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Abstract: We introduce the problem of variable-length (VL) source resolvability, in which a given
target probability distribution is approximated by encoding a VL uniform random number, and
the asymptotically minimum average length rate of the uniform random number, called the VL re-
solvability, is investigated. We first analyze the VL resolvability with the variational distance as an
approximation measure. Next, we investigate the case under the divergence as an approximation
measure. When the asymptotically exact approximation is required, it is shown that the resolvability
under two kinds of approximation measures coincides. We then extend the analysis to the case of
channel resolvability, where the target distribution is the output distribution via a general channel
due to a fixed general source as an input. The obtained characterization of channel resolvability is
fully general in the sense that, when the channel is just an identity mapping, it reduces to general
formulas for source resolvability. We also analyze the second-order VL resolvability.

Keywords: random number generation; source resolvability; channel resolvability; output approximation;
variable-length resolvability

1. Introduction

Generating a random number subject to a given probability distribution has a number
of applications, such as in information security, statistical machine learning, and com-
puter science. From the viewpoint of information theory, random number generation
may be considered to be a transformation (encoding) of sequences emitted from a given
source with coin distribution into other sequences with target distribution via a deterministic
mapping [1–3]. Among others, there have been two major types of problems of random
number generation: intrinsic randomness [4,5] and (source) resolvability [6,7]. In the former
case, a fixed-length (FL) uniform random number is extracted from an arbitrary coin distri-
bution, and we want to find the maximum achievable rate of such uniform random numbers.
In the latter case, in contrast, an FL uniform random number used as a coin distribution
is encoded to approximate a given target distribution, and we want to find the minimum
achievable rate of such uniform random numbers. Thus, there is a duality between these
two problems.

The problem of intrinsic randomness has been extended to the case of variable-length (VL)
uniform random numbers, for which the length of random numbers may vary. This problem,
referred to as the VL intrinsic randomness, was first introduced by Vembu and Verdú [5] for a
finite source alphabet and later extended by Han [4] to a countably infinite alphabet. This
problem was actually motivated because, in many practical situations, it is indispensable
to consider cases where FL uniform random numbers are not available, and, instead, VL
uniform random numbers are available; typically, this is in cases where we work with Elias’
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universal random numbers [1]. The use of such uniform random numbers is expected
generally to increase the achievable average length rate for intrinsic randomness. Then, the
following natural question may be raised: Can we indeed lower the average length rate
needed in the “resolvability” problem by using VL random numbers? The answer is “yes”.
Despite the duality between these two kinds of problems for random number generation,
the VL counterpart in the resolvability problem has not been discussed, where we focus on
this problem.

We introduce the problem of VL source/channel resolvability, where a given target proba-
bility distribution is to be approximated by encoding a VL uniform random number. Distance
measures between the target distribution and an approximated distribution are used to mea-
sure the fineness of the approximation. We first analyze the fundamental limit on VL source
resolvabilities with the variational distance as an approximation measure in Section 3.
We use the smooth Shannon entropy, which is a version of smooth Rényi entropy [8], to
characterize the δ-source resolvability, which is defined as the minimum achievable length
rate of uniform random numbers with an asymptotic distance of less than or equal to
δ ∈ [0, 1). In the proof of the direct part, we will develop a simple version of information
spectrum slicing [2], in which each “sliced” information density quantized to an integer is
approximated by an FL uniform random number. Due to the simplicity of the method,
the analysis with variational distance is first facilitated. As an important implication of
general formulas for the δ-source resolvability, it is shown that the minimum resolvability
rate of VL resolvability is equal to (1− δ) times that of FL resolvability when the source is
stationary and memoryless or is even with one-point spectrum (cf. Corollary 1). This result
indicates an advantage of the use of a VL uniform random number when δ > 0 because we
can make the VL resolvability rate strictly smaller than an FV one. We then extend these
analyses to the case under the (unnormalized) divergence as an approximation measure in
Section 4. When δ = 0, that is, when the asymptotically exact approximation is required,
it is shown that the 0-source resolvabilities under two kinds of approximation measures
coincide with each other.

In Section 5, we then consider the problem of channel resolvability [6,9,10], in which not
only a source but also a channel is fixed, and the output distribution via the channel is now
the target of approximation. This problem, also referred to as the problem of output approx-
imation, provides a powerful tool to analyze the fundamental limits of various problems in
information theory and information security. Some such examples include identification
codes [11–13], distributed hypothesis testing [14], message authentication [15], secret key
generation [16], and coding for secure communication [17–19]. We consider two types
of problems in which either a general source (mean-channel resolvability) or a VL uniform
random number (VL channel resolvability) is used as a coin distribution. It is shown that
the formulas established are equal for both coin distributions. In the special case that
the channel is the identity mapping, the formulas established reduce to those in source
resolvability as established in Sections 3 and 4.

From Sections 3–5, the so-called first-order resolvability rates are analyzed, and the next
important step may be the second-order analysis. Second-order analyses for various coding
problems were initiated by Strassen [20] and have been studied in the past decade or so
(cf. [21–31]). We also analyze the second-order fundamental limits of the VL channel/source
resolvability in Section 6. In this paper, it is shown that the VL δ-source resolvability under
the variational distance is equal to the minimum achievable rate of fixed-to-variable-length
source codes with an error probability of less than or equal to δ. It is demonstrated that
this close relationship provides a single-letter characterization for the first- and second-
order source resolvability under the variational distance when the source is stationary and
memoryless. It is worth noting that second-order analyses for the VL setting are relatively
few, compared to those in the FL setting. The second-order formulas established in this
paper are of importance from this perspective, too.

The remainder of the paper is organized as follows: Section 2 reviews the problem
of FL source resolvability and the relations between the minimum resolvability rate and
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the minimum coding rate of FL source codes. Section 3 formally introduces the prob-
lem of VL source resolvability with variational distance as an approximation measure.
Then, Section 4 discusses VL source resolvability with divergence as an approximation
measure, and Section 5 generalizes the settings to channel resolvability. Section 6 investi-
gates the second-order fundamental limits of the VL channel/source resolvability. Section 7
concludes the paper with a discussion of possible extensions.

2. FL Resolvability: Review

Let U = {1, 2, . . . , K} be a finite alphabet of size K, and let X be a finite or countably
infinite alphabet. Let X = {Xn}∞

n=1 be a general source [2], where PXn is a probability
distribution on X n. We do not impose any assumptions, such as stationarity or ergodicity.
In this paper, we identify Xn with its probability distribution PXn , and these symbols are
used interchangeably.

We first review the problem of FL (source) resolvability [2] using the variational
distance as an approximation measure. Let UMn denote the uniform random number, which
is a random variable uniformly distributed over UMn := {1, . . . , Mn}. Consider the problem
of approximating the target distribution PXn by using UMn as a coin distribution via a deter-
ministic mapping ϕn : {1, . . . , Mn} → X n. Denoting X̃n = ϕn(UMn), we want to make
PX̃n approximate PXn (cf. Figure 1). A standard choice of the performance measure for
approximation is

d(PXn , PX̃n) :=
1
2 ∑

x∈X n
|PXn(x)− PX̃n(x)|, (1)

which is referred to as the variational distance between PXn and PX̃n . It is easily seen that

0 ≤ d(PXn , PX̃n) ≤ 1. (2)

Let us now review the problem for source resolvability. Throughout this paper, loga-
rithms are of the base K.

Definition 1 (FL resolvability). A resolution rate R ≥ 0 is said to be FL achievable or simply f-
achievable (under the variational distance) if there exists a deterministic mapping ϕn : {1, . . . , Mn} → X n

satisfying

lim sup
n→∞

1
n

log Mn ≤ R, (3)

lim
n→∞

d(PXn , PX̃n) = 0, (4)

where X̃n = ϕn(UMn) and UMn is the uniform random number over UMn . The infimum of
f-achievable rates, i.e.,

Sf(X) := inf{R : R is f-achievable} (5)

is called the FL resolvability or simply f-resolvability.

Then, we have the following theorem:

Theorem 1 (Han and Verdú [6]). For any general target source X,

Sf(X) = H(X), (6)

where

H(X) := inf
{

a : lim
n→∞

Pr
{

1
n

log
1

PXn(Xn)
> a

}
= 0

}
. (7)
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Figure 1. Illustration of the problem of FL resolvability.

Remark 1. As a dual counterpart of (7), we may define

H(X) := sup
{

b : lim
n→∞

Pr
{

1
n

log
1

PXn(Xn)
< b

}
= 0

}
. (8)

Sources such that H(X) = H(X) are called one-point spectrum sources (or equivalently, said to
satisfy the strong converse property (cf. Han [2])), which includes stationary memoryless sources
and stationary ergodic sources, etc. This class of sources is discussed later in Corollary 1.

The following problem is called the δ-resolvability problem [2,7], which relaxes the
condition on the variational distance, compared to (4).

Definition 2 (FL δ-resolvability). For a fixed δ ∈ [0, 1), a resolution rate R ≥ 0 is said to be FL δ-
achievable or simply f (δ)-achievable (under the variational distance) if there exists a deterministic
mapping ϕn : {1, . . . , Mn} → X n satisfying

lim sup
n→∞

1
n

log Mn ≤ R, (9)

lim sup
n→∞

d(PXn , PX̃n) ≤ δ, (10)

where X̃n = ϕn(UMn) and UMn is the uniform random number over UMn . The infimum of all
f (δ)-achievable rates, i.e.,

Sf(δ|X) := inf{R : R is f(δ)-achievable} (11)

is referred to as the FL δ-resolvability or simply f(δ)-resolvability.

