8§,
different from FedSem, ANN-SSFL constructed the loss function of the federation center
according to the accuracy of the feature representation for the unlabeled data, causing
the unlabeled data to contribute sufficiently to the federation center, thus guaranteeing
the comprehensiveness of the information utilization. However, unreliable information in
unlabeled data were also aggregated in the federation model. Upon comparing Columns
8 and 9, it is clear that SSFL-ATT obtained better fault diagnosis accuracy than ANN-
SSFL. SSFL-ATT filters out unreliable model information from the local model through
the attention mechanism. And the loss function of the federation center can be used to
guide the joint optimization of federation aggregation weights and local model parameters,
thus guaranteeing the reliability of the federation model through the precise utilization of
reliable information.

To further validate the effectiveness of the proposed method, the confusion matrices
of each fault diagnosis method shown in Experiment 2 are given in Figures 4-8.

Upon comparing the confusion matrices of Figures 638, it is clear that the diagnostic
accuracy of both the health data and outer-race fault data was significantly degraded. This
shows that unreliable information caused by local pseudo-label led to negative transfer
in the federation model. As gleaned when comparing Figures 4-9 with Figure 10, the
diagnostic accuracy was close to 100% for both the health data and outer-race fault data,
and the similar features of the inner-race fault data and ball fault data are easier to recognize.
This finding shows that the proposed method can prevent unreliable model information
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from interfering with the federation model’s performance and improve the performance of
the federation model through an effective federation aggregation strategy.
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Figure 4. Confusion matrix of feature clustering for fault diagnosis result.
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Figure 5. Confusion matrix of DNN for fault diagnosis result.
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Figure 6. Confusion matrix of FedAvg for fault diagnosis result.
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Figure 7. Confusion matrix of FedSem for fault diagnosis result.
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Figure 8. Confusion matrix of Sem-Fed for fault diagnosis result.
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Figure 9. Confusion matrix of ANN-SSFL for the fault diagnosis result.
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Figure 10. Confusion matrix of SSFL-ATT for the fault diagnosis result.

This section analyzes the evolution of the aggregation weights, Pk, and attention scores,
Att, in Experiment 2. As shown in Figure 11, we plotted the attention scores of the clients
at different stages on a graph to see how the attention scores changed. In the beginning,
Client 1 and Client 2 had high attention scores, while Client 3 had a low attention score.
This is because the performance of the federation model in the early stages was not high
enough to assign a high-quality pseudo-label to unlabeled data. This resulted in a more
erroneous pseudo-label for Client 3, which had a poorer-quality local model, and hence, a
low attention score. As the federation proceeded, the attention scores of all the clients rose,
and the attention score of Client 3 rose rapidly. This is because SSFL-ATT screened out
unreliable information through an attention mechanism to ensure the performance of the
federation model, which, in turn, ensured the quality of the pseudo-label for unlabeled data.
Therefore, the quality of the local model was ensured, and, eventually, higher attention
scores were obtained. In the late stage, the attention scores of the clients were similar
because they all had high-quality pseudo-labels assigned by the federation model, leading
to an improvement in the performance of the local model. It is worth noting that Client 3
had a higher attention score than the other clients. This is because Client 3 had a massive
number of samples to which the federation model gave a high-quality pseudo-label, and
Client 3, therefore, attained a high-quality local model, which, in turn, gave the model a
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higher attention score. Since Pk is a matrix, we determined the mean value of Pk and then
plotted its evolutionary trend; as shown in Figure 12, the evolutionary trend of Pk is like
that of Att, which further shows that the method proposed in this paper can filter reliable
information and improve the performance of the federation model.

Attention score
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Figure 11. Evolution of attention scores (Att).
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Figure 12. Evolution of aggregation weights (Pk).

Experiments 4-6 were designed to verify the improvement induced by SSFL-ATT on
the performance of the fault diagnosis model when clients have different quantities of
unlabeled data. The experimental results are shown in Table 5.

Table 5. Bearing fault diagnosis results for different quantities of unlabeled client data.

Experiment Client Feature Clustering DNN FedAvg FedSem Sem-Fed ANN-SSFL  SSFL-ATT
Client 1 — 56.58% 63.41% 60.58% 64.17% 65.58% 73.58%
Experiment 4 Client 2 37.50% 52.08% 63.33% 59.92% 63.41% 65.41% 74.83%
Client 3 44.50% — 54.83% 58.83% 62.33% 63.75% 73.50%
Mean — — 60.52% 59.78% 63.30% 64.91% 73.97%
Client 1 — 56.25% 62.50% 58.50% 63.50% 64.75% 71.83%
Experiment 5 Client 2 36.25% 52.50% 62.83% 59.58% 62.33% 64.08% 71.33%
Client 3 40.50% — 54.41% 58.41% 61.33% 62.25% 70.16%
Mean — — 59.91% 58.83% 62.39% 63.69% 71.11%
Client 1 — 57.17% 61.92% 59.16% 61.33% 64.58% 72.25%
Experiment 6 Client 2 37.17% 51.17% 62.25% 58.33% 61.41% 63.00% 68.58%
Client 3 38.83% — 54.75% 57.33% 60.58% 61.00% 70.83%
Mean — — 59.64% 58.27% 61.11% 62.86% 70.55%

