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Abstract: Variational inference provides a way to approximate probability densities through opti-
mization. It does so by optimizing an upper or a lower bound of the likelihood of the observed data
(the evidence). The classic variational inference approach suggests maximizing the Evidence Lower
Bound (ELBO). Recent studies proposed to optimize the variational Rényi bound (VR) and the χ

upper bound. However, these estimates, which are based on the Monte Carlo (MC) approximation,
either underestimate the bound or exhibit a high variance. In this work, we introduce a new upper
bound, termed the Variational Rényi Log Upper bound (VRLU), which is based on the existing VR
bound. In contrast to the existing VR bound, the MC approximation of the VRLU bound maintains
the upper bound property. Furthermore, we devise a (sandwiched) upper–lower bound variational
inference method, termed the Variational Rényi Sandwich (VRS), to jointly optimize the upper and
lower bounds. We present a set of experiments, designed to evaluate the new VRLU bound and
to compare the VRS method with the classic Variational Autoencoder (VAE) and the VR methods.
Next, we apply the VRS approximation to the Multiple-Source Adaptation problem (MSA). MSA is
a real-world scenario where data are collected from multiple sources that differ from one another
by their probability distribution over the input space. The main aim is to combine fairly accurate
predictive models from these sources and create an accurate model for new, mixed target domains.
However, many domain adaptation methods assume prior knowledge of the data distribution in the
source domains. In this work, we apply the suggested VRS density estimate to the Multiple-Source
Adaptation problem (MSA) and show, both theoretically and empirically, that it provides tighter error
bounds and improved performance, compared to leading MSA methods.

Keywords: multiple-source adaptation; variational inference; Rényi divergence

1. Introduction

In numerous practical situations, we encounter probability distributions that are chal-
lenging to calculate. This occurs especially when the distribution includes hidden variables.
Therefore, it becomes necessary to employ approaches that can estimate or approximate
such distributions. Variational inference (VI) is a technique used to accomplish this task.
VI is a compelling approach for approximating posterior distributions in latent variable
models [1]. It can handle intractable and possibly high-dimensional posteriors, and it
makes Bayesian inference computationally efficient and scalable to large datasets. To this
end, VI defines a simple distribution family, called the variational family, and then finds
the optimal member of the variational family that is closest to the true posterior distribu-
tion. This transforms the posterior inference into an optimization problem concerning the
variational distribution.

One of the most successful applications of VI in the deep neural network realm is
the Variational Autoencoder (VAE) [2], which is a deep generative model that implements

Entropy 2023, 25, 1468. https://doi.org/10.3390/e25101468 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25101468
https://doi.org/10.3390/e25101468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9346-8774
https://doi.org/10.3390/e25101468
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25101468?type=check_update&version=2


Entropy 2023, 25, 1468 2 of 29

a probabilistic model and variational Bayesian inference. Many techniques have been
suggested to improve the accuracy and efficiency of variational methods (cf. [3–7]). Recent
trends in variational inference have focused on the following aspects:

• Scalability: includes stochastic approximations.
• Generalization: extends the applicability of VI to a large class of otherwise intractable

models, such as non-conjugate models.
• Accuracy: includes variational models beyond the mean field approximation.
• Amortization: implements the inference over local latent variables with inference networks.
• Robustness: generating a reliable representation of particular data types in the encoded

space when using corrupted training data and detecting anomalies.

There are other methods for improving approximation such as Monte Carlo methods
for VI and black-box methods [8].

In this work, we focus on the accuracy of the VAE models. An essential aspect of the VI
methodology revolves around selecting an appropriate divergence method. This divergence
measure allows us to approximate the true posterior distribution with a simpler variational
distribution. Consequently, the selection of the divergence measure can have a notable
impact on the accuracy of the approximation. Furthermore, using the selected divergence
measure, one can devise lower and upper bounds, and estimate the true posterior.

Accordingly, we propose a new upper bound for the evidence, termed the Variational
Rényi Log Upper bound (VRLU), based on the Variational Rényi (VR) bound suggested
by Li and Turner [3]. Further, we devise a (sandwiched) upper–lower bound variational
inference method, termed VRS, to jointly optimize the Rényi upper and lower bounds.
The VRS loss function combines the VR lower bound and our new upper bound, thus
providing a tighter estimate for the log evidence.

Next, we will demonstrate the practical effectiveness of VRS by applying it to the
domain adaptation problem. Through this application, we aim to showcase the tangible
benefits and practical relevance of our approach.

Domain adaptation is a scenario that arises when we aim to learn from a source data
distribution; a well-performing model on a different (but related) target data distribution.
A real-world example of domain adaptation is the common spam filtering problem. This
problem consists of adapting a model from one user (the source distribution) to a new user
who receives significantly different emails (the target distribution).

In the context of domain adaptation, the terms “source” and “target” domains are used
to refer to the training and test sets, respectively. These sets can have distinct feature spaces,
which can occur when the statistical properties of a domain change over time or when new
samples are collected from various sources, resulting in domain shifts. Multiple-Source
Adaptation (MSA) addresses scenarios where there are multiple source domains and one
target domain. The central question is whether the learner can effectively combine relatively
accurate predictors from each source domain to create an accurate predictor for any new
target domain that may consist of a mixture of these sources.

In contrast to the majority of machine learning research, where models are trained
and tested on data drawn from the same distribution, domain adaptation involves using
data from different distributions for training and testing. When the train and test sets share
the same distribution, the uniform convergence theory ensures that a model’s empirical
training error closely approximates its true error. This assumption is not guaranteed in the
MSA problem.

In this work, we have focused on two main ideas:

• Improving the estimation of the domain distribution using VAE.
• Using the improved estimated distributions in the algorithm presented in [9] to solve

the MSA problem.

The rest of the paper is organized as follows: Section 2 provides a review of variational
inference for probabilistic modeling, and discusses different divergence methods such
as KL Divergence, Rényi Divergence, and χ Divergence, for bounding the log evidence.



Entropy 2023, 25, 1468 3 of 29

In Section 3, we present our novel approach, called Variational Rényi Log Upper bound
(VRLU), which offers an improved bound for the log evidence. Additionally, we introduce
an optimized technique, referred to as the Variational Rényi Sandwich (VRS), that leverages
both upper and lower bounds. Section 4 offers a comprehensive overview of the domain
adaptation problem and illustrates the application of the approximated distributions in
calculating its loss function. Finally, in Section 5, we present a series of experiments
conducted to evaluate the effectiveness of our proposed methods, VRLU and VRS, in the
context of both log evidence estimation and domain adaptation.

2. Divergence Methods in Variational Inference for Probabilistic Modeling

In probabilistic modeling, we aim to devise a probabilistic model, pθ , that best explains
the data. This is commonly done by maximizing the log-likelihood of the data (also
known as log evidence ), with respect to the model’s parameter θ, i.e., Maximum Likelihood
Estimation (MLE). For a latent model, where we assume that the observed data, x, depend
on a latent variable z, the MLE takes the following form:

max
θ

log pθ(x) = max
θ

log
(∫

pθ(x|z)p(z)dz
)

(1)

For many latent models, the log evidence integral is unavailable in closed form or it is too
complex to compute. A leading approach to handle such intractable cases is variational
inference (VI). One of the most successful applications of VI in the deep neural network
realm is the Variational Autoencoder (VAE).

2.1. Variational Autoencoder and the Kulback–Leibler Divergence

A Variational Autoencoder is a deep generative model that implements a probabilistic
model and variational Bayesian inference. Introduced by Kingma and Welling [2], a VAE
model is an autoencoder, designed to stochastically encode the input data into a constrained
multivariate latent space (encoding), and then to reconstruct it as accurately as possible
(decoding). To turn the intractable posterior inference into a solvable problem, we use
a parametric inference model qφ(z|x) which is also called an encoder. We optimize the
variational parameters φ such that qφ(z|x) ∼ pθ(z|x). The VAE loss function is composed
of a “reconstruction term” (to ensure the decoded data are close to the original data) and a
“regularisation term”. The goal of the regularisation term is to ensure that the distributions
returned by the encoder are close to a standard normal distribution. That is expressed as the
Kulback–Leibler divergence between the returned distribution and a standard Gaussian.

Definition 1. Kulback–Leibler (KL) divergence [10,11]. For discrete probability distributions p
and q, defined on the same probability space, the KL divergence from q to p is defined to be:

DKL(p||q) = ∑
x

p(x) log
(

p(x)
q(x)

)
(2)

Since the true posterior pθ(z|x) is intractable, we aim to approximate it with a Gaussian
distribution qφ(z|x), in the KL divergence sense. It follows that:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + ELBO (3)

Definition 2. Evidence Lower Bound (ELBO):

ELBO := Ez∼qφ(z|x)
[
log(pθ(z, x))− log

(
qφ(z|x)

)]
(4)

We note that the KL divergence is non-negative, thus maximizing the ELBO results
with the minimization of the KL divergence between qφ(z|x) and the true posterior pθ(z|x).
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ELBO optimization is a well-known method that has been studied in depth, and is
applicable in many models, especially in VAE [12]. Nevertheless, using the ELBO can give
rise to some drawbacks. First, the ELBO is not always very tight, and maximizing the bound
instead of the actual likelihood can lead to bias. Typically this leads to a simpler model qφ,
which approximates the real posterior. Second, the DKL(qφ(z|x)||pθ(z|x)) does not always
lead to the best results—it tends to favor approximate distributions qφ that underestimate
the entropy of the true posterior (“zero-forcing”). Namely, DKL(qφ(z|x)||pθ(z|x)) is infinite
when pθ(z|x) = 0 and qφ(z|x) > 0. Therefore, the optimal variational distribution q
will be 0 when pθ(z|x) = 0. This “zero-forcing” behavior leads to degenerate solutions
during optimization.