Then, a characterization of Sf(δ|X) is given by

Theorem 2 (Steinberg and Verdú [7]). For any general target source X,

Sf(δ|X) = Hδ(X) (δ ∈ [0, 1)), (12)

where

Hδ(X) := inf
{

a : lim sup
n→∞

Pr
{

1
n

log
1

PXn(Xn)
> a

}
≤ δ

}
. (13)

Remark 2. The FL resolvability problem is deeply related to the FL source coding problem allowing
a probability of a decoding error up to ε. Denoting by Rf(ε|X) the minimum achievable rate for the
source X, there is the relationship [7]:
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Rf(ε|X) = Hε(X) (∀ε ∈ [0, 1)) (14)

and, hence, by Theorem 2,

Sf(δ|X) = Rf(δ|X) (∀δ ∈ [0, 1)). (15)

Formula (14) can also be shown with a smooth Rényi entropy of order zero [32].

3. VL Resolvability: Variational Distance

In this section, we introduce the problem of variable-length (VL) resolvability, where the
target probability distribution is approximated by encoding a VL uniform random number. As
an initial step, we analyze the fundamental limit on the VL resolvability with the variational
distance as an approximation measure.

3.1. Definitions

Let U ∗ denote the set of all sequences u ∈ Um over m = 0, 1, 2, · · · , where U 0 = {λ}
(λ is the null string). Let Ln denote a random variable which takes a value in {0, 1, 2, . . .}.
We define the VL uniform random number U(Ln) so that U(m) is uniformly distributed over
Um given Ln = m. In other words,

PU(Ln)(u, m) := Pr{U(Ln) = u, Ln = m} = Pr{Ln = m}
Km (∀u ∈ Um), (16)

Pr{U(Ln) = u|Ln = m} =
PU(Ln)(u, m)

Pr{Ln = m} =
1

Km (∀u ∈ Um), (17)

where K = |U |. It should be noticed that the VL sequence u ∈ Um is generated with the
joint probability PU(Ln)(u, m).

We formally define the δ-resolvability problem under the variational distance using
the VL random number, called the VL δ-resolvability or simply v(δ)-resolvability.

Definition 3 (VL δ-resolvability: variational distance). A resolution rate R ≥ 0 is said to be
VL δ-achievable (under the variational distance) with δ ∈ [0, 1) if there exists a VL uniform random
number U(Ln) and a deterministic mapping ϕn : U ∗ → X n satisfying

lim sup
n→∞

1
n
E[Ln] ≤ R, (18)

lim sup
n→∞

d(PXn , PX̃n) ≤ δ, (19)

where E[·] denotes the expected value and X̃n = ϕn(U(Ln)). The infimum of all v(δ)-achievable
rates, i.e.,

Sv(δ|X) := inf{R : R is v(δ)-achievable} (20)

is referred to as the VL δ-resolvability or simply v(δ)-resolvability.
If δ = 0, v(0)-achievable is said to be VL achievable or simply v-achievable (under the

variational distance). The infimum of all v-achievable rates, i.e.,

Sv(X) := inf{R : R is v-achievable} (21)

is called the VL resolvability or simply v-resolvability.

Remark 3. One may think that condition (18) can be replaced with the condition on the sup-
entropy rate:

lim sup
n→∞

1
n

H(U(Ln)) ≤ R (22)
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as in [6], where H(·) denotes the Shannon entropy. Indeed, both conditions yield the same resolv-
ability result. To see this, let us denote by S̃v(δ|X) the infimum of v-achievable rates R under
constraints (19) and (22). It is easily checked that

E[Ln] =
∞

∑
m=1

∑
u∈Um

PU(Ln)(u, m) log Km

=
∞

∑
m=1

∑
u∈Um

PU(Ln)(u, m) log
Pr{Ln = m}
PU(Ln)(u, m)

= H(U(Ln))− H(Ln) ≤ H(U(Ln)). (23)

This implies Sv(δ|X) ≤ S̃v(δ|X). On the other hand, by invoking the well-known
relation (cf. ([33], Corollary 3.12)), it holds that

H(Ln) ≤ log(e ·E[Ln]). (24)

Consider any resolution rate R > Sv(δ|X). Then, (18) holds for some U(Ln) and ϕn and, hence,
(24) leads to

lim
n→∞

1
n

H(Ln) = lim
n→∞

1
n

log(e ·E[Ln]) = 0. (25)

From this equation, (23) yields that

lim sup
n→∞

1
n

H(U(Ln)) = lim sup
n→∞

1
n
E[Ln] ≤ R (26)

to obtain R ≥ S̃v(δ|X), implying that Sv(δ|X) ≥ S̃v(δ|X). Thus, Sv(δ|X) = S̃v(δ|X).

3.2. Smooth Shannon Entropy

To establish a general formula for Sv(δ|X), we introduce the following quantity for
a general source X. Let P(X n) denote the set of all probability distributions on X n. For
δ ∈ [0, 1), by defining the δ-ball using the variational distance

Bδ(Xn) = {PVn ∈ P(X n) : d(PXn , PVn) ≤ δ}, (27)

we introduce the smooth Shannon entropy:

H[δ](Xn) := inf
PVn∈Bδ(Xn)

∑
x∈X n

PVn(x) log
1

PVn(x)

= inf
PVn∈Bδ(Xn)

H(Vn), (28)

where H(Vn) denotes the Shannon entropy of PVn . The H[δ](Xn) is a nonincreasing function
of δ. Based on this quantity for a general source X = {Xn}∞

n=1, we define

H[δ](X) = lim sup
n→∞

1
n

H[δ](Xn). (29)

Remark 4. Renner and Wolf [8] have defined the smooth Rény entropy of order α ∈ (0, 1) ∪ (1, ∞) as

Hα
[δ](Xn) = inf

PVn∈Bδ(Xn)

1
1− α

log ∑
x∈X n

PVn(x)α. (30)

By letting α ↑ 1, we have

lim
α↑1

Hα
[δ](Xn) = H[δ](Xn). (31)

As for the proof, see Appendix A.
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3.3. General Formula for General δ ∈ [0, 1)

The following main theorem indicates that the v(δ)-resolvability Sv(δ|X) can be
characterized by the smooth Shannon entropy for X.

Theorem 3. For any general target source X,

Sv(δ|X) = lim
γ↓0

H[δ+γ](X) (δ ∈ [0, 1)). (32)

Remark 5. In Formula (32), the limit limγ↓0 of the offset term +γ appears in the characterization
of Sv(δ|X). This is because the smooth entropy H[δ](Xn) for Xn involves the infimum over the non-
asymptotic δ-ball Bδ(Xn) for a given length n. Alternatively, we may consider the asymptotic
δ-ball defined as

Bδ(X) =

{
V = {Vn}∞

n=1 : lim sup
n→∞

d(PXn , PVn) ≤ δ

}
, (33)

and then we obtain the alternative formula

Sv(δ|X) = inf
V∈Bδ(X)

H(V) (δ ∈ [0, 1)) (34)

without an offset term, where

H(V) := lim sup
n→∞

1
n

H(Vn) (35)

is the sup-entropy rate for V with the Shannon entropy H(Vn). The proof of (34) is given in
Appendix B.

The same remark also applies to general formulas to be established in the subsequent sections.

Remark 6. Independently of this work, Tomita, Uyematsu, and Matsumoto [34] have investigated
the following problem: the coin distribution is given by fair coin-tossing and the average number of
coin tosses should be asymptotically minimized as in [3] while the variational distance between the
target and approximated distributions should satisfy (19). In this case, the asymptotically minimum
average number of coin tosses is also characterized by the right-hand side (r.h.s.) of (32) (cf. [34]).
Since the coin distribution is restricted to that given by fair coin-tossing with a stopping algorithm,
realizations of Ln must satisfy the Kraft inequality (for prefix codes), whereas the problem addressed
in this paper allows the probability distribution of Ln to be an arbitrary discrete one, not necessarily
implying prefix codes. In this sense, our problem is more relaxed, while the coin is constrained to be
conditionally independent given Ln. Theorem 3 indicates that the v(δ)-resolvability does not differ
in both problems. Later, we shall show that, even in the case where the coin distribution may be any
general source X, the δ-resolvability remains the same (cf. Theorem 5 and Remark 14).

On the other hand, we now define the following information quantity (to be used in
Remark 7 below) to discuss the relationship with VL source coding: For δ ∈ [0, 1) we define

G[δ](Xn) = inf
An⊆X n :

Pr{Xn∈An}≥1−δ

∑
x∈An

PXn(x) log
1

PXn(x)
. (36)

The G[δ](Xn) is a nonincreasing function of δ. Based on this quantity, we define

G[δ](X) = lim sup
n→∞

1
n

G[δ](Xn). (37)

Then, we have
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Remark 7. There is a deep relation between the δ-resolvability problem and VL δ-source coding
with the error probability asymptotically not exceeding δ. Koga and Yamamoto [35] (also, cf. Han
[36]) showed that the minimum average length rate R∗v(δ|X) of VL δ-source codes is given by

R∗v(δ|X) = lim
γ↓0

G[δ+γ](X) (∀δ ∈ [0, 1)). (38)

Theorem 3 and Proposition 1 (to be shown just below) reveal that

Sv(δ|X) = R∗v(δ|X) (∀δ ∈ [0, 1)). (39)

The following proposition shows a general relationship between G[δ](X) and H[δ](X).