Compare Columns 3-8 and 9 of Experiment 3 and Experiments 4-6. This comparison
reveals that when the quantity of the labeled data is fixed, the fault diagnosis accuracy of
all the methods decreases as the quantity of unlabeled data decreases. However, SSFL-ATT
still achieved high classification accuracy, which indicates that SSFL-ATT was better able to
extract reliable information from unreliable local models for clients without labeled data,
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thus achieving the aim of reducing the perturbation caused by unreliable pseudo-label
information sent to the local model.

4.2. Experimental Analysis of Motor Fault Simulation Platform at Shanghai Maritime University

Using the Shanghai Maritime University motor dataset for experimental validation, this
section verifies the effectiveness of the proposed method through specific experimental analysis.

4.2.1. Motor Dataset Description

The Shanghai Maritime University motor fault simulation experiment bench is shown in
Figure 13. This bench consists of a drive motor, a magnetic powder brake set, a tachometer, a
torque sensor, several single-axis acceleration sensors, several current clamps, and an eight-
channel portable data acquisition system. Ten different datapoints of motor operation states
were used in this section. The data were collected using a drive-end vibration sensor, a fan-end
vibration sensor, three current clamps, a torque sensor, and a speed sensor at a sampling
frequency of 12,800 Hz. The detailed composition of the dataset is provided in Table 6.

Figure 13. Shanghai Maritime University motor fault simulation experiment bench.

Table 6. Motor dataset composition.

Fault Type Fault Simulation Method Fault Level Label
Normal 0 0
Bearing inner-ring fault Fault grooves are machined througztzl'ﬁeis nlrgmer raceway of the bearing via laser 05 mm 1
Bearing outer-ring fault Fault grooves are machined througzt’(r.:kl‘;(ie If;ter raceway of the bearing via laser 05 mm 2
Shaft bending fault Pressure is applied to the rotor using a press to obtain different degrees of bending. 0.3 mm 3
Broken rotor bar fault The milling process breaks part of the copper bar in the rotor. Break two bars 4
Rotor imbalance fault The local mass of the rotor is removed. 4g 5
Misalignment fault The bearing mounting position is w1c;e;15ei(tjli,o a:lnd bolts are used to adjust the bearing 0.25 mm 6
An external control box is used to adjust the resistance value to produce different o
Voltage unbalance - 50%
levels of voltage imbalance.

Out-of-phase fault External control box: the phase loss button is turned on and off. Out of V-phase 8
Winding short-circuit fault A short-circuit terminal is preset in the control box; the resistance value is adjusted 10% 9

to introduce different degrees of a winding short-circuit fault.
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During the experimental validation, DNN was used as the base network model, with
the number of neurons in each layer set to 7/200/90/30/10 and a learning rate of 0.005
applied, and model optimization was performed using the Adam optimizer. The number
of samples in the test set was 10 x 1000. The detailed design of the experiment is in Table 7.

Table 7. Design of the experiment.

E . Quantity of Data for Client 1 Quantity of Data for Client 2 Quantity of Data for Client 3
xperiment

P Labeled Unlabeled Labeled Unlabeled Labeled Unlabeled
Experiment 1 10 x 100 0 10 x 50 10 x 5000 0 10 x 10,000
Experiment 2 10 x 50 0 10 x 30 10 x 5000 0 10 x 10,000
Experiment 3 10 x 20 0 10 x 10 10 x 5000 0 10 x 10,000
Experiment 4 10 x 20 0 10 x 10 10 x 1000 0 10 x 3000
Experiment 5 10 x 20 0 10 x 10 10 x 100 0 10 x 300

4.2.2. Motor Experimental Results and Analysis

In order to verify the effectiveness of SSFL-ATT with multi-channel signals, the results
of Experiments 1-3 are shown in Table 8.

Table 8. Motor fault diagnosis results with different quantities of label data for clients.