2.2. Rényi Divergence

One of the core parts of probabilistic models is the selection of the method for es-
timating the approximation of the distribution. In the previous section, we introduced
Kulback–Leibler (KL) divergence. In this section, we will present the Rényi divergence
(also known as α divergence), which measures the difference between two distributions p
and q, and is defined by:

Dα(p||q) = 1
α− 1

log

(
Ep

[(
p(x)
q(x)

)α−1
])

=
1

α− 1
log

(
∑

x∈X

p(x)α

q(x)α−1

) (5)

Rényi divergence was initially defined for α ∈ {α > 0 , α 6= 1}. The definition was extended
to α = 0, 1,+∞ by continuity. There are certain α values for which Rényi divergence has
a wider application than the others. Of particular interest are the values 0, 1

2 , 1, 2, and ∞,
presented in Table 1. We note that for α → 1: limα→1 Dα(p||q) = DKL(p||q), the KL
divergence is recovered.

Table 1. Special cases in the Rényi divergence family.

α Definition Notes

α→ 0 − log q({p > 0}) Not a divergence

α→ 1 Ex∼p(x)[log p(x)
q(x) ]

KL divergence

Rényi divergence
α = 1

2 −2 log
(

1−Hel2(p||q)
)

symmetric in

its arguments

Correlated to
α = 2 − log

(
1− χ2(p||q)

)
the χ2

divergence

α→ ∞ log max
(

p
q

)
Worst-case regret

2.2.1. Selected Properties of Rényi Divergence

Theorem 1. (Positivity): For any order α ∈ [0, ∞]: Dα(p||q) ≥ 0 , and
Dα(p||q) = 0 ⇐⇒ p = q

Theorem 2. (Convexity): For any order α ∈ [0, 1] Rényi divergence is jointly convex in its
arguments. That is, for any two pairs of probability distributions (p0, q0) and (p1, q1), and any
0 < λ < 1:

Dα((1− λ)p0 + λp1||(1− λ)q0 + λq1) ≤ (1− λ)Dα(p0||q0) + λDα(p1||q1) (6)
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For any order α ∈ [0, ∞] Rényi divergence is convex in its second argument. That is, for any
probability distributions p, q0 and q1:

Dα(p||(1− λ)q0 + λq1) ≤ (1− λ)Dα(p||q0) + λDα(p||q1) (7)

Theorem 3. (Continuity in the Order): The Rényi divergence is continuous in α on A = {α ∈
[0, ∞]|0 ≤ α ≤ 1 or Dα(p||q) < ∞}.

The definition of Rényi divergence was extended to α < 0 as well. However, not
all properties are preserved, and some are inverted. For example, Rényi divergence for
negative orders is non-positive and concave in its first argument (cf. Figure 1). The extended
definition of Rényi divergence to all α ∈ R has some interesting properties:

Theorem 4. (Monotonicity) [3]: Rényi divergence, extended to negative α, is continuous and
non-decreasing on α ∈ {α : −∞ < Dα < +∞}.

Lemma 1. The Skew Symmetry property:

• For any α ∈ (−∞, ∞), α 6∈ {0, 1}

Dα(p||q) = α

1− α
D1−α(q||p)

D−∞(p||q) = −D∞(q||p)

• For any α ∈ (−∞, ∞), α 6∈ {0, 1}

Dα(p||q) ≤ α

1− α
D1−α(p||q)

Definition 3. We will denote by dα(p||q) the exponential:

dα(p||q) = eDα(p||q) =

(
∑

x∈X

p(x)α

q(x)α−1

) 1
α−1

(8)

Figure 1 illustrates dα and Dα. One can see that dα achieves high values very quickly.
Dα(p||q) and dα(p||q) are non-decreasing as functions of α, and:

dα(p||q) ≤ d∞(p||q) = sup
x∈X

[
p(x)
q(x)

]
(9)

Figure 1. Illustration of dα(p||q) vs. Dα(p||q) for fixed distributions p and q over different α values.
p ∼ N(0, 2), q ∼ N(3, 2).

Many other properties described in [3,13].
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2.2.2. Rényi Divergence Variational Inference

To estimate the evidence pθ(x), we employ a minimization approach using Rényi
divergence between the variational distribution qφ(z|x) and the true posterior distribution
pθ(z|x), where α is a selected positive value. Extending the posterior pθ(z|x) and using
Bayes’ theorem, we obtain:

Dα(qφ(z|x)||pθ(z|x)) =
1

α− 1
log

(
Ez∼qφ(z|x)

[(
qφ(z|x)
pθ(z|x)

)α−1
])

=
1

α− 1
log

(
Ez∼qφ(z|x)

[(
pθ(z, x)

qφ(z|x) · pθ(x)

)1−α
])

= log pθ(x) +
1

α− 1
log

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)1−α
]) (10)

It follows that:

log pθ(x) = Dα(qφ(z|x)||pθ(z|x)) + VRα (11)

Definition 4. Variational Rényi (VR) bound [3]:

VRα :=
1

1− α
log

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)1−α
])

(12)

The variational Rényi (VR) bound can be extended for α < 0 as well. Since Dα(p||q) ≥
0 for α ≥ 0 and Dα(p||q) ≤ 0 for α ≤ 0 (see Figure 1) , then, for α ≥ 0, VRα is a lower
bound for log pθ(x), and for α ≤ 0, VRα is an upper bound for log pθ(x).

2.3. χ Divergence

Similarly to the KL divergence and the Rényi divergence, one can use the χ2-divergence
(or in general the χn-divergence) and develop a bound of the log evidence [14].

Definition 5. χ2-divergence:

Dχ2(p||q) = Eq

[(
p(x)
q(x)

)2

− 1

]
(13)

Now, our objective is to approximate the evidence pθ(x) by using χ2-divergence
between the true posterior pθ(z|x) and qφ(z|x).

Dχ2(pθ(z|x)||qφ(z|x)) = Ez∼qφ(z|x)

[(
pθ(z|x)
qφ(z|x)

)2

− 1

]

= Ez∼qφ(z|x)

[(
pθ(z, x)

pθ(x)qφ(z|x)

)2
]
− 1

=
1

pθ(x)2Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)2
]
− 1

(14)

After rearranging the equation we will obtain:

Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)2
]
= pθ(x)2

[
1 + Dχ2(pθ(z|x)||qφ(z|x))

]
(15)

Taking logarithms on both sides:
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log

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)2
])

= 2 log pθ(x) + log
([

1 + Dχ2(pθ(z|x)||qφ(z|x))
])

log pθ(x) =
1
2

log

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)2
])
− 1

2
log
([

1 + Dχ2(pθ(z|x)||qφ(z|x))
]) (16)

By monotonicity of log and non-negativity of the χ2-divergence, this quantity is an upper
bound of the log evidence:

log pθ(x) ≤ 1
2

log

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)2
])

(17)

Definition 6. χ upper bound (CUBO):

CUBO2 :=
1
2

log

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)2
])

(18)

CUBOn :=
1
n

log
(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)n])
(19)

Using χn-divergence for general n, CUBOn provides a family of bounds. We note the
strong connection between the CUBOn and the Rényi bound VRα: when n = 1− α, the VR
bound is revealed.

Theorem 5. (Sandwich Theorem [14]) For CUBOn the following holds:

1. ∀n > 1 : ELBO ≤ log pθ(x) ≤ CUBOn.
2. ∀n > 1 : CUBOn is a non-decreasing function of the n order χ-divergence.
3. limn→0 CUBOn = ELBO.

Using Theorem 5, one can estimate log pθ(x) with both upper and lower bounds,
which may provide a better approximation for the log evidence.

The χ upper bound has many advantages: It is a black-box inference algorithm in that
it does not need model-specific derivations and it is easy to apply to a wide class of models.
In addition, it is useful when the KL divergence is not a good objective, and it is guaranteed
to converge [14].

2.4. Monte Carlo Approximation

So far, we have discussed KL divergence, Rényi divergence, and χ divergence, and have
demonstrated how each of these measurements can be used to construct a bound for the
log evidence. However, calculating these bounds is computationally intractable, due to
the stochastic nature of the latent space and the exponential number of random variables.
In real-world situations, where datasets are typically limited and contain a finite number
of data points, empirical estimations become necessary. A popular method for estimating
these bounds is the Monte Carlo (MC) approximation [15,16]. Typically, the MC method
involves random sampling from certain probability distributions.