Proposition 1. For any general source X,

H[δ](X) = G[δ](X) ≤ (1− δ)Hδ−γ(X) (∀δ ∈ (0, 1), ∀γ ∈ (0, δ]). (40)

In particular,

lim
γ↓0

H[δ+γ](X) = lim
γ↓0

G[δ+γ](X) ≤ (1− δ)Hδ(X) (∀δ ∈ [0, 1)). (41)

(Proof ) See Appendix C.
By plugging γ = δ into (40), a looser but sometimes useful bound

H[δ](X) = G[δ](X) ≤ (1− δ)H(X) (42)

can be obtained. Equation (40) has been derived by [21], which improves a bound estab-
lished in [35,37]. In view of Theorems 2 and 3, (41) in Proposition 1 implies

Sv(δ|X) ≤ (1− δ)Sf(δ|X) (43)

for all δ ∈ [0, 1), where Sf(δ|X) denotes the f(δ)-resolvability. This general relationship
elucidates the advantage of the use of VL uniform random numbers to make the average
length rate lower. The proposition also claims that G[δ](X) coincides with H[δ](X) for all
δ ∈ [0, 1) for any general source X.

A consequence of Theorem 3 is the following corollary:

Corollary 1. Let X = {Xn}∞
n=1 be a one-point spectrum source (H(X) = H(X)) with

Xn = (X1, X2, . . . , Xn), then we have

Sf(δ|X) = Hδ(X) = H∗(X) (∀δ ∈ [0, 1)), (44)

where H∗(X) := H(X) = H(X). Moreover, it holds that

Sv(δ|X) = H[δ](X) = G[δ](X) = (1− δ)H∗(X) (∀δ ∈ [0, 1)), (45)

where we notice that H∗(X) = H(X1) (entropy) for stationary memoryless sources.
(Proof) See Appendix D.

Now, we are ready to give the proof of Theorem 3:

Proof of Theorem 3.

(1) Converse Part:
Let R be v(δ)-achievable. Then, there exists U(Ln) and ϕn satisfying (18) and

lim sup
n→∞

δn ≤ δ, (46)
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where we define δn = d(PXn , PX̃n) with X̃n = ϕn(U(Ln)). Equation (46) implies that,
for any given γ > 0, it holds that δn ≤ δ + γ for all n ≥ n0 with some n0 > 0, and thus
we have

H[δ+γ](Xn) ≤ H[δn ](Xn) (∀n ≥ n0), (47)

because H[δ](Xn) is a nonincreasing function of δ. Since PX̃n ∈ Bδn(Xn), we have

H[δn ](Xn) ≤ H(X̃n). (48)

On the other hand, it follows from (23) that

H(X̃n) ≤ H(U(Ln)) = E[Ln] + H(Ln), (49)

where the inequality is due to the fact that ϕn is a deterministic mapping and
X̃n = ϕn(U(Ln)).
Combining (47)–(49) yields

H[δ+γ](X) = lim sup
n→∞

1
n

H[δ+γ](Xn)

≤ lim sup
n→∞

1
n
E[Ln] + lim sup

n→∞

1
n

H(Ln) ≤ R, (50)

where we have used (18) and (25) for the last inequality. Since γ > 0 is arbitrary,
we obtain

lim
γ↓0

H[δ+γ](X) ≤ R. (51)

(2) Direct Part:
Without loss of generality, we assume that H+ := limγ↓0 H[δ+γ](X) is finite (H+ < +∞).
Letting R = H+ + 3γ, where γ > 0 is an arbitrary constant, we shall show that R is
v(δ)-achievable. In what follows, we use a simpler form of information spectrum slicing [2],
where each piece of sliced information quantized to a positive integer ` is approximated
by the uniform random number U(`) of the length `.
First, we note that

H+ ≥ H[δ+γ](X) ≥ 1
n

H[δ+γ](Xn)− γ (∀n > n0) (52)

because of the monotonicity of H[δ](X) in δ. Let Vn be a random variable subject to
PVn ∈ Bδ+γ(Xn), which satisfies

H[δ+γ](Xn) + γ ≥ H(Vn). (53)

For γ > 0, we can choose a cn > 0 so large that

Pr{Vn 6∈ Tn} ≤ γ (54)

where

Tn :=
{

x ∈ X n :
1
n

log
1

PVn(x)
≤ cn

}
. (55)

We also define

`(x) :=

 dlog 1
PVn (x) + nγe for x ∈ Tn

0 otherwise.
(56)

For m = 0, 1, . . . , βn := dn(cn + γ)e, set

Sn(m) := {x ∈ X n : `(x) = m}, (57)
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then these sets form a partition of X n, i.e.,

βn⋃
m=0

Sn(m) = X n and
βn⋃

m=1

Sn(m) = Tn. (58)

We set Ln so that

Pr{Ln = m} = Pr{Vn ∈ Sn(m)}, (59)

where it is obvious that ∑
βn
m=0 Pr{Ln = m} = 1, and, hence, the probability distribution

of the VL uniform random number U(Ln) is given as

PU(Ln)(u, m) := Pr{U(Ln) = u, Ln = m} = Pr{Vn ∈ Sn(m)}
Km (∀u ∈ Um). (60)

(a) Construction of Mapping ϕn : U ∗ → X n:
Index the elements in Sn(m) as x1, x2, . . . , x|Sn(m)| (m = 1, 2, · · · ), where

|Sn(m)| ≤ Km−nγ (61)

since for x ∈ Sn(m)

log
1

PVn(x)
≤ m− nγ ⇐⇒ PVn(x) ≥ K−(m−nγ), (62)

and, therefore,

1 ≥ ∑
x∈Sn(m)

PVn(x) ≥ ∑
x∈Sn(m)

K−(m−nγ) = |Sn(m)|K−(m−nγ). (63)

For i = 1, 2, . . . , |Sn(m)|, define Ã(m)
i ⊂ Um as the set of sequences u ∈ Um so that

∑
u∈Ã(m)

i

PU(Ln)(u, m) ≤ PVn(xi) < ∑
u∈Ã(m)

i

PU(Ln)(u, m) +
Pr{Vn ∈ Sn(m)}

Km (64)

and

Ã(m)
i ∩ Ã(m)

j = ∅ (i 6= j). (65)

If
|Sn(m)|

∑
i=1

∑
u∈Ã(m)

i

PU(Ln)(u, m) <
|Sn(m)|

∑
i=1

PVn(xi) = Pr{Vn ∈ Sn(m)}, (66)

then add a ui ∈ Um \ (∪j Ã
(m)
j ) to obtain

A(m)
i = Ã(m)

i ∪ {ui} (67)

for i = 1, 2, . . . in order, until it holds that with some 1 ≤ c ≤ |Sn(m)|
c⋃

i=1

A(m)
i ∪

|Sn(m)|⋃
i=c+1

Ã(m)
i = Um, (68)

where u1, u2, · · · are selected to be all different. Since |Um| = Km and

∑
u∈Um

PU(Ln)(u, m) = ∑
u∈Um

Pr{Vn ∈ Sn(m)}
Km = Pr{Vn ∈ Sn(m)}, (69)

such a 1 ≤ c ≤ |Sn(m)| always exists. For simplicity, we set for i = c+ 1, c + 2, . . . , |Sn(m)|
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A(m)
i = Ã(m)

i (70)

and for i = 1, 2, . . . , |Sn(m)|

ϕn(u) = xi for u ∈ A(m)
i , (71)

which defines the random variable X̃n with values in X n such that

PX̃n(xi) = ∑
u∈A(m)

i

PU(Ln)(u, m) (xi ∈ Sn(m)), (72)

that is, X̃n = ϕn(U(Ln)), where if X n \ Tn 6= ∅, we choose some x0 ∈ X n \ Tn and set

PX̃n(x0) = Pr{Vn 6∈ Tn} and ϕn(λ) = x0. (73)

Notice that, by this construction, we have

|PX̃n(xi)− PVn(xi)| ≤
Pr{Vn ∈ Sn(m)}

Km (74)

for i = 1, 2, . . . , |Sn(m)|; m = 1, 2, . . . , βn, and

Pr{X̃n 6∈ Tn} = Pr{Vn 6∈ Tn} ≤ γ. (75)

(b) Evaluation of Average Length:
Since m = 0 does not contribute to the average length E[Ln], it is evaluated as follows:

E[Ln] =
βn

∑
m=1

∑
u∈Um

PU(Ln)(u, m) ·m

=
βn

∑
m=1

|Sn(m)|

∑
i=1

∑
u∈A(m)

i

PU(Ln)(u, m) ·m

=
βn

∑
m=1

∑
xi∈Sn(m)

PX̃n(xi) ·m, (76)

where we have used Um =
⋃|Sn(m)|

i=1 A(m)
i and (72). For xi ∈ Sn(m), we obtain from (74)

PX̃n(xi) ≤ PVn(xi) +
Pr{Vn ∈ Sn(m)}

Km

≤ PVn(xi)

(
1 +

1
PVn(xi)Km

)
≤ PVn(xi)