Experiment Client Feature Clustering DNN FedAvg FedSem Sem-Fed ANN-SSFL SSFL-ATT
Client 1 — 70.45% 74.05% 71.97% 73.58% 75.32% 87.30%
Experiment 1 Client 2 41.50% 66.26% 74.65% 70.36% 73.66% 75.26% 87.77%
P Client 3 48.63% — 64.45% 68.06% 72.57% 74.23% 87.33%
Mean — — 71.05% 70.13% 73.27% 74.94% 87.47%
Client 1 — 65.35% 71.32% 67.93% 70.96% 74.03% 83.77%
Experiment 2 Client 2 42.12% 61.47% 70.65% 67.04% 69.06% 73.73% 84.22%
P Client 3 47.55% — 60.37% 64.78% 68.00% 73.25% 83.55%
Mean — — 67.45% 66.58% 69.34% 73.67% 83.85%
Client 1 — 59.32% 65.35% 62.05% 64.70% 66.05% 72.91%
Experiment 3 Client 2 41.12% 57.15% 64.35% 60.98% 63.23% 65.67% 72.49%
P Client 3 46.63% — 55.35% 58.45% 62.98% 64.03% 71.34%
Mean — — 61.68% 60.49% 63.64% 65.25% 72.25%

As can be seen in Table 8, the SSFL-ATT method was still superior to the other methods
in the multi-channel signal experiments. Although the multi-channel signals contained
richer information than the single-channel signals, the amount of unreliable information in
the multi-channel signals also increased exponentially. Therefore, a reliable-information-
screening mechanism was needed to filter out the unreliable information contained in the
multichannel data, thus ensuring the adequate performance of the federal model. SSFL-ATT
uses an attention mechanism to filter out unreliable information hidden in local models
and enhance clients’ classification ability without labeled data. In the case of multi-channel
data, Experiment 4 and Experiment 5 were designed to verify the fault diagnosis effect of
the proposed method when the clients have different quantities of unlabeled data. The
experimental results are shown in Table 9.

Table 9. Motor fault diagnosis results with different quantities of label data for clients.

Experiment Client Feature Clustering DNN FedAvg FedSem Sem-Fed ANN-SSFL  SSFL-ATT
Client 1 — 58.82% 64.35% 61.21% 63.31% 64.80% 71.79%
Experiment 4 Client 2 32.50% 56.84% 63.35% 60.54% 62.34% 63.69% 70.60%
P Client 3 37.45% — 54.82% 58.45% 62.77% 62.27% 69.56%
Mean — — 60.84% 60.07% 62.81% 63.59% 70.65%
Client 1 — 59.32% 63.35% 60.58% 61.35% 62.62% 69.70%
Experiment 5 Client 2 29.35% 57.15% 62.35% 57.56% 60.20% 61.44% 69.52%
p Client 3 38.63% — 54.82% 57.31% 58.64% 60.64% 68.06%
Mean — — 60.17% 58.48% 60.06% 61.57% 69.09%
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SSFL-ATT was still superior to the other methods in the above two experimental
scenarios. From the experimental results in Table 9, it can be concluded that SSFL-ATT is
still superior to the other methods, which further indicates that SSFL-ATT can still achieve
reliable information screening and be used to build a well-performing federated model
under multi-channel data. The experimental results from the Case Western Reserve Uni-
versity’s benchmark dataset and the motor fault dataset of Shanghai Maritime University
show that SSFL-ATT was applicable and superior in relation to both the single-channel and
multi-channel signals for fault diagnosis.

To illustrate the superiority of SSFL-ATT more intuitively in different experimental
scenarios with two datasets, Figure 10 shows the histograms of all the experimental results.
From Figure 14, it can be gleaned that SSFL-ATT was substantially improved in different
experimental scenarios with both single-channel and multi-channel data. This result
indicates that SSFL-ATT is more applicable and superior compared to other methods in
terms of semi-supervised federated learning fault diagnosis.
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Figure 14. Histogram of the experimental results of different semi-supervised federated learning
fault diagnosis methods.

5. Conclusions

In semi-supervised federated learning for fault diagnosis, when there are certain
clients without labeled data, existing semi-supervised federated learning methods can lead
to a negative transfer problem due to unreliable information hidden in these clients” local
models. This paper proposes a dynamic semi-supervised federated learning fault diagnosis
method based on an attention mechanism for designing an optimal federation aggregation
strategy. The federation aggregation strategy was dynamically optimized based on reliable
information screened in the local model.

First, to ensure the effectiveness of its utilization for local unlabeled data, clients can
dynamically adjust the way and extent to which unlabeled data are used according to the
performance of the federation model. The aim is to fully utilize unlabeled data for model
optimization while reducing the perturbation of the local training process with low-quality
pseudo-labels. Then, in the process of federation aggregation, the occurrence of negative
transfer in federated learning due to unreliable model information can be avoided by
establishing reliability evaluation metrics based on the attention mechanism. At the same
time, the feedback information from clients on the performance of the federation model can
be combined to drive the federation aggregation process and achieve the joint optimization
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of aggregation weights and local model parameters. The experimental results show that
SSFL-ATT can utilize an attention mechanism to filter out unreliable information to avoid
negative transfer caused by unreliable information, and it can also effectively improve the
classification ability of unlabeled clients. Compared to existing semi-supervised federal
learning methods (a comparison shown in in the experiments of both single-channel and
multi-channel signals), these results indicate that SSFL-ATT is superior and more applicable.
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