The Monte Carlo (MC) approximation of the Kullback–Leibler (KL) divergence is
unbiased, guaranteeing the convergence of the optimization process for the Evidence
Lower Bound (ELBO). However, the MC approximation for the Rényi bound introduces
bias, leading to an underestimation of the true expectation. In the case of positive values of
α, this implies a relatively looser bound, but it should still be effective. On the other hand,



Entropy 2023, 25, 1468 8 of 29

for negative values of α, this becomes a significant issue as it underestimates an upper
bound. More precisely, the MC approximation for the Rényi bound is:

V̂Rα =
1

1− α
log

(
1
K

K

∑
i=1

(
pθ(zi, x)
qφ(zi|x)

)1−α
)

(20)

For this to be unbiased, the expectation should be equal to the true value,

Eqφ

[
V̂Rα

]
=

1
1− α

Eqφ

[
log

(
1
K

K

∑
i=1

(
pθ(zi, x)
qφ(zi|x)

)1−α
)]

(21)

By Jensen’s inequality:

≤ 1
1− α

log

(
Eqφ

[
1
K

K

∑
i=1

(
pθ(zi, x)
qφ(zi|x)

)1−α
])

= VRα

(22)

Thus, the approximation is actually an underestimate of the true bound. This characteristic
was also discussed in [3], where the authors suggested improving the approximation
quality by using more samples and using negative α values to improve the accuracy, at the
cost of losing the upper-bound guarantee.

Other papers have suggested different approaches to keep the upper bounding prop-
erty intact [8,14,17]. Of particular interest is the generic χ upper bound, CUBOn, which
also suffers from the same problem of biased estimation using MC approximation. In [14],
the authors suggested an approach to avoid the biased approximation, by exponentiation:

L = en·CUBOn (23)

Applying MC approximation to L provides an unbiased upper bound. However, this
change affects the variance of the gradients, which may damage the quality of the approx-
imation result. It may result in high variance estimates and requires a large number of
samples in order to serve as a reliable upper bound [18].

3. Improved VR Bound and Upper–Lower Bound Optimization
3.1. Variational Rényi Log Upper Bound (VRLU)

We suggest a different approach for estimating the upper bound while preserving the
upper bound property. Consider the following inequalities:

1− 1
x
≤ log x ≤ x− 1 (24)

Where equality holds on both sides if and only if x = 1.

Definition 7. Variational Rényi Log Upper bound (VRLU):

VRLUα :=
1

1− α

(
Ez∼qφ(z|x)

[(
pθ(z, x)
qφ(z|x)

)1−α
]
− 1

)
(25)

V̂RLUα :=
1

1− α

((
1
K

K

∑
i=1

(
pθ(zi, x)
qφ(zi|x)

)1−α
)
− 1

)
(26)

For negative α, V̂RLUα is an estimation of the Rényi upper bound, and an upper
bound of the log evidence:
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Eqφ

[
V̂RLUα

]
= Eqφ

[
1

1− α

((
1
K

K

∑
i=1

(
pθ(zi, x)
qφ(zi|x)

)1−α
)
− 1

)]

≥ 1
1− α

log

(
Eqφ

[
1
K

K

∑
i=1

(
pθ(zi, x)
qφ(zi|x)

)1−α
])

=
1

1− α
log

(
Eqφ

[(
pθ(zi, x)
qφ(zi|x)

)1−α
]) (27)

Note that the inequalities in (24) become tighter as the argument of the log is closer to 1.
In the Rényi bound approximation (20), this argument is 1/k ∑(pθ(z, x)/qφ(z|x))1−α. Thus,
the approximation becomes tighter as the variational distribution, qφ, is getting closer to
the true distribution pθ (the lower the divergence, the tighter the approximation), which is
exactly the goal of the optimization.

We evaluated the bias of MC approximations for both bounds, VRα and VRLUα,
over a range of negative α values. To this end, we fixed the distributions p and q to both be
Gaussian: p ∼ N(0, 1), q ∼ N(1.5, 1). The bounds VRα and VRLUα were estimated using
the MC approximation (cf. (26) and (20)) and we evaluated the quality of the approximation
for different values of MC samples, denoted by K.

Figure 2 shows the empirical results. We can see that the MC approximations for VRα

are biased and get better as the sample size K increases. Furthermore, the bias results in
an underestimation of VRα for α ≤ 0, which makes it unattractive to be used as an upper
bound at the negative α range. On the other hand, the MC approximation for VRLUα

preserves the upper bound property and has a relatively low variance. As a result, VRLUα

is a more suitable choice as an upper bound for negative α and may be used as an objective
for risk minimization.

Figure 2. VRα and VRLUα, vs. their Monte Carlo approximations with different number of samples
K, over a range of α values, using fixed distributions: p ∼ N(0, 1) and q ∼ N(1.5, 1).

Figure 3 presents the comparison between VRα(p||q) and VRLUα(p||q) over different
values of q. To this end, we fixed p ∼ N(1, 2) and set q ∼ N(µ, 2) while varying µ in the
range [−5, 10]. We can see that as closer q is to p, both VRα(p||q) and VRLUα(p||q) values
are decreasing, and for p = q, VRα(p||q) = VRLUα(p||q) = 0 for all α values. Furthermore,
as α is farther away from 0, the steeper the graph becomes.
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Figure 3. Comparison between VRα(p||q) and VRLUα(p||q) over different q distributions divergent
from fixed distribution p. p = N(1, 2) and q = N(µ, 2) where −5 ≤ µ ≤ 10.

In conclusion, we empirically evaluated the VRLUα upper bound and matched it
against the VRα upper bound, for varying values of negative α. The divergence curve of
the VRLUα upper bound is steeper than the VRα upper bound, and the variance is much
lower, suggesting a higher convergence as the variational distribution is getting closer to
the true posterior.

3.2. Upper–Lower Bound Optimization

Using the new upper bound, VRLUα, we devised VRSα+ ,α− ; a (sandwiched) upper–
lower bound variational inference algorithm for jointly minimizing the Rényi upper and
lower bounds. VRSα+ ,α− combined both the upper and lower Rényi bounds, where the
lower bound VRα is computed as in Equation (20) for a constant positive α, and the upper
bound VRLUα is computed as in Equation (26) for a constant negative α. The overall
VRSα+ ,α− loss is the average of both terms, i.e.,

VRSα+ ,α− :=
1
2
· (VRLUα− + VRα+) (28)

V̂RSα+ ,α− =
1
2
·
(

V̂RLUα− + V̂Rα+

)
(29)

Since VRα+ ≤ log pθ(x) ≤ VRα− ≤ VRLUα− , the VRSα+ ,α− loss provides a useful estimate
for the log-likelihood of the evidence.

3.3. Probability Approximation

Recall that our objective is to develop a probabilistic model, denoted as pθ , that effec-
tively captures and explains the underlying data. In variational inference (VI), we tackle an
optimization problem that seeks to find a simpler distribution that closely approximates
the original data distribution, also known as the evidence. In this section, we will inspect
the approximate distribution, denoted as p̂θ , that minimizes the divergence dα( p̂θ ||pθ). Our
aim is to find an approximation that accurately represents the true data distribution.

We will evaluate two methods of approximating pθ . One using VR bound:

p̂θ(x) =
eVRα(x)

∑x∈X eVRα(x)
(30)

and one using our VRS method:

p̂θ(x) =
eVRSα+ ,α− (x)

∑x∈X eVRSα+ ,α− (x)
(31)
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We notice that for both estimators, p̂θ is indeed a probability. Given that both VRα and
VRSα+ ,α− estimate the log evidence, we will use the exponent of these estimates to approx-
imate pθ .

Let us denote α+ > 0. Using Equation (11),

eVRα+ (x) = elog pθ(x)−Dα+ (qφ(z|x)||pθ(z|x))

=
elog pθ(x)

eDα+ (qφ(z|x)||pθ(z|x))

=
pθ(x)

dα+(qφ(z|x)||pθ(z|x))

(32)

Let us denote α− < 0.

eVRα− (x) = elog pθ(x)−Dα− (qφ(z|x)||pθ(z|x))

= elog pθ(x)e−Dα− (qφ(z|x)||pθ(z|x))

=
pθ(x)

dα−(qφ(z|x)||pθ(z|x))

(33)

Using both upper and lower bounds we will find that:

eVRSα+ ,α− (x) = e
1
2 (VRα+ (x)+VRα− (x))

=
(

eVRα+ (x)eVRα− (x)
) 1

2

=

√
pθ(x)2

dα+(qφ(z|x)||pθ(z|x))dα−(qφ(z|x)||pθ(z|x))

= pθ(x)

√
1

dα+(qφ(z|x)||pθ(z|x))dα−(qφ(z|x)||pθ(z|x))

(34)

We will define multiplication factors for both our approximations as follows:

VRSMF :=
1√

dα+(qφ(z|x)||pθ(z|x))dα−(qφ(z|x)||pθ(z|x))
(35)

VRMF :=
1

dα+(qφ(z|x)||pθ(z|x))
(36)

Note that eVRSα+ ,α− (x) = pθ(x) ·VRSMF and eVRα(x) = pθ(x) ·VRMF. Thus, our goal is to
achieve a multiplication factor as close to one as possible. We examine these values using
the fixed distribution p ∼ N(0, 2), and distribution q ∼ N(µ, 2), where −3 < µ < 3. When
µ = 0, p = q. We used different α+ and α− values. The results are presented in Figure 4.