(
1 +

1
Knγ

)
, (77)

where, to derive the last inequality, we have used (62). Plugging the inequality

m ≤ log
1

PVn(xi)
+ nγ + 1 (∀xi ∈ Sn(m)) (78)

and (77) into (76), we obtain

E[Ln] ≤
(

1 +
1

Knγ

) βn

∑
m=1

∑
xi∈Sn(m)

PVn(xi)

(
log

1
PVn(xi)

+ nγ + 1
)

≤
(

1 +
1

Knγ

)
(H(Vn) + nγ + 1), (79)

which yields
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lim sup
n→∞

1
n
E[Ln] ≤ lim sup

n→∞

1
n

H(Vn) + 2γ

≤ lim sup
n→∞

1
n

H[δ+γ](Xn) + 3γ

= H[δ+γ](X) + 3γ

≤ H+ + 3γ = R, (80)

where the second inequality follows from (53) and the last one is due to (52).
(c) Evaluation of Variational Distance:

From (61) and (74), we have

∑
x∈Sn(m)

|PX̃n(x)− PVn(x)| ≤ |Sn(m)|Pr{Vn ∈ Sn(m)}
Km ≤ Pr{Vn ∈ Sn(m)}

Knγ
, (81)

which, in view of (58), leads to

d(PX̃n , PVn) =
1
2 ∑

x∈Tn

|PX̃n(x)− PVn(x)|+ 1
2 ∑

x 6∈Tn

|PX̃n(x)− PVn(x)|

≤ 1
2

βn

∑
m=1

∑
x∈Sn(m)

|PX̃n(x)− PVn(x)|

+
1
2
(
Pr{X̃n 6∈ Tn}+ Pr{Vn 6∈ Tn}

)
≤ 1

2

βn

∑
m=1

Pr{Vn ∈ Sn(m)}
Knγ

+ γ ≤ 1
2

K−nγ + γ, (82)

where we have used (75) to obtain the leftmost inequality in (82). By the triangle
inequality, we obtain

d(PXn , PX̃n) ≤ d(PXn , PVn) + d(PX̃n , PVn) ≤ δ + 2γ +
1
2

K−nγ, (83)

where the last inequality follows because PVn ∈ Bδ+γ(Xn). Thus, we obtain from (83)

lim sup
n→∞

d(PXn , PX̃n) ≤ δ + 2γ. (84)

Since γ > 0 is arbitrary and we have (80), we conclude that R is v(δ)-achievable.

3.4. General Formula for δ = 0

In this subsection, we consider the special case with δ = 0. In this case, we can
elucidate the relationship between the minimum achievable rates for VL source codes with
an asymptotically vanishing decoding error probability and the FL source codes.

We obtain the following corollary from Theorem 3 and Proposition 1:

Corollary 2. For any general target source X,

Sv(X) = lim
γ↓0

G[γ](X), (85)

where G[γ](X) is defined in (37).

It has been shown by Han [2] that any source X = {Xn}∞
n=1 satisfying the uniform

integrability (cf. Han [2]) satisfies

lim
γ↓0

G[γ](X) = H(X) := lim sup
n→∞

1
n

H(Xn), (86)
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where H(X) is called the sup-entropy rate. Notice here, in particular, that the finiteness of
an alphabet implies the uniform integrability [2]. Thus, we obtain the following corollary:

Corollary 3. For any finite alphabet target source X,

Sv(X) = H(X). (87)

Remark 8. As in the case of FL resolvability and FL source coding problems, Sv(X) is tightly
related to VL source codes with vanishing decoding error probabilities. Denoting by R∗v(X) the
minimum error-vanishing VL -achievable rate for a source X, Han [36] has shown that

R∗v(X) = lim
γ↓0

G[γ](X), (88)

and, hence, from Corollary 3, it is concluded that

Sv(X) = R∗v(X). (89)

In addition, if a general source X satisfies the uniform integrability and the strong converse
property (cf. Han [2]), then equation (86) holds and hence it follows from ([2], Theorem 1.7.1) that

Sf(X) = Sv(X) = R∗v(X) = Rv(X) = Rf(X) = H(X), (90)

where Rf(X) := Rf(0|X) and Rv(X) denotes the minimum achievable rate of VL source codes
with zero error probabilities for all n = 1, 2, · · · .

Remark 9. Han and Verdú [6] have discussed the problem of mean-resolvability for the target
distribution PXn . In this problem, the coin distribution may be a general source X̃ = {X̃n}∞

n=1,
where X̃n is a random variable that takes values in X n with the average length rate 1

nE[Ln] in (18)
replaced with the entropy rate 1

n H(X̃n). Denoting by Sv(X) the mean-resolvability, which is defined
as the infimum of v-achievable rates for a general source X (with the countably infinite alphabet),
we can easily verify that any mean-resolution rate R > Sv(X) must satisfy R ≥ limγ↓0 G[γ](X)

so that Sv(X) ≤ Sv(X). On the other hand, Sv(X) ≥ Sv(X) by definition. Thus, in view of
Corollary 2, we have

Corollary 4. For any general target source X,

Sv(X) = Sv(X) = lim
γ↓0

G[γ](X). (91)

4. VL Resolvability: Divergence

So far, we have considered the problem of VL resolvability, in which the approximation
level is measured by the variational distance between Xn and X̃n. It is sometimes of use
to deal with another quantity as an approximation measure. In this section, we use the
(unnormalized) divergence as the approximation measure.

4.1. Definitions

In this subsection, we address the following problem.

Definition 4 (VL δ-resolvability: divergence). A resolution rate R ≥ 0 is said to be VL δ-
achievable or simply vD(δ)-achievable (under the divergence) with δ ≥ 0, if there exists a VL uni-
form random number U(Ln) and a deterministic mapping ϕn : U ∗ → X n satisfying

lim sup
n→∞

1
n
E[Ln] ≤ R, (92)

lim sup
n→∞

D(X̃n||Xn) ≤ δ, (93)

where X̃n = ϕn(U(Ln)) and D(X̃n||Xn) denotes the divergence between PX̃n and PXn :
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D(X̃n||Xn) = ∑
x∈X n

PX̃n(x) log
PX̃n(x)
PXn(x)

. (94)

The infimum of all vD(δ)-achievable rates, i.e.,

SD
v (δ|X) := inf{R : R is vD(δ)-achievable} (95)

is called the VL δ-resolvability or simply the vD(δ)-resolvability.

Remark 10. The measure of approximation is now the divergence D(X̃n||Xn) but not its reversed
version D(Xn||X̃n). In the context of resolvability, divergence D(X̃n||Xn) (and its counterpart
in the case of channel resolvability) is usually employed as in [6,7,9]. We also use this type of
divergence in the subsequent sections.

To establish the general formula for SD
v (δ|X), we introduce the following quantity

for a general source X = {Xn}∞
n=1. Recall that P(X n) denotes the set of all probability

distributions on X n. For δ ≥ 0, defining the δ-ball using the divergence as

BD
δ (Xn) = {PVn ∈ P(X n) : D(Vn||Xn) ≤ δ}, (96)

we introduce the following quantity, referred to as the smooth entropy using the divergence:

HD
[δ](Xn) := inf

PVn∈BD
δ (Xn)

H(Vn), (97)

where H(Vn) denotes the Shannon entropy of PVn . Obviously, HD
[δ](Xn) is a nonincreasing

function of δ. Now, we define

HD
[δ](X) = lim sup

n→∞

1
n

HD
[δ](Xn). (98)

The following lemma is used to derive Corollary 5 of Theorem 4 below in the next subsection.

Lemma 1. For any general source X,

H[δ](X) ≤ HD
[g(δ)](X) (δ≥ 0), (99)

where we define g(δ) = 2δ2/ ln K, and

lim
δ↓0

G[δ](X) = lim
δ↓0

H[δ](X) = lim
δ↓0

HD
[δ](X) ≤ H(X). (100)

(Proof) See Appendix E.

4.2. General Formula

Here, we establish another main theorem, which characterizes SD
v (δ|X) for all δ ≥ 0

in terms of the smooth entropy using the divergence.

Theorem 4. For any general target source X,

SD
v (δ|X) = lim

γ↓0
HD
[δ+γ](X) (δ≥ 0). (101)

Remark 11. It should be noticed that the approximation measure considered here is not the
normalized divergence

1
n

D(ϕn(U(Ln))||Xn), (102)
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which has been used in the problem of FL δ-resolvability [7]. The achievability scheme given in the
proof of the direct part of Theorem 4 can also be used in the case of this relaxed measure. Indeed,
denoting the VL δ-resolvability with the normalized divergence by S̃D

v (δ|X), the general formula for
S̃D

v (δ|X) is given in the same form as (101), if the radius of the δ-ball BD
δ (Xn) in the definition of

HD
[δ](Xn) is replaced with the normalized divergence. It generally holds that SD

v (δ|X) ≥ S̃D
v (δ|X)

for all δ ≥ 0 because the normalized divergence is smaller than the unnormalized divergence.

As we have seen in Lemma 1, we generally have SD
v (g(δ)|X) ≥ Sv(δ|X) for any

δ ∈ [0, 1) with g(δ) = 2δ2/ ln K. In particular, in the case that δ = 0, we obtain the
following corollary of Theorems 3 and 4.

Corollary 5. For any general target source X,

SD
v (0|X) = Sv(X). (103)

Corollary 5 indicates that the vD(0)-resolvability SD
v (0|X) coincides with the v-resolvability

Sv(X) and is also characterized by the r.h.s. of (85). By (88), it also implies that
SD

v (0|X) = R∗v(X), where R∗v(X) denotes the minimum error-vanishing achievable rate with
VL source codes for X.

Proof of Theorem 4.

(1) Converse Part:
Let R be vD(δ)-achievable. Then, there exists U(Ln) and ϕn satisfying (92) and

lim sup
n→∞

δn ≤ δ, (104)

where we define δn = D(X̃n||Xn) with X̃n = ϕn(U(Ln)). Equation (104) implies that,
for any given γ > 0, it holds that δn ≤ δ + γ for all n ≥ n0 with some n0 > 0,
and therefore

HD
[δ+γ](Xn) ≤ HD

[δn ]
(Xn) (∀n ≥ n0) (105)

since HD
[δ](Xn) is a nonincreasing function of δ. Since PX̃n ∈ BD

δn
(Xn), we have

HD
[δn ]

(Xn) ≤ H(X̃n). (106)

On the other hand, it follows from (23) that

H(X̃n) ≤ H(U(Ln)) = E[Ln] + H(Ln), (107)

where the inequality is due to the fact that ϕn is a deterministic mapping
and X̃n = ϕn(U(Ln)).
Combining (105)–(107) yields

HD
[δ+γ](X) = lim sup

n→∞

1
n

HD
[δ+γ](Xn)

≤ lim sup
n→∞

1
n
E[Ln] + lim sup

n→∞

1
n

H(Ln) ≤ R, (108)

where we used (25) and (92) for the last inequality. Since γ > 0 is arbitrary, we have

lim
γ↓0

HD
[δ+γ](X) ≤ R. (109)

(2) Direct Part:
We modify the achievability scheme in the proof of the direct part of Theorem 3.
Although the proof of this part is quite similar to that of the direct part of Theorem 3,
we give here the full proof in order to avoid subtle possible confusions. We may
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assume that H+ := limγ↓0 HD
[δ+γ](X) is finite (H+ < +∞). Letting R = H+ + µ,

where µ > 0 is an arbitrary constant, we shall show that R is vD(δ)-achievable.
Let Vn be a random variable subject to PVn ∈ BD

δ+γ(Xn) satisfying

HD
[δ+γ](Xn) + γ ≥ H(Vn) (110)

for any fixed γ ∈ (0, 1
2 ]. We can choose a cn > 0 so large that

γ0 := Pr{Vn 6∈ Tn} ≤ γ (111)

where

Tn :=
{

x ∈ X n :
1
n

log
1

PVn(x)
≤ cn

}
. (112)

We also define

`(x) :=
⌈

log
1

PVn(x)
+ nγ

⌉
for x ∈ Tn. (113)

Letting, for m = 1, 2, . . . , βn := dn(cn + γ)e,

Sn(m) := {x ∈ X n : `(x) = m}, (114)

these sets form a partition of Tn:
βn⋃

m=1

Sn(m) = Tn. (115)

We set Ln so that

Pr{Ln = m} = Pr{Vn ∈ Sn(m)}
Pr{Vn ∈ Tn}

=
Pr{Vn ∈ Sn(m)}

1− γ0
, (116)

which satisfies
βn

∑
m=1

Pr{Ln = m} = Pr{Vn ∈ Tn}
1− γ0

= 1, (117)

and, hence, the probability distribution of U(Ln) is given as

PU(Ln)(u, m) := Pr{U(Ln) = u, Ln = m} = Pr{Vn ∈ Sn(m)}
(1− γ0)Km (∀u ∈ Um). (118)

(a) Construction of Mapping ϕn : U ∗ → X n:
Index the elements in Sn(m) as x1, x2, . . . , x|Sn(m)| (m = 1, 2, . . . , βn), where it holds that

|Sn(m)| ≤ Km−nγ (119)

(cf. (61)–(63)). For i = 1, 2, . . . , |Sn(m)|, define Ã(m)
i ⊂ Um as the set of sequences

u ∈ Um so that

∑
u∈Ã(m)

i

PU(Ln)(u, m) ≤ PVn(xi)

1− γ0
< ∑

u∈Ã(m)
i

PU(Ln)(u, m) +
Pr{Ln = m}

Km (120)

and

Ã(m)
i ∩ Ã(m)

j = ∅ (i 6= j). (121)

If
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|Sn(m)|

∑
i=1

∑
u∈Ã(m)

i

PU(Ln)(u, m) <
1

1− γ0

|Sn(m)|

∑
i=1

PVn(xi) = Pr{Ln = m}, (122)

then add a ui ∈ Um \ (∪j Ã
(m)
j ) to obtain

A(m)
i = Ã(m)

i ∪ {ui} (123)

for i = 1, 2, . . . in order, until it holds that with some 1 ≤ c ≤ |Sn(m)|
c⋃

i=1

A(m)
i ∪

|Sn(m)|⋃
i=c+1

Ã(m)
i = Um, (124)

where u1, u2, · · · are selected to be all distinct. Since |Um| = Km and

∑
u∈Um

PU(Ln)(u, m) = ∑
u∈Um

Pr{Vn ∈ Sn(m)}
(1− γ0)Km = Pr{Ln = m}, (125)

such a 1 ≤ c ≤ |Sn(m)| always exists. For simplicity, we set for i = c+ 1, c + 2, . . . , |Sn(m)|

A(m)
i = Ã(m)

i (126)

and for i = 1, 2, . . . , |Sn(m)|

ϕn(u) = xi for u ∈ A(m)
i , (127)

which defines the random variable X̃n with values in X n such that

PX̃n(xi) = ∑
u∈A(m)

i

PU(Ln)(u, m) (xi ∈ Sn(m)), (128)

that is, X̃n = ϕn(U(Ln)). Notice that, by this construction, we have∣∣∣∣PX̃n(xi)−
PVn(xi)

1− γ0

∣∣∣∣ ≤ Pr{Ln = m}
Km =

Pr{Vn ∈ Sn(m)}
(1− γ0)Km (129)

for i = 1, 2, . . . , |Sn(m)|; m = 1, 2, . . . , βn, and

Pr{X̃n 6∈ Tn} = 0 and Pr{Vn 6∈ Tn} ≤ γ. (130)

(b) Evaluation of Average Length:
The average length E[Ln] is evaluated as follows:

E[Ln] =
βn

∑
m=1

∑
u∈Um

PU(Ln)(u, m) ·m

=
βn

∑
m=1

|Sn(m)|

∑
i=1

∑
u∈A(m)

i

PU(Ln)(u, m) ·m

=
βn

∑
m=1

∑
xi∈Sn(m)

PX̃n(xi) ·m, (131)

where we have used Um =
⋃|Sn(m)|

i=1 A(m)
i and (128). For xi ∈ Sn(m) we obtain

from (129) and the right inequality of (130)
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PX̃n(xi) ≤
PVn(xi)

1− γ0
+

Pr{Vn ∈ Sn(m)}
(1− γ0)Km

=
1

1− γ0

(
PVn(xi) +

Pr{Vn ∈ Sn(m)}
Km

)
≤ 1

1− γ0

(
1 +

1
PVn(xi)Km

)
PVn(xi)

≤ (1 + 2γ)

(
1 +

1
Knγ

)
PVn(xi), (132)

where, to derive the last inequality, we have used the fact 0 ≤ γ0 ≤ γ ≤ 1
2 and

PVn(xi) ≥ K−(m−nγ) (∀xi ∈ Sn(m)). (133)

It should be noticed that (132) also implies that

PX̃n(x) ≤ (1 + 2γ)

(
1 +

1
Knγ

)
PVn(x) (∀x ∈ X n) (134)

since PX̃n(x) = 0 for x 6∈ Tn =
⋃βn

m=1 Sn(m). Plugging the inequality

m ≤ log
1

PVn(xi)
+ nγ + 1 (∀xi ∈ Sn(m)) (135)

and (132) into (131), we obtain

E[Ln] ≤ (1 + 2γ)

(
1 +

1
Knγ

)
·

βn

∑
m=1

∑
xi∈Sn(m)

PVn(xi)

(
log

1
PVn(xi)

+ nγ + 1
)

≤ (1 + 2γ)

(
1 +

1
Knγ

)
(H(Vn) + nγ + 1). (136)

Thus, we obtain from (136)

lim sup
n→∞

1
n
E[Ln] ≤ (1 + 2γ)

{
lim sup

n→∞

1
n

H(Vn) + γ

}
≤ (1 + 2γ)

{
lim sup

n→∞

1
n

HD
[δ+γ](Xn) + 2γ

}
≤ (1 + 2γ)(H+ + 2γ), (137)

where the second inequality follows from (110). Since we have assumed that H+ is
finite and γ ∈ (0, 1

2 ] is arbitrary, the r.h.s. of (137) can be made as close to H+ as
desired. Therefore, for all sufficiently small γ > 0, we obtain

lim sup
n→∞

1
n
E[Ln] ≤ H+ + µ = R (138)

(c) Evaluation of Divergence:
The divergence D(X̃n||Xn) can be rewritten as

D(X̃n||Xn) = D(X̃n||Vn) +E
[

log
PVn(X̃n)