We can see that for every α+, VRSMF is closer to one for all different α− values
compared to VRMF with the same α+ value. In addition, when α− and α+ are symmetric
around zero, the multiplication factor of VRSα+ ,α− is closest to one. This indicates that the
p̂θ(x) approximation calculated using VRSα+ ,α− is more accurate among the two methods.
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Figure 4. Comparison between VRα and VRSα+ ,α− multiplication factors over fixed distribution p
and different q distributions.

4. Multiple-Source Adaptation (MSA)

In statistical learning, there are numerous settings that require an accurate estimation
of the data distribution to find effective solutions. One such task is known as domain
adaptation. In the preceding section, we introduced VRS as an enhanced method to
obtain accurate approximations of the data distribution. In this section, we will apply
these estimated distributions to the domain adaptation objective, thus demonstrating the
effectiveness and practicality of the VRS method to yield accurate solutions.

Domain adaptation is a scenario where we aim to train a classifier on one dataset
(referred to as the source domain) for which labels or annotations are available and achieve
good performance on another dataset (referred to as the target domain) for which labels or
annotations are not available. A common example of a domain adaptation application is
spam filtering, where a model trained on one user’s emails (the source domain) is adapted
and used to filter spam for a different user who receives distinct emails (the target domain).

In this work, our focus is on the Multi-Source Domain Adaptation (MSA) problem,
where there are multiple source domains available in addition to only one target domain.
The target domain can be considered as either an exact mixture of the source domains, or it
might be well approximated by such a mixture. The goal is to leverage the information
provided by the source domains to improve the performance on the target domain, where
annotations or labels are not available.

In many real-world scenarios, the learner may not have access to all of the source data
at once, due to privacy or storage constraints. Therefore, the learner cannot simply combine
all of the source data together to train a predictor. A possible solution to this problem is the
Mixture of Experts (MOE) approach. MOE is an ensemble learning technique that involves
training multiple experts on different sub-tasks of a predictive modeling problem. Each
expert concentrates on a specific part of the modeling problem space. A gating network
then combines the outputs of the various experts. In the domain adaptation problem, this
concept can be applied by modeling the domain relationship with an MOE approach.

The MSA problem was theoretically analyzed by Mansour, Mohri, and Rostamizadeh
in [19]. In their paper, the authors presented the domain adaptation problem setup and
proved that for any target domain, there exists a hypothesis, referred to as the distribution
weighted combining rule, which is capable of achieving a low error rate with respect to the
target domain. However, it should be noted that the authors did not provide a method for
determining or learning the aforementioned hypothesis.
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In the paper by Hoffman, Mohri and Zhang [9], the authors extended the definition of
the weighted combination rule to solve probabilistic models as well, using cross-entropy
loss. Additionally, the authors introduced an iterative algorithm based on Difference of
Convex (DC) programming, that constructs the weighted combination rule. Nonetheless,
the algorithm proposed in the paper assumes either prior knowledge of the probabilities
associated with the data samples or relies on accurate estimates of these probabilities.
The authors evaluated the performance of their model by employing the Rényi divergence,
which quantifies the discrepancy between the true distribution and the approximated
distribution. As a result, the effectiveness of their model is contingent upon the accuracy of
the probability approximations as well.

In order to circumvent the need for good estimates of the data distribution,
Cortes et al. [20] proposed a discriminative technique using an estimate of the condi-
tional probabilities p(i|x) for each source domain i ∈ {1, ..., k} (that is, the probability
that an instance x belongs to source i). To this end, they had to modify the DC algorithm
proposed in [9], in order to adapt to their new distribution calculation.

In this study, we will build upon the algorithm introduced by Hoffman, Mohri,
and Zhang [9], and enhance it with a refined approximation of the source distribution via
variational inference.

4.1. MSA Problem Setup

We refer to a probability model where there is a distribution over the input space X.
Each data point x ∈ X has a corresponding label y ∈ Y, where Y denotes the space of
labels. Our objective function describes the correspondence between the data point and its
label f : X → Y. We will focus on the adaptation problem with k source domains and a
single target domain. For each domain i ∈ {1, ..., k}, we have a source distribution pi and
corresponding hypotheses hi(x, y)→ [0, 1]. More precisely, hi returns the probability that
f (x) = y.

Definition 8. Let L : R → R be a loss function penalizing errors with respect to f . The loss of
hypothesis h with respect to the objective function f and a distribution p is denoted by L(h, p, f )
and defined as:

L(h, p, f ) := Ep[L(h, f )] = ∑
x∈X

p(x)L(h(x, f (x))) (37)

For simplicity, we will denote L(h(x, f (x))) as L(h, f ) throughout this paper. We will
assume that the following properties hold for the loss function L:

• L is non-negative: L(x) ≥ 0 ∀x ∈ R
• L is convex.
• L is bounded: ∃M ≥ 0 s.t. ∀x ∈ R : L(x) ≤ M.
• L is continuous in both arguments.
• L is symmetric.

Proposition 1. For each domain i, the hypothesis hi is a relatively accurate predictor for domain i
with the distribution pi; i.e., there exists ε > 0 such that:

∀i ∈ {1, ..., k}, L(hi, pi, f ) ≤ ε (38)

Proposition 2. We will denote the simplex: ∆ = {λ : λi ≥ 0∧∑k
i=1 λi = 1}. The distribution of

the target domain pT is assumed to be a mixture of the k source distributions p1, ..., pk, that is:

pT(x) =
k

∑
i=1

λi pi(x) (for λ ∈ ∆) (39)
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4.2. Existence of a Good Hypothesis

The goal of solving the MSA problem is to establish a good predictor (a good predictor:
a predictor that provides a small error with respect to the target domain) for the target
domain, given the source domain’s predictors. A common assumption is that there exists
some relationship between the target domain and the distributions of the source domains
(See Proposition 2). It can be demonstrated that conventional convex combinations of source
predictors may yield suboptimal results in certain scenarios. In particular, studies have
indicated that even if the source predictors possess zero loss, no convex combination can
attain a loss lower than a specific constant for a uniform mixture of the source distributions.

Alternately, Mansour, Mohri, and Rostamizadeh [19] proposed a distribution-weighted
solution and defined the distribution-weighted combination hypothesis for a regression
model. Hoffman and Mohri [9] extended the distribution-weighted combination hypothesis
to a probabilistic model, as follows:

Definition 9. Distribution-weighted combination hypothesis.
For any λ ∈ ∆, η > 0 and (x, y) ∈ X×Y:

hη
w(x, y) =

k

∑
i=1

wi pi(x) + η
U(x)

k

∑k
j=1(wj pj(x)) + ηU(x)

hi(x, y) (40)

where U(x) is the uniform distribution over X.

In the probabilistic model case, we will use L as the binary cross entropy loss:

L(h, f ) = − log h(x, f (x)) (41)

which maintain all of the required properties stated in Section 4.1.

Theorem 6. For any target function f ∈ { f : ∀i ∈ {1, ..., k},L(hi, pi, f ) ≤ ε} and for any δ > 0,
there exist η > 0 and w ∈ ∆ such that L(hη

w, pλ, f ) ≤ ε + δ for any mixture parameter λ.

The proof of Theorem 6 is detailed in [19]. From this Theorem, it can be inferred that
for any fixed target function f , the distribution-weighted combination hypothesis is a good
hypothesis for the target domain.

4.3. A Good Hypothesis with Estimated Probabilities

On closer inspection of Definition 9, it is evident that constructing hη
w requires access to

the distributions of all domains, represented by pi(x) ∀i ∈ 1, ..., k. Yet, in practical settings,
the true distributions pi may not be directly available to the learner. Instead, the learner
relies on estimates p̂i derived from the available data. Thus, addressing the application of
domain adaptation becomes essential for real-world scenarios where the true distributions
remain unknown.

Our objective is to minimize the value of L(hi, p̂i, f ). To accomplish this, we will
develop an upper bound for this loss function (similar to previous research [9,21]). By doing
so, we can examine the impact of utilizing estimated distributions p̂i on the efficacy of our
model and gain insights into the application of domain adaptation in real-world scenarios.
First, let us recall Holder’s inequality:

Theorem 7. Holder’s inequality: For any s and t in the open interval (1, ∞) with 1
s +

1
t = 1,

and for {xj} and {yj} j ∈ {1, ..., k} be certain sets of real numbers, we have:

n

∑
j=1
|xjyj| ≤

(
n

∑
j=1
|xj|s

) 1
s
(

n

∑
j=1
|yj|t

) 1
t

(42)
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Corollary 1. Let p̂i be an estimation of the original domain distribution pi. The following inequality
holds for any α > 1:

L(hi, p̂i, f ) ≤ (dα( p̂i||pi)ε)
α−1

α M
1
α (43)

Proof of Corollary 1. For any hypothesis h and any distributions p, q, and for any α > 1,
the following holds (the proof is based on a similar corollary proven in [9]):

L(h, q, f ) = ∑
x∈X

q(x)L(h, f )

= ∑
x∈X

(
q(x)

p(x)
α−1

α

)
p(x)

α−1
α L(h, f )

≤
(

∑
x∈X

q(x)α

p(x)α−1

) 1
α
(

∑
x∈X

p(x)L(h, f )
α

α−1

) α−1
α

By Holder’s

inequality for

s = α, and

t =
α

α− 1

=

(∑
x∈X

q(x)α

p(x)α−1

) 1
α−1


α−1
α (

∑
x∈X

p(x)L(h, f )L(h, f )
1

α−1

) α−1
α

= (dα(q||p))
α−1

α

(
∑

x∈X
p(x)L(h, f )L(h, f )

1
α−1

) α−1
α

By Definition 3

≤ (dα(q||p))
α−1

α

(
∑

x∈X
p(x)L(h, f )M

1
α−1

) α−1
α

Since M ≥ |L(h, f )|

and
1

α− 1
> 0

= (dα(q||p)L(h, p, f ))
α−1

α M
1
α

For each i ∈ {1, ..., k}, by setting p := pi, q := p̂i and h := hi, we will find that:

L(hi, p̂i, f ) ≤ (dα( p̂i||pi)L(hi, pi, f ))
α−1

α M
1
α

≤ (dα( p̂i||pi)ε)
α−1

α M
1
α By Proposition 1

Corollary 1 provides us an upper bound of the loss using the estimated distributions p̂i.
When p̂i → pi , dα( p̂i||pi)→ 1 and we will remain with ε

α−1
α M

1
α . We will set M = 1, since

we use the loss function L(h, f ) = − log(h(x, f (x))) as the cross-entropy loss (log-loss).

Thus, when p̂i → pi, (dα( p̂i||pi)ε)
α−1

α M
1
α → ε

α−1
α .

By performing the aforementioned calculation with α < 1, it is possible to derive a
lower bound for L(hi, p̂i, f ). This lower bound serves as a confirmation that the utilization
of approximated probabilities does not lead to significant errors. For instance, if the lower
bound exhibits a considerably large value, it indicates that our approximation is inadequate.
Conversely, if the lower bound demonstrates a small value, it signifies the effectiveness of
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our approximation. Moreover, by employing both upper and lower bounds, we can obtain
a more precise estimation of the loss.

Theorem 8. Generalization of Holder’s inequality [22]: Let 0 < s < 1 and t ∈ R with 1
s +

1
t = 1,

and for {xj} and {yj} j ∈ {1, ..., n} be certain sets of real numbers, we have:

n

∑
j=1
|xjyj| ≥

(
n

∑
j=1
|xj|s

) 1
s
(

n

∑
j=1
|yj|t

) 1
t

(44)

Corollary 2. Let p̂i be an estimation of the original domain distribution pi. The following inequality
holds for any α < 1:

L(hi, p̂i, f ) ≥ (dα( p̂i||pi))
α−1

α ψ (45)

where ψ =
(

∑x∈X pi(x)L(hi, f )
α

α−1

) α−1
α

Proof of Corollary 2. First, we will prove for 0 < α < 1, and then for α < 0. Let us
set 0 < α < 1, s = α and t = α

α−1 . For any hypothesis h and any distributions p, q,
the following holds:

L(h, q, f ) = ∑
x∈X

q(x)L(h, f )

= ∑
x∈X

(
q(x)

p(x)
α−1

α

)
p(x)

α−1
α L(h, f )

≥
(

∑
x∈X

q(x)α

p(x)α−1

) 1
α
(

∑
x∈X

p(x)L(h, f )
α

α−1

) α−1
α

By the generalization of

Holder’s inequality for

s = α, t =
α

α− 1

=

(∑
x∈X

q(x)α

p(x)α−1

) 1
α−1


α−1
α (

∑
x∈X

p(x)L(h, f )
α

α−1

) α−1
α

= (dα(q||p))
α−1

α

(
∑

x∈X
p(x)L(h, f )

α
α−1

) α−1
α

By Definition 3

Next, let us set α < 0, t = α and s = α
α−1 (notice that α < 0→ 0 < s < 1).

For any hypothesis h and any distributions p, q, the following holds:

L(h, q, f ) = ∑
x∈X

q(x)L(h, f )

= ∑
x∈X

(
q(x)

p(x)
α−1

α

)
p(x)

α−1
α L(h, f )

= ∑
x∈X

p(x)
α−1

α L(h, f )

(
q(x)

p(x)
α−1

α

)

≥
(

∑
x∈X

p(x)L(h, f )
α

α−1

) α−1
α
(

∑
x∈X

q(x)α

p(x)α−1

) 1
α

By the generalization of

Holder’s inequality for

t = α, s =
α

α− 1
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=

(
∑

x∈X

q(x)α

p(x)α−1

) 1
α
(

∑
x∈X

p(x)L(h, f )
α

α−1

) α−1
α

=

(∑
x∈X

q(x)α

p(x)α−1

) 1
α−1


α−1
α (

∑
x∈X

p(x)L(h, f )
α

α−1

) α−1
α

= (dα(q||p))
α−1

α

(
∑

x∈X
p(x)L(h, f )

α
α−1

) α−1
α

By Definition 3

For each i ∈ {1, ..., k}, by setting p := pi, q := p̂i and h := hi, we will find that:

L(hi, p̂i, f ) ≥ (dα( p̂i||pi))
α−1

α

(
∑

x∈X
pi(x)L(hi, f )

α
α−1

) α−1
α

= (dα( p̂i||pi))
α−1

α ψ

We contend that the value of ψ =
(

∑x∈X pi(x)L(hi, f )
α

α−1

) α−1
α can be disregarded

when examining the loss bound. As previously mentioned, we assume that L(hi, f ) ≤ M,

where we have set M = 1. Consequently, we are left with (∑x∈X pi(x))
α−1

α . Since pi is a
distribution, the sum equals 1.

Let us set Lα( p̂, p) := (dα( p̂||p))
α−1

α . We would like to present an example of different
Lα( p̂, p) values calculated with a constant distribution p ∼ N(3, 10), and a distribution
p̂ ∼ N(µ, 10), where 0 < µ < 6. When µ = 3, p = p̂. The results are shown in Figure 5.

Figure 5. Comparison between Lα( p̂, p) with different α values over fixed distribution p ∼ N(3, 10),
and distribution p̂ ∼ N(µ, 10), where 0 < µ < 6.

As we can observe, as the estimated distribution p̂ approaches the true distribution p
(i.e., as µ approaches 3), the bounds on the loss function become increasingly similar. We
can also see that the value of the lower bounds is not significantly large, which means that
we can consider using the probability approximation to solve the MSA problem. It is also
worth noting that when α deviates significantly from 1, the bounds move away from the
actual value.
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Theorem 9. Let pT be an arbitrary target distribution. For any δ > 0, there exists η > 0 and
w ∈ ∆, such that the following inequality holds for any α > 1 and any mixture parameter λ:

L(hη
w, pT , f ) ≤ ((ε + δ)dα(pT ||pλ))

α−1
α M

1
α (46)

Proof of Theorem 9. Let δ > 0. In the proof for Corollary 1, we showed that for any
hypothesis h and any distributions p, q, and for any α > 1, the following holds:

L(h, q, f ) ≤ (dα(q||p)L(h, p, f ))
α−1

α M
1
α (47)

Hence, for q = pT , p = pλ and h = hη
w we will find that:

L(hη
w, pT , f ) ≤

(
dα(pT ||pλ)L(h

η
w, pλ, f )

) α−1
α M

1
α (48)

By Theorem 6, given δ > 0, there exist η > 0 and w ∈ ∆ such that L(hη
w, pλ, f ) ≤ ε + δ for

any mixture parameter λ. Therefore:

L(hη
w, pT , f ) ≤ (dα(pT ||pλ)(ε + δ))

α−1
α M

1
α (49)

Corollary 3. Let pT be an arbitrary target distribution. For any δ > 0, there exists η > 0 and
w ∈ ∆, such that the following inequality holds for any α > 1 and any mixture parameter λ ∈ ∆:

L(ĥη
w, pT , f ) ≤ ((ε∗ + δ)dα(pT || p̂λ))

α−1
α M

1
α (50)

where p̂λ = ∑k
i=1 λi p̂i(x) and ĥη

w is our good hypothesis from Definition 9 but calculated with the
estimated probabilities p̂i.

Proof of Corollary 3. By Corollary 1, ∀i ∈ {1, ..., k} and for any α > 1: L(hi, p̂i, f ) ≤
(dα( p̂i||pi)ε)

α−1
α M

1
α . Let us set ε∗ such that: ε∗ = maxk

i=1{(dα( p̂i||pi)ε)
α−1

α M
1
α }. Overall,

we obtained the following:

• For every i ∈ {1, ..., k}: L(hi, p̂i, f ) ≤ ε∗.

• ĥη
w(x, y) = ∑k

i=1
wi p̂i(x)+η

U(x)
k

∑k
j=1(wj p̂j(x))+ηU(x)

hi(x, y).

We can repeat the proof of Theorem 9 with ε∗ instead of ε, p̂i instead of pi and ĥη
w instead

of hη
w.

In summary, we demonstrated that it is possible to use approximate distributions
to calculate a good distribution-weighted combining rule. We have established that the
error introduced by using estimated distributions is bounded. Thus, we can address the
Multi-Source Adaptation (MSA) problem in real-world applications.