PXn(X̃n)

]
. (139)

In view of (132), we obtain
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D(X̃n||Vn) =
βn

∑
m=1

∑
x∈Sn(m)

PX̃n(x) log
PX̃n(x)
PVn(x)

≤
βn

∑
m=1

∑
x∈Sn(m)

PX̃n(x) log
{
(1 + 2γ)

(
1 +

1
Knγ

)}

≤ 2γ

ln K
+ log

(
1 +

1
Knγ

)
(140)

and

E
[

log
PVn(X̃n)

PXn(X̃n)

]
= ∑

x∈X n
PX̃n(x) log

PVn(x)
PXn(x)

≤ (1 + 2γ)

(
1 +

1
Knγ

)
D(Vn||Xn)

≤ (1 + 2γ)(δ + γ)

(
1 +

1
Knγ

)
, (141)

where to obtain the last inequality we used the fact that PVn ∈ BD
δ+γ(Xn). Plugging (140)

and (141) into (139) yields

lim sup
n→∞

D(X̃n||Xn) ≤ 2γ

ln K
+ (1 + 2γ)(δ + γ)

≤ δ + γ(2δ + 5), (142)

where we have used the fact that 2γ
ln K ≤ 3γ for all K ≥ 2 and the assumption 0 < γ ≤ 1

2
to derive the last inequality. Since γ ∈ (0, 1

2 ] is arbitrary and we have (138), R
is vD(δ)-achievable.

5. Mean and VL Channel Resolvability

So far, we have studied the problem of source resolvability, whereas the problem of
channel resolvability has been introduced by Han and Verdú [6] to investigate the capacity of
identification codes [11]. In a conventional problem of this kind, a target output distribution
PYn via a channel Wn due to an input Xn is approximated by encoding the FL uniform
random number UMn as a channel input. In this section, we generalize the problem of such
channel resolvability to that in the variable-length setting.

5.1. Definitions

Let X and Y be finite or countably infinite alphabets. Let W = {Wn}∞
n=1 be a general

channel, where Wn : X n → Yn denotes a stochastic mapping. We denote by Y = {Yn}∞
n=1

the output process via W due to an input process X = {Xn}∞
n=1, where Xn and Yn take

values in X n and Yn, respectively. Again, we do not impose any assumptions such as
stationarity or ergodicity on either X or W . As in the previous sections, we will identify Xn

and Yn with their probability distributions PXn and PYn , respectively, and these symbols
are used interchangeably.

In this section, we consider several types of problems of approximating a target output
distribution PYn . The first one is the problem of mean-resolvability [6], in which the channel
input is allowed to be an arbitrary general source.

Definition 5 (mean δ-channel resolvability: variational distance). Let δ ∈ [0, 1) be fixed
arbitrarily. A resolution rate R ≥ 0 is said to be mean δ-achievable for X (under the variational
distance) if there exists a general source X̃ = {X̃n}∞

n=1 satisfying
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lim sup
n→∞

1
n

H(X̃n) ≤ R, (143)

lim sup
n→∞

d(PYn , PỸn) ≤ δ, (144)

where Ỹn denotes the output via Wn due to input X̃n. The infimum of all mean δ-achievable rates
for X, i.e.,

Sv(δ|X, W) := inf{R : R is mean δ-achievable for X} (145)

is referred to as the mean δ-resolvability for X. We also define the mean δ-resolvability for the worst
input as

Sv(δ|W) := sup
X

Sv(δ|X, W). (146)

On the other hand, we may also consider the problem of VL channel resolvability. Here,
the VL uniform random number U(Ln) is defined as in the foregoing sections. Consider the
problem of approximating the target output distribution PYn via Wn due to Xn by using
another input X̃n = ϕn(U(Ln)) with a deterministic mapping ϕn : U ∗ → X n.

Definition 6 (VL δ-channel resolvability: variational distance). Let δ ∈ [0, 1) be fixed arbi-
trarily. A resolution rate R ≥ 0 is said to be VL δ-achievable or simply v(δ)-achievable for X (under
the variational distance) if there exists a VL uniform random number U(Ln) and a deterministic
mapping ϕn : U ∗ → X n satisfying

lim sup
n→∞

1
n
E[Ln] ≤ R, (147)

lim sup
n→∞

d(PYn , PỸn) ≤ δ, (148)

where E[·] denotes the expected value and Ỹn denotes the output via Wn due to input X̃n =
ϕn(U(Ln)). The infimum of all v(δ)-achievable rates for X, i.e.,

Sv(δ|X, W) := inf{R : R is v(δ)-achievable for X} (149)

is called the VL δ-channel resolvability or simply v(δ)-channel resolvability for X. We also define
the VL δ-channel resolvability or simply v(δ)-channel resolvability for the worst input as

Sv(δ|W) := sup
X

Sv(δ|X, W). (150)

When Wn is the identity mapping, the problem of channel resolvability reduces to that of
source resolvability, which has been investigated in the foregoing sections. In this sense, the
problem of channel resolvability is a generalization of the problem of source resolvability.

Similarly to the problem of source resolvability, we may also use the divergence
between the target output distribution PYn and the approximated output distribution PỸn

as an approximation measure.

Definition 7 (mean δ-channel resolvability: divergence). Let δ ≥ 0 be fixed arbitrarily. A
resolution rate R ≥ 0 is said to be mean δ-achievable for X (under the divergence) if there exists a
general source X̃ = {X̃n}∞

n=1 satisfying

lim sup
n→∞

1
n

H(X̃n) ≤ R, (151)

lim sup
n→∞

D(Ỹn||Yn) ≤ δ, (152)

where Ỹn denotes the output via Wn due to input X̃n. The infimum of all mean δ-achievable rates
for X, i.e.,
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SD
v (δ|X, W) := inf{R : R is mean δ-achievable for X} (153)

is referred to as the mean δ-channel resolvability for X. We also define the mean δ-channel resolv-
ability for the worst input as

SD
v (δ|W) := sup

X
SD

v (δ|X, W). (154)

Definition 8 (VL δ-channel resolvability: divergence). Let δ ≥ 0 be fixed arbitrarily. A
resolution rate R ≥ 0 is said to be VL δ-achievable or simply vD(δ)-achievable for X (under
the divergence) if there exists a VL uniform random number U(Ln) and a deterministic mapping
ϕn : U ∗ → X n satisfying

lim sup
n→∞

1
n
E[Ln] ≤ R, (155)

lim sup
n→∞

D(Ỹn||Yn) ≤ δ, (156)

where E[·] denotes the expected value and Ỹn denotes the output via Wn due to input
X̃n = ϕn(U(Ln)). The infimum of all vD(δ)-achievable rates for X, i.e.,

SD
v (δ|X, W) := inf{R : R is vD(δ)-achievable for X} (157)

is called the VL δ-channel resolvability or simply vD(δ)-channel resolvability for X. We also define
the VL δ-channel resolvability or simply vD(δ)-channel resolvability for the worst input as

SD
v (δ|W) := sup

X
SD

v (δ|X, W). (158)

Remark 12. Since the outputs of a deterministic mapping X̃n = ϕn(U(Ln)) form a general source
X̃, it holds that

Sv(δ|X, W) ≤ Sv(δ|X, W) (δ ∈ [0, 1)), (159)

SD
v (δ|X, W) ≤ SD

v (δ|X, W) (δ ≥ 0) (160)

for any general source X and general channel W . These relations lead to the analogous relation for
the mean/VL δ-channel resolvability for the worst input:

Sv(δ|W) ≤ Sv(δ|W) (δ ∈ [0, 1)), (161)

SD
v (δ|W) ≤ SD

v (δ|W) (δ ≥ 0). (162)

5.2. General Formulas

For a given general source X = {Xn}∞
n=1 and a general channel W = {Wn}∞

n=1, let
Y = {Yn}∞

n=1 be the channel output via W due to input X. We define

H[δ],Wn(Xn) = inf
PVn∈Bδ(Xn ,Wn)

H(Vn), (163)

HD
[δ],Wn(Xn) = inf

PVn∈BD
δ (Xn ,Wn)

H(Vn) (164)

where H(Vn) denotes the Shannon entropy of Vn and Bδ(Xn, Wn) and BD
δ (Xn, Wn) are

defined as

Bδ(Xn, Wn) = {PVn ∈ P(X n) : d(PYn , PZn) ≤ δ}, (165)

BD
δ (Xn, Wn) = {PVn ∈ P(X n) : D(Zn||Yn) ≤ δ}, (166)

respectively, with Zn defined as the output via Wn due to input Vn. Both H[δ],Wn(Xn) and
HD
[δ],Wn(Xn) are nonincreasing functions of δ. In addition, we define
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H[δ],W (X) = lim sup
n→∞

1
n

H[δ],Wn(Xn), (167)

HD
[δ],W (X) = lim sup

n→∞

1
n

HD
[δ],Wn(Xn), (168)

which play an important role in characterizing the mean/VL δ-channel resolvability.
We show the general formulas for the mean/VL δ-channel resolvability.