4.4. MSA Algorithm

Alongside the unknown probabilities, another crucial aspect is determining an ap-
propriate vector of weights, denoted as w, to fully establish the distribution-weighted
combining rule. The paper by Hoffman, Mohri, and Zhang [9] presents a new algorithm
for determining the distribution-weighted combination solution for cross-entropy loss and
other losses, based on Difference of Convex (DC) programming.

Lemma 2. For any target function f ∈ F and any η, η′ ≥ 0, there exists w ∈ ∆ with wi 6= 0 for
all i ∈ {1, ..., k}, such that the following holds:

∀i ∈ {1, ..., k} L(hη
w, pi, f ) ≤ γ + η′ (51)
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where:γ = ∑k
j=1 wjL(h

η
w, pj, f )

The proof of Lemma 2 is detailed in [19].

Corollary 4. For any target function f ∈ F and any η′ ≥ 0, there exists w ∈ ∆ with wi 6= 0 for
all i ∈ {1, ..., k}, such that the following holds:

L(hη
w, pi, f ) ≤ L(hη

w, pw, f ) + η′ ∀i ∈ {1, ..., k} (52)

Proof of Corollary 4. By Lemma 2, we obtain:

∀i ∈ {1, ..., k} L(hη
w, pi, f ) ≤ γ + η′

=
k

∑
j=1

wjL(h
η
w, pj, f ) + η′

= L(hη
w, pw, f ) + η′

Corollary 4 provides a single upper bound for the loss with respect to every pi. Thus,
our problem consists of finding a parameter w verifying this property. This, in turn, can be
formulated as the following optimization problem:

min
w∈∆,ρ∈R

ρ s.t. L(hη
w, pi, f )−L(hη

w, pw, f ) ≤ ρ ∀i ∈ {1, ..., k} (53)

Definition 10. DC Function [23]: Let C be a convex subset of Rn. A real-valued function
f : C → R is called DC on C, if there exist two convex functions g, h : C → R such that f can be
expressed in the form:

f (x) = g(x)− h(x) (54)

DC programming problems are programming problems dealing with DC functions.
An important class of DC problems is the following:

w∗ = inf{g(x)− h(x) : x ∈ X} (55)

where gand h are two convex functions in Rn, and X is a closed convex subset of Rn.

Proposition 3. Assume that the problem w∗ is solvable. Then, a point x∗ ∈ X is an optimal
solution to w∗ if and only if there is t∗ ∈ R, such that:

0 = inf{−h(x) + t : x ∈ X , t ∈ R , g(x)− t ≤ g(x∗)− t∗} (56)

Horst and Thoai [23] developed an algorithm for solving DC programming problems
such as w∗ based on the above optimality condition. The assumptions in Proposition 3
apply to the MSA problem, since we know there is an optimal solution. The key lies in
identifying two convex functions whose difference coincides with the solution of the MSA
problem. Let us define the following functions:

Jw(x, y) =
k

∑
i=1

wi pi(x)hi(x, y) +
η

k
U(x)hi(x, y)

Kw(x) = pw(x) + ηU(x)

(57)

Note that: hη
w(x, y) = Jw(x,y)

Kw(x) .
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Let us define the following convex functions:

ui(w, f ) = −∑
x
[pi(x) + ηU(x)] log(Jw(x, f (x))) (58)

vi(w, f ) = ∑
x

Kw(x) log(
Kw(x)

Jw(x, f (x))
)− [pi(x) + ηU(x)] log(Kw(x)) (59)

ui(w, f ) is convex since − log(Jw) is convex as a composition of the convex function
− log with an affine function Jw. Similarly, − log(Kw) is convex, which shows that the
second term in the expression of vi(w, f ) is a convex function. The first term can be written
in terms of the unnormalized relative entropy (the unnormalized relative entropy of P
and Q is defined by: B(p||q) = ∑x p(x) log

(
p(x)
q(x)

)
+ ∑x(q(x)− p(x))).It can be shown that

the relative entropy is jointly convex using the so-called log-sum inequality (based on the
explanation in [9]).

Let us be reminded of our regression loss function:

L(h, p, f ) := Ex∼p[L(h, f )] = ∑
x∈X

L(h, f )p(x) (60)

L(h, f ) := − log h(x, f (x)) (61)

Proposition 4. Let L be the cross-entropy loss. Then, for i ∈ {1, ..., k}

L(hη
w, pi, f )−L(hη

w, pw, f ) = ui(w, f )− vi(w, f ) (62)

Proof of Proposition 4.

L(hη
w, pi, f )−L(hη

w, pw, f )

= ∑
x∈X

L(hη
w, f )pi(x)− ∑

x∈X
L(hη

w, f )pw(x)

= ∑
x∈X

(pi(x)− pw(x))L(hη
w, f )

= ∑
x∈X

(pi(x)− pw(x))
(
− log(hη

w(x, f (x)))
)

L is the cross entropy loss.

= ∑
x∈X

(pi(x)− pw(x))
(
− log(

Jw(x, f (x))
Kw(x)

)

)
hη

w(x, y) =
Jw(x, y)
Kw(x)

= ∑
x∈X

(pi(x)− Kw(x) + ηU(x))
(
− log(

Jw(x, f (x))
Kw(x)

)

)
Kw(x) = pw(x) + ηU(x)

= ∑
x∈X

Kw(x)
(

log(
Jw(x, f (x))

Kw(x)
)

)
− ∑

x∈X
(pi(x) + ηU(x))

(
log(

Jw(x, f (x))
Kw(x)

)

)
= − ∑

x∈X
Kw(x)

(
log(

Kw(x)
Jw(x, f (x))

)

)
− ∑

x∈X
(pi(x) + ηU(x))(log(Jw(x, f (x)))

+ ∑
x∈X

(pi(x) + ηU(x))(log(Kw(x)))

= ui(w, f )− vi(w, f ) By Equation (58)

Using the proof above, our optimization problem
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min
w∈∆,ρ∈R

ρ s.t. L(hη
w, pi, f )−L(hη

w, pw, f ) ≤ ρ ∀i ∈ {1, ..., k}

is a DC programming problem, since it is the difference between two convex functions.
In light of all of the above, our optimization problem can be cast as the following varia-
tional form of a DC-programming problem: let us set (wt) to be the sequence defined by
repeatedly solving the following convex optimization problem:

• Target function: min ρ.
• Constraints:

1. ui(w, f )− vi(w, f )− (w− wt)∇vi(wt, f ) ≤ ρ

2. ∑k
i=1 wi − 1 = 0

3. −wi ≤ 0 ∀i ∈ {1, ..., k}
where w0 ∈ ∆ is an arbitrary starting value. Then, (wt) is guaranteed to converge to a local
minimum of the optimization problem [9].

Given the fact that an optimal hypothesis hη
w exists, we converted the MSA problem

into an optimization problem and cast it to a DC programming form in order to find
a local optimum. This way, we are able to find the parameter w which is used in the
distribution-weighted combination rule.

5. Empirical Results

In this section we present two sets of experiments. The first set is designed to evaluate
the accuracy of approximating distributions using the VRLU and VRS methods, and the
second set demonstrates the application of these estimates for the MSA problem.

5.1. VRLU and VRS Experiments

We present a series of experiments conducted to evaluate the performance of VRLUα
and VRSα+, α− and compare them to the performance of existing methods such as the
Evidence Lower Bound (ELBO) and Rényi upper and lower bounds. The goal of these
experiments is to assess the effectiveness of the proposed methods and to determine their
advantages and limitations. The methods we will examine in this section are detailed below:

• VAE—minimizing KL divergence—maximizing the ELBO.
• VR—minimizing Rényi divergence using variational Rényi upper / lower bound with

MC, for different values of α.
• VRLU—minimizing Rényi divergence using our variational Rényi log upper bound

with MC for different values of negative α.
• VRS—minimizing Rényi divergence using the (sandwich) upper-lower bound with

MC for different values of negative and positive α.

All of our experiments were conducted using PyTorch. Throughout the experiments, we
used K = 50 samples for Monte Carlo (MC) approximation; trained the VAE models using
the ADAM optimizer [24]; and set the learning rate to 0.001 and the batch size to 128 for
the training set, and 32 for the test set. Our VAE model includes a total of 6 linear layers.
The first 3 are the encoder layers, and the last 3 are the decoder layers. The dimension of
the latent space is 50. We suggest two perspectives to evaluate and compare performances:

• Quality of the decoded signal—Reconstruction error, measured by Mean Square Error
(MSE) and Cross-Entropy (CE).

• Quality of the evidence approximation—Maximizing the evidence log-likelihood, log p(x);
the higher the better.

5.1.1. Digits Experiment

In the following experiment, we used the ‘MNIST’, ‘USPS’, and ‘SVHN’ datasets, all
of which contain digit images (See Figure 6). They all share 10 classes of digits. The ‘USPS’
dataset consists of 7291 training images and 2007 test images of size 16× 16. The ‘MNIST’
dataset consists of 60,000 training images and 10,000 test images of size 28× 28. ‘SVHN’
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is obtained from house numbers in Google Street View images. It has 73,257 training
images and 26,032 test images of size 32× 32. If we look at Figure 6, we can see that the
graphical representation of digits in ‘USPS’, ‘SVHN’, and ‘MNIST’ is very diverse; hence,
each domain has a very different distribution.

Figure 6. Digits datasets visualization.

We compared the learning curves of VRSα+ ,α− with α− ∈ {−0.5,−2} and α+ ∈
{0.5, 2} and VRα with α ∈ {0.5, 2, 5} over the ‘MNIST’ dataset. Figure 7 demonstrates
that VRSα+ ,α− converged faster than VRα and the resulting loss value is smaller for both α
values. Also, we can see that VR0.5 performs better than VR2, and VR2 performs better
than VR5. This observation is in sync with the results reported in [3].

Figure 7. Comparison between VRα and VRSα+ ,α− learning curves over ‘MNIST’ dataset. Training
with different values of α. The y axis detailed the values of the VR and VRS bounds, which is the
approximation of the log evidence (the higher the better).

Figure 8 depicts the mean squared error (MSE) for the different learning methods. We
can see that the MSE reconstruction error of all Variational Rényi methods, and specifically
VRS0.5,−0.5, are better than VAE reconstruction error in all of the datasets.
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Figure 8. Comparison of the MSE values of VAE, VR0.5, VRLU−0.5 and VRS0.5,−0.5 over Dig-
its datasets.

5.1.2. Faces Experiment

We performed a similar experiment on a dataset of facial expressions known as PIE.
The PIE dataset consists of a few parts, each corresponding to a different posture. Specifi-
cally, we choose PIE05 (left pose), PIE07 (top pose), and PIE09 (bottom pose). In each subset
(pose), all face images were taken under different lighting, illumination, and expression
conditions (see Figure 9).

Figure 9. PIE datasets visualization.

We divided each dataset into training and testing sets, in a ratio of 2:1. We created
VAE, VRα and VRSα+ ,α− models for each ‘PIE’ domain (left pose, up position, and down
position). Each model was trained on its corresponding training set. We calculated the
log-likelihood estimations for each domain and compared them. The results are presented
in Figure 10. We can see that the VRSα+ ,α− model achieved the best results. In addition,
for α+ = 0.5, we obtained slightly better results than for α+ = 2, which is compatible with
all previous results.

To summarize, we demonstrated the performance of the VRSα+ ,α− algorithm on the
digits datasets (‘MNIST’, ‘USPS’, ‘SVHN’) and ‘PIE’ datasets (left pose, up position, and
down position), and compared them against the (KL divergence-based) VAE, the Varia-
tional Rényi VRα upper and lower bounds, and the VRLUα upper bound minimization.
In all cases, the VRSα+ ,α− algorithm presented good results, many of which are the best
performances compared to the other methods.
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Figure 10. Comparison between the log-likelihood estimates, calculated using the models VAE, VRα

and VRSα+ ,α− with different values of α. Each model was trained on a specific domain of ‘PIE’.

5.2. MSA Experiments

In this section, we review a series of experiments designed to tackle the MSA problem.
In all of the experiments, we used the DC-programming algorithm, presented in [9],
to provide a solution. We used real-world datasets: the digit dataset and Office31 dataset.
For all of the datasets, the probability distributions pi are not readily available to the learner.
Thus, we used the VAE, VRα and VRSα+ ,α− models to approximate the probabilities p̂i.
More concretely, given an MSA scenario, where we have k source domains and one target
domain, we train a variational inference model for each source domain i. We then use the
estimated distributions as input to the DC programming algorithm, which, in turn, finds the
optimal vector w used to construct the distribution-weighted combination hypothesis hη

w
(Definition 9) for the target domain. We term the technique described above as VRS-MSA.
Finally, we compared our performances to the results presented by Cortes et al. in [20].

5.2.1. Digits Experiment

In the following experiment, we used the digits datasets, SVHN, MNIST, and USPS,
as our source domains. For each domain, we trained a convolutional neural network
(CNN) of the same architecture as in [25], and used the output from the softmax score layer
as our base predictors hi. We also trained the VAE, VRα and VRSα+ ,α− models for each
domain using the respective training sets. We used these trained models to approximate
the domains’ distributions p̂i.

For the DC-programming algorithm, we used 1000 image–label pairs from each do-
main, thus being a total of 3000 labeled pairs, to learn the parameter w. We compared
our VRS-MSA algorithm against the results presented in [20], and report performances
on each of the three test datasets, on combinations of two test datasets, and on all test
datasets combined.

Table 2 details the accuracy scores obtained by running our VRS-MSA model and the
following models:

• CNN-s, CNN-m, and CNN-u: each trained on the single source domain SVHN,
MNIST, and USPS, respectively.

• CNN-unif: a classifier trained on a uniform combination of the source domains’ data.
• CNN-joint: a global classifier trained on all of the source domains’ data combined.
• The GMSA model: a generative MSA model using the DC programming algorithm.

To obtain the data distribution, GMSA used the last layer before softmax from each of
the domains’ classifiers.

• The DMSA model: this is based on a discriminative technique using an estimate of the
conditional probabilities (the probability that point x belongs to source i).
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Table 2. Digit Dataset Accuracy (s—SVHN, m—MNIST and u—USPS). Previous results were taken
from [20]. Bold labels signify the top score within the respective column.

Models
Test Datasets

s m u mu su sm smu Mean

CNN-s 92.3 66.9 65.6 66.7 90.4 85.2 84.2 78.8
CNN-m 15.7 99.2 79.7 96.0 20.3 38.9 41.0 55.8
CNN-u 16.7 62.3 96.6 68.1 22.5 29.4 32.9 46.9

CNN-unif 75.7 91.3 92.2 91.4 76.9 80.0 80.7 84.0
CNN-joint 90.9 99.1 96.0 98.6 91.3 93.2 93.3 94.6

GMSA 91.4 98.8 95.6 98.3 91.7 93.5 93.6 94.7
DMSA 92.3 99.2 96.6 98.8 92.6 94.2 94.3 95.4

VAE-MSA 72.1 97.7 94.6 96.0 92.3 95.7 95.7 92.0
VR2-MSA 72.4 99.1 94.9 96.5 89.3 96.1 95.6 92.0

VR0.5-MSA 70.0 99.1 95.1 96.5 89.2 96.1 95.7 91.7
VRS2,−2-MSA 74.2 99.1 94.7 96.5 89.3 96.1 95.6 92.2

VRS2,−0.5-MSA 71.5 98.9 95.7 96.5 87.5 95.9 95.6 91.6
VRS0.5,−2-MSA 72.5 99.1 94.7 96.5 90.1 96.1 95.7 92.1

VRS0.5,−0.5-MSA 76.0 99.1 94.6 96.5 89.4 95.8 95.4 92.4

VAE-SGD 93.8 99.0 94.6 98.3 93.8 95.2 95.2 95.7
VR2-SGD 93.9 98.5 94.8 97.9 94.0 95.2 95.2 95.6

VR0.5-SGD 93.7 99.0 94.8 98.3 93.8 95.2 95.2 95.7
VRS2,−2-SGD 93.7 99.0 94.7 98.3 93.8 95.2 95.2 95.7

VRS2,−0.5-SGD 93.9 98.4 95.0 97.8 94.0 95.2 95.1 95.6
VRS0.5,−2-SGD 93.9 98.5 94.9 97.9 93.4 95.2 95.1 95.6

VRS0.5,−0.5-SGD 93.9 98.4 94.9 97.8 94.0 95.2 95.2 95.6

Our VRS-MSA model demonstrates competitive performance, with particularly
strong results on the union of the SVHN and MNIST test sets and the union of the SVHN,
MNIST, and USPS test sets. Moreover, among VI models, VRS0.5,−0.5 achieved the best
average score. This result is consistent with our previous results, which state that the closer
α is to zero, the better the approximation of the log evidence.

However, the performance on the SVHN domain is lower in comparison to the other
classifiers. Taking a closer look at the parameter w = (wMNIST : 0.73, wUSPS : 0.19, wSVHN :
0.08) reveals that the value assigned to the SVHN domain, denoted as wSVHN , is relatively
low at 0.08. Since the distribution weighted combining rule is a weighted combination of
all source hypotheses with weights assignment w, this indicates that the SVHN domain
has a minimal impact on the calculation of hη

w. Additionally, the log probability obtained
for the SVHN domain using the VI models is quite low compared to the other domains.
These low values result in very small probabilities when taking the exponent, which can be
difficult to work with in practice.

Furthermore, we devised a method that uses Stochastic Gradient Descent (SGD), rather
than DC programming, to get a good classifier for the target domain. For each image x,
every possible label y1, ..., yc, and every source domain, we created the following input:

(p1(x, y1), ..., p1(x, yc), ..., pk(x, y1), ..., pk(x, yc), h1(x, y1), ..., h1(x, yc), ..., hk(x, y1), ..., hk(x, yc))

Given image x, the SGD model learns a matching between the input vector above and
the true label of x. This method is termed VRS-SGD. Similarly to VRS-MSA, we used
1000 images from each domain to train the SGD model. The results of the VRS-SGD are
reported at the last section of Table 2.