Theorem 5 (with variational distance). For any input process X and any general channel W ,

Sv(δ|X, W) = Sv(δ|X, W) = lim
γ↓0

H[δ+γ],W (X) (δ ∈ [0, 1)). (169)

In particular,

Sv(δ|W) = Sv(δ|W) = sup
X

lim
γ↓0

H[δ+γ],W (X) (δ ∈ [0, 1)). (170)

Theorem 6 (with divergence). For any input process X and any general channel W ,

SD
v (δ|X, W) = SD

v (δ|X, W) = lim
γ↓0

HD
[δ+γ],W (X) (δ ≥ 0). (171)

In particular,

SD
v (δ|W) = SD

v (δ|W) = sup
X

lim
γ↓0

HD
[δ+γ],W (X) (δ ≥ 0). (172)

Remark 13. It can be easily verified that the variational distance satisfies

d(PYn , PZn) ≤ d(PXn , PVn), (173)

and, therefore, we have Bδ(Xn) ⊆ Bδ(Xn, Wn). This relation and formulas (32) and (169) indicate that

Sv(δ|X, W) ≤ Sv(δ|X) (δ ∈ [0, 1)) (174)

for any given channel W . Likewise, it is well known that the divergence satisfies the data processing
inequality D(Ỹn||Yn) ≤ D(X̃n||Xn) [33], and formulas (101) and (171) lead to

SD
v (δ|X, W) ≤ SD

v (δ|X) (δ ≥ 0), (175)

regardless of channel W .

Remark 14. It is obvious that Theorems 5 and 6 reduce to Theorems 3 and 4, respectively, when
the channel W is the identity mapping. Precisely, for the identity mapping W = I, the mean
δ-resolvability and the v(δ)-channel resolvability for X are given by

Sv(δ|X) = Sv(δ|X) = lim
γ↓0

H[δ+γ](X), (176)

where Sv(δ|X) denotes the mean δ-resolvability Sv(δ|X, W) for the identity mapping W . The
analogous relationship holds under the divergence:

SD
v (δ|X) = SD

v (δ|X) = lim
γ↓0

HD
[δ+γ](X), (177)

where SD
v (δ|X) denotes the mean δ-resolvability SD

v (δ|X, W) for the identity mapping W = I.
Thus, it turns out that Theorems 5 and 6 are indeed generalizations of Theorems 3 and 4.

Proof of Theorems 5 and 6.

(1) Converse Part:
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Because of the general relationship (159), to prove the converse part of Theorem 5, it
suffices to show that

Sv(δ|X, W) ≥ lim
γ↓0

H[δ+γ],W (X). (178)

Let R be mean δ-achievable for X under the variational distance. Then, there exists a
general source X̃ = {X̃n}∞

n=1 satisfying (143) and

lim sup
n→∞

δn ≤ δ, (179)

where δn := d(PYn , PỸn). Fixing γ > 0 arbitrarily, we have δn ≤ δ + γ for all n ≥ n0
with some n0 > 0 and then

H[δ+γ],Wn(Xn) ≤ H[δn ],Wn(Xn) (n ≥ n0) (180)

since H[δ],Wn(Xn) is a nonincreasing function of δ. Since PX̃n ∈ Bδn(Xn, Wn), we have
H[δn ],Wn(Xn) ≤ H(X̃n). Thus, we obtain from (143)

H[δ+γ],W (X) ≤ lim sup
n→∞

1
n

H(X̃n) ≤ R. (181)

Since γ > 0 is an arbitrary constant, this implies (178).
The converse part of Theorem 6 can be proven in an analogous way with
due modifications.

(2) Direct Part:
Because of the general relationship (159), to prove the direct part (achievability) of
Theorem 5, it suffices to show that, for any fixed γ > 0, the resolution rate

R = lim
γ↓0

H[δ+γ],W (X) + 3γ (182)

is v(δ)-achievable for X under the variational distance.
Let PVn ∈ Bδ+γ(Xn, Wn) be a source satisfying

H(Vn) ≤ H[δ+γ],Wn(Xn) + γ. (183)

Then, by the same argument to derive (80) and (82) as developed in the proof of the
direct part of Theorem 3, we can construct a VL uniform random number U(Ln) and a
deterministic mapping ϕn : U ∗ → X n satisfying

lim sup
n→∞

1
n
E[Ln] ≤ lim

γ↓0
H[δ+γ],W (X) + 3γ = R (184)

and

d(PX̃n , PVn) ≤ 1
2

K−nγ + γ, (185)

where X̃n = ϕn(U(Ln)). Let Zn denote the output random variable via Wn due to
input Vn. Then, letting Ỹn be the output via channel Wn due to input X̃n, we can
evaluate d(PỸn , PZn) as
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d(PỸn , PZn) =
1
2 ∑

y∈Yn
|PỸn(y)− PZn(y)|

=
1
2 ∑

y∈Yn

∣∣∣∣∣ ∑
x∈X n

W(y|x)
(

PX̃n(x)− PVn(x)
)∣∣∣∣∣

≤ 1
2 ∑

y∈Yn
∑

x∈X n
W(y|x)|PX̃n(x)− PVn(x)|

= d(PX̃n , PVn) ≤ 1
2

K−nγ + γ. (186)

Thus, we obtain

lim sup
n→∞

d(PYn , PỸn) ≤ lim sup
n→∞

d(PYn , PZn) + lim sup
n→∞

d(PỸn , PZn)

≤ δ + 2γ, (187)

where we have used the fact PVn ∈ Bδ+γ(Xn, Wn) to derive the last inequality. Since
γ > 0 is an arbitrary constant, we can conclude that R is v(δ)-achievable for X.
The direct part of Theorem 6 can be proven in the same way as Theorem 4 with
due modifications. Fixing PVn ∈ BD

δ+γ(Xn, Wn) and using the encoding scheme as
developed in the proof of Theorem 4, the evaluation of the average length rate is
exactly the same, and we can obtain (138). A key step is to evaluate the divergence
D(Ỹn||Yn), which can be rewritten as

D(Ỹn||Yn) = D(Ỹn||Zn) +E
[

log
PZn(Ỹn)

PYn(Ỹn)

]
. (188)

The first term on the r.h.s. can be bounded as

D(Ỹn||Zn) ≤ D(X̃n||Vn) ≤ 2γ

ln K
+ log

(
1 +

1
Knγ

)
(189)

as in (140), where the left inequality is due to the data processing inequality. Similarly
to the derivation of (141), the second term can be bounded as

E
[

log
PZn(Ỹn)

PYn(Ỹn)

]
= ∑

y∈Yn
∑

x∈X n
PX̃n(x)Wn(y|x) log

PZn(y)
PYn(y)

≤ (1 + 2γ)

(
1 +

1
Knγ

)
∑

y∈Yn
∑

x∈X n
PVn(x)Wn(y|x) log

PZn(y)
PYn(y)

= (1 + 2γ)

(
1 +

1
Knγ

)
D(Zn||Yn), (190)

where we have used (134). Here, D(Zn||Yn) ≤ δ + γ because Zn is the output via Wn

due to input Vn ∈ BD
δ+γ(Xn, Wn). The rest of the steps are the same as in the proof

of Theorem 4.

6. Second-Order VL Channel Resolvability

So far, we have analyzed the first-order VL resolvabilities and established various
first-order resolvability theorems. One of the next important steps is the second-order
analysis, and so, in this section, we generalize VL resolvabilities in the second-order setting.

6.1. Definitions

We now turn to considering the second-order resolution rates [26,27,29]. First, we
consider the VL resolvability based on the variational distance.
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Definition 9 (VL (δ, R)-channel resolvability: variational distance). A second-order resolution
rate L ∈ (−∞,+∞) is said to be VL (δ, R)-achievable (under the variational distance) for X
with δ ∈ [0, 1) if there exist a VL uniform random number U(Ln) and a deterministic mapping
ϕn : U ∗ → X n satisfying

lim sup
n→∞

1√
n
(E[Ln]− nR) ≤ L, (191)

lim sup
n→∞

d(PYn , PỸn) ≤ δ, (192)

where Ỹn denotes the output via Wn due to input X̃n = ϕn(U(Ln)). The infimum of all VL (δ, R)-
achievable rates for X is denoted by

Tv(δ, R|X, W) := inf{L : L is VL (δ, R)-achievable for X}. (193)

When W is the identity mapping I, Tv(δ, R|X, W) is simply denoted by Tv(δ, R|X)
(source resolvability).

Next, we may consider the VL resolvability with the divergence instead of the
variational distance.

Definition 10 (VL (δ, R)-channel resolvability: divergence). A second-order resolution rate
L ∈ (−∞,+∞) is said to be VL (δ, R)-achievable for X (with the divergence) where δ ≥ 0 if there
exists a VL uniform random number U(Ln) and a deterministic mapping ϕn : U ∗ → X n satisfying

lim sup
n→∞

1√
n
(E[Ln]− nR) ≤ L, (194)

lim sup
n→∞

D(Ỹn||Yn) ≤ δ, (195)

where Ỹn denotes the output via Wn due to input X̃n = ϕn(U(Ln)). The infimum of all VL (δ, R)-
achievable rates for X is denoted as

TD
v (δ, R|X, W) := inf{L : L is VL (δ, R)-achievable for X}. (196)

When W is the identity mapping I, TD
v (δ, R|X, W) is simply denoted by TD

v (δ, R|X)
(source resolvability).

Remark 15. It is easily verified that

Tv(δ, R|X, W) =

 +∞ for R < Sv(δ|X, W)

−∞ for R > Sv(δ|X, W).
(197)

Hence, only the case R = Sv(δ|X, W) is of interest to us. The same remark also applies to TD
v (δ, R|X, W).