The SGD score for the SVHN test set stands out as the highest, leading to an improve-
ment in the combined test set that includes both SVHN and USPS. One advantage of the
VRS-SGD method is its ability to overcome the issue of misalignment among different VRS
models by adjusting its learned weights to match the input scale. This makes the VRS-SGD
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method particularly valuable when working with source domains where the probabilities
are smaller compared to other domains.

5.2.2. Office Experiment

In the following experiment, we used the Office31 dataset, which is used mainly in
domain adaptation scenarios. The Office31 dataset contains 31 object categories in three
domains: Amazon, DSLR, and Webcam (see Figure 11). The 31 categories in the dataset
consist of objects commonly encountered in office settings, such as keyboards, file cabinets,
and laptops. The Amazon domain contains on average 90 images per class and 2817 images
in total. As these images were captured from a website of online merchants, they are
captured against a clean background and at a unified scale. The DSLR domain contains
498 low-noise high-resolution images (4288 × 2848). There are 5 objects per category.
Each object was captured from different viewpoints on average 3 times. For Webcam,
the 795 images of low resolution (640 × 480) exhibit significant noise and color as well as
white balance artifacts.

Figure 11. Office datasets visualization.

We carried out the VRS-MSA experiment on Office31 dataset. We divided the dataset
into two splits following [26]. For the training data, we used 20 samples per category for
Amazon and 7 for both DSLR and Webcam. We used the rest of the samples as test data.
For each domain, we used ResNet50 architecture pre-trained on ImageNet, and trained it
over the domain’s training set. We extracted the penultimate layer output from ResNet50
architecture and trained our variational inference models VAE, VRα and VRSα+ ,α− on this
pre-trained feature. The VI models were used to approximate the distributions pi. For our
predictors hi, we extracted the output from the ResNet50 architecture and used softmax
layer to calculate the probabilities. We used a batch size of 32 in the training set and 16 in
the test set.

We measured the performance of these baselines on each of the three test sets, on com-
binations of two test sets, and all test sets combined. We compared our VRS-MSA model
against previous results presented by Cortes et al. [20]. While Cortes et al. only provided
results for individual test sets, we additionally presented results for various combinations
of test sets, providing a more comprehensive comparison of the performance of VI models.
Among the models tested, our VRS0.5,−0.5 model achieved the highest results in most test
set combinations and had the best overall score, which supports our previous findings that
a value of α close to zero leads to a better approximation of the log evidence.

We compared our results to the DMSA algorithm, each source predictor (CNN for
Amazon, DSLR and Webcam), the uniform combination, CNN-unif, a network jointly
trained on all source data combined, CNN-joint, and GMSA with kernel density estima-
tion [9]. The results are reported in Table 3.
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Table 3. Office Dataset Accuracy (a—Amazon, w—Webcam, d—DSLR). Previous results were taken
from [20]. Bold labels signify the top score within the respective column.

Models
Test Datasets

a w d aw ad wd awd Mean

Resnet-a 82.2 75.8 77.6 - - - - -
Resnet-w 63.3 95.7 95.7 - - - - -
Resnet-d 64.6 94.0 95.8 - - - - -

Resnet-unif 79.3 96.7 97.2 - - - - -
GMSA 82.1 96.8 96.7 - - - - -
DMSA 82.2 97.2 97.4 - - - - -

VAE-MSA 76.6 93.4 98.6 81.0 79.8 95.0 82.7 86.7
VR2-MSA 76.0 94.1 98.2 80.5 79.0 95.2 82.4 86.5

VR0.5-MSA 77.3 93.1 98.6 81.5 80.5 94.8 83.5 87.0
VRS0.5,−2-MSA 69.0 93.0 99.0 74.6 72.6 94.9 77.0 82.9
VRS2,−0.5-MSA 78.0 93.2 98.6 82.0 80.7 94.8 83.7 87.3
VRS2,−2-MSA 81.6 92.2 98.6 84.5 84.0 94.3 86.0 88.7

VRS0.5,−0.5-MSA 81.7 92.4 98.6 84.6 84.2 94.5 86.1 88.9

VAE-SGD 92.2 95.0 96.8 92.8 92.7 95.6 93.2 94.0
VR2-SGD 92.2 95.0 96.8 92.8 92.7 95.6 93.1 94.0

VR0.5-SGD 92.2 95.0 96.8 92.8 92.7 95.6 93.2 94.0
VRS2,−2-SGD 92.2 95.0 96.8 92.7 92.7 95.6 93.1 94.0

VRS2,−0.5-SGD 92.2 94.8 97.2 92.7 92.7 95.6 93.2 94.1
VRS0.5,−2-SGD 92.2 95.0 96.8 92.8 92.7 95.6 93.1 94.0

VRS0.5,−0.5-SGD 92.2 95.0 96.8 92.8 92.7 95.6 93.2 94.0

Our VRS-MSA model demonstrates competitive achievements, with particularly
strong results on the test set DSLR. We note that the DSLR’s high score comes at the
expense of Amazon’s and Webcam’s high scores. This is because the vector w = (wAmazon :
0.25, wDSLR : 0.71, wWebcam : 0.04) learned in the DC programming algorithm determined
the weight of each domain. When the DSLR domain receives more weight, it comes at the
expense of the weight given to the other domains.

Likewise, the VRS-SGD method achieved competitive scores compared to the models
using the DC algorithm. We can see that the VRS-SGD score for the Amazon test set is the
highest and, as a result, the scores on test sets that include Amazon were also improved.

6. Summary

In this study, we reviewed and analyzed the methods to estimate data probabilities
where traditional computation methods have failed. Specifically, we examined variational
inference (VI) models, such as Variational Autoencoder (VAE) [27], which we aimed to
improve using different divergence methods. We examined the properties of the Kullback–
Leibler divergence, the Rényi divergence (which is essentially a family of divergences
parameterized by α ∈ R), and the χ divergence. We derived the ELBO, the VR, and the
CUBO bounds for the log evidence, and presented a new upper bound, termed VRLU, for
which its MC approximation remains an upper. We used VRLU to devise a new (sand-
wiched) upper–lower bound variational inference method (VRS). The VRS loss function
combines the VR lower bound (with positive α) and the new VRLU upper bound (with
negative α), thus providing a tighter estimate for the log evidence.

We performed several experiments designed to test the performance of the new VRS
model. We compared VAE, VR, VRLU, and VRS models over the digits datasets and PIE
datasets, using different values of positive and negative α. In all cases, the VRS algorithm
presented good results, many of which are the best performances compared to the other
methods. We note, in passing, that the selection of the α value may depend on the data,
an observation that was indicated in previous studies, as well [3,14].
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In addition, we demonstrated the usage of VRS in MSA applications. We combined the
DC-programming algorithm (suggested in [9]) with our VRS model, to obtain more accurate
density estimates and improve the accuracy of the hypothesis for the target domain. We
performed experiments to compare the accuracy of the resulting hypothesis in two MSA
datasets: the digits and Office31 datasets. We compared our new model using VAE, VR,
and VRS to the previous models, GMSA and DMSA, presented in [20].

Our empirical evaluation revealed that the proposed VRS-MSA model demonstrated
competitive performance, and in certain instances even surpassed the performance of models
reported in previous studies. Additionally, among the VI models tested, the VRS model
achieved the highest overall score, which supports the conclusion that accurate probability
estimates are necessary for the success of the weighted combination hypothesis hη

w.
Nonetheless, it is important to note that the VRS-MSA model achieved lower scores in

certain individual test sets, where the weight parameter w was assigned a low value for that
particular domain. When the weight parameter is low, it is important to take into account
both the probability pi(x) and the domain-specific hypothesis hi. For example, if the image
x is from the SVHN domain, the probabilities pmnist(x) and pusps(x) should be relatively low
in comparison to psvhn(x), such that the value of hsvhn is the most prominent in the weighted
combination hypothesis. Our VRS-MSA model operates by training a VRS model for each
domain, which learns its latent space vectors based on a Gaussian distribution, and outputs
the probability in relation to these latent vectors pθ(x|z). Consequently, for each domain,
the Gaussian distribution may have slight variations in variance, which can influence the
log evidence value output from the VRS model. Therefore, the DC programming model,
which takes into account the probabilities from all domains simultaneously, may be affected
by the different scales of the probability measurements across the domains.

Looking forward, further work is required to disentangle the complexities of the afore-
mentioned VRS-MSA. Specifically, in this work, we have not formed a connection between
the latent variables of each VRS model of the different domains. It will be interesting to
see how such a connection (of normalization, scaling of the probability measurements,
or latent space alignment) will affect the compatibility of the probabilities. In addition,
some researchers suggest even using a common latent feature space in the autoencoder
models [28]. Building such a network using our VRS loss might improve the results of the
VRS-MSA model. However, it is worth noting that such a common model would lack the
separation and privacy of domains that we have achieved using distinct VRS models.

We would also like to extend our experiments on the VRS model: First, it will be
interesting to examine the different values of negative and positive α values and search
for the best combination of α− and α+. Second, since α may be data-dependent, it will
be interesting to explore the possibility to make α a trainable parameter. It can also be
used to adjust the degree of relative risk aversion. These directions are left for future
research efforts.
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