6.2. General Formulas

We establish general formulas for the second-order resolvability. The proofs of the
following theorems are given below subsequently to Remark 17.

Theorem 7 (with variational distance). For any input process X and general channel W ,

Tv(δ, R|X, W) = lim
γ↓0

lim sup
n→∞

1√
n

(
H[δ+γ],Wn(Xn)− nR

)
(δ ∈ [0, 1), R ≥ 0). (198)

In particular, in the case where W is the identity mapping I,

Tv(δ, R|X) = lim
γ↓0

lim sup
n→∞

1√
n

(
H[δ+γ](Xn)− nR

)
(δ ∈ [0, 1), R ≥ 0). (199)
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Theorem 8 (with divergence). For any input process X and general channel W ,

TD
v (δ, R|X, W) = lim

γ↓0
lim sup

n→∞

1√
n

(
HD
[δ+γ],Wn(Xn)− nR

)
(δ ≥ 0, R ≥ 0). (200)

In particular, in the case where W is the identity mapping I,

TD
v (δ, R|X) = lim

γ↓0
lim sup

n→∞

1√
n

(
HD
[δ+γ](Xn)− nR

)
(δ ≥ 0, R ≥ 0). (201)

Remark 16. As discussed in Section 5, we may also consider using a general source X̃ as an input
to channel W , and we can define L to be a mean (δ, R)-achievable rate for X by replacing (191)
and (194) with

lim sup
n→∞

1√
n
(

H(X̃n)− nR
)
≤ L. (202)

Let Tv(δ, R|X, W) and TD
v (δ, R|X, W) denote the infimum of all mean (δ, R)-achievable rates

for X under the variational distance and the divergence, respectively. Then, it is not difficult to
verify that

Tv(δ, R|X, W) = Tv(δ, R|X, W) (δ ∈ [0, 1)), (203)

TD
v (δ, R|X, W) = TD

v (δ, R|X, W) (δ ≥ 0). (204)

Thus, there is no loss in the (δ, R)-achievable resolution rate even if the channel input X̃ is restricted
to be generated by the VL uniform random number U(Ln).

Remark 17. As in the first-order case, when the channel W is the identity mapping I, Tv(δ, R|X)
coincides with the minimum second-order length rate of the VL source codes. More precisely, we
denote by R∗v(δ, R|X) the minimum second-order length rate of a sequence of VL source codes with
the first-order average length rate R and an average error probability asymptotically not exceeding
δ. Yagi and Nomura [31] have shown that

R∗v(δ, R|X) = lim
γ↓0

lim sup
n→∞

1√
n

(
G[δ+γ](Xn)− nR

)
(δ ∈ [0, 1), R ≥ 0). (205)

Modifying the proof of Proposition 1 (cf. Appendix C), we can show that the r.h.s. of (199) coincides
with that of (205), and, therefore, it generally holds that

Tv(δ, R|X) = R∗v(δ, R|X) (δ ∈ [0, 1), R ≥ 0). (206)

As a special case, suppose that X is a stationary and memoryless source X with the finite third
absolute moment of log 1

PX(X)
. In this case, Kostina et al. [25] have recently given a single-letter

characterization for R∗v(δ, R|X) with R = H[δ](X) = (1− δ)H(X) as

R∗v(δ, R|X) = −
√

V(X)

2π
e−

(Q−1(δ))2
2 , (207)

where V(X) denotes the variance of log 1
PX(X)

(varentropy) and Q−1 is the inverse of the comple-
mentary cumulative distribution function of the standard Gaussian distribution. In view of the
general relation (206), we can also obtain the single-letter characterization for Tv(δ, R|X):

Tv(δ, R|X) = −
√

V(X)

2π
e−

(Q−1(δ))2
2 . (208)

It has not yet been made clear whether we can also have a single-letter formula for Tv(δ, R|X, W)
when the channel W is memoryless but not necessarily the identity mapping.
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Proof of Theorems 7 and 8.

(1) Converse Part:
We will show the converse part of Theorem 7. The converse part of Theorem 8 can be
proved in an analogous way.
Let L be VL (δ, R)-achievable for X under the variational distance. Then, there exists
U(Ln) and ϕn satisfying (191) and

lim sup
n→∞

δn ≤ δ, (209)

where we define δn = d(PYn , PỸn), and Ỹn is the output via Wn due to input
X̃n = ϕn(U(Ln)). Equation (209) implies that, for any given γ > 0, it holds that
δn ≤ δ + γ for all n ≥ n0 with some n0 > 0, and, therefore,

H[δ+γ],Wn(Xn) ≤ H[δn ],Wn(Xn) (∀n ≥ n0). (210)

Since PX̃n ∈ Bδn(Xn, Wn), we have

H[δn ],Wn(Xn) ≤ H(X̃n). (211)

On the other hand, it follows from (23) that

H(X̃n) ≤ H(U(Ln)) = E[Ln] + H(Ln), (212)

where the inequality is due to the fact that ϕn is a deterministic mapping
and X̃n = ϕn(U(Ln)).
Combining (210)–(212) yields

lim sup
n→∞

1√
n

(
H[δ+γ],Wn(Xn)− nR

)
≤ lim sup

n→∞

1√
n
(

H(X̃n)− nR
)

≤ lim sup
n→∞

1√
n
(E[Ln]− nR) + lim sup

n→∞

1√
n

H(Ln) ≤ L, (213)

where we have used (24) and (191) for the last inequality. Since γ > 0 is arbitrary,
we have

lim
γ↓0

lim sup
n→∞

1√
n

(
H[δ+γ],Wn(Xn)− nR

)
≤ L. (214)

(2) Direct Part:
We will show the direct part (achievability) of Theorem 7 by modifying the argument
of Theorems 3 and 5, whereas the direct part of Theorem 8 can be proved in a similar
manner by modifying that of Theorem 4 instead of Theorem 3.
Letting

L = lim
γ↓0

lim sup
n→∞

1√
n

(
H[δ+γ],Wn(Xn)− nR

)
+ 2γ, (215)

where γ > 0 is an arbitrary constant, we shall show that L is VL (δ, R)-achievable for
X under the variational distance.
We use the same achievability scheme as in the proof of Theorem 3 with slightly
different parameter settings. For γ > 0, we choose a cn > 0 so that

Pr{Vn 6∈ Tn} ≤ γ (216)

where PVn ∈ Bδ+γ(Xn, Wn) with H[δ+γ],Wn(Xn) + γ ≥ H(Vn) and
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Tn :=
{

x ∈ X n :
1
n

log
1

PVn(x)
≤ cn

}
. (217)

We here define

`(x) :=

 dlog 1
PVn (x) +

√
nγe for x ∈ Tn

0 otherwise
(218)

and βn = d(ncn +
√

nγ)e. Arguing similarly to the proof of Theorems 3 and 5, we can
show that there exist ϕn : U ∗ → X n and U(Ln) such that

d(PYn , PỸn) ≤ δ + 2γ +
1
2

K−
√

nγ (219)

and

E[Ln] ≤
(

1 +
1

K
√

nγ

)(
H[δ+γ],Wn(Xn) + 2

√
nγ + 1

)
. (220)

Therefore, we obtain

lim
n→∞

d(PYn , PỸn) ≤ δ + 2γ (221)

and

lim sup
n→∞

1√
n
(E[Ln]− nR)

≤ lim sup
n→∞

1√
n

(
H[δ+γ],Wn(Xn)− nR

)
+ 2γ

≤ lim
γ↓0

lim sup
n→∞

1√
n

(
H[δ+γ],Wn(Xn)− nR

)
+ 2γ = L. (222)

Since γ > 0 is arbitrary, L is VL (δ, R)-achievable for X.

7. Conclusions

We have investigated the problem of VL source/channel resolvability, in which a given
target probability distribution is approximated by transforming VL uniform random numbers.
Table 1 summarizes various first-order resolvabilities and their characterizations in terms of
information quantities. In this table, the theorem numbers that contain the corresponding
characterization are also indicated.

In this paper, we have first analyzed the fundamental limits on the VL δ-source
resolvability with the variational distance in Theorem 3. The VL δ-source resolvability is
essentially characterized in terms of smooth Shannon entropies. In the proof of the direct
part, we have developed a simple method for information spectrum slicing, in which sliced
information densities quantized to the same integer are approximated by an FL uniform
random number of the same length. Next, we have extended the analysis to the δ-source
resolvability under the unnormalized divergence in Theorem 4. The smoothed entropy with
the divergence again plays an important role in characterizing the δ-source resolvability.
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Table 1. Summary of First-Order Resolvability and Information Quantities.

Approximation Measure Resolvability Characterization Theorem #

Fixed-Length Resolvability

Variational Distance
Sf(X) H(X) Theorem 1 [6]

Sf(δX) Hδ(X) Theorem 2 [7]

Variable-Length Resolvability

Variational Distance
Sv(δX) lim

γ↓0
H[δ+γ](X) Theorem 3

Sv(δX, W) lim
γ↓0

H[δ+γ],W (X) Theorem 5

Divergence
SD

v (δX) lim
γ↓0

HD
[δ+γ](X) Theorem 4

SD
v (δX, W) lim

γ↓0
HD
[δ+γ],W (X) Theorem 6

Then, we have addressed the problem of δ-channel resolvability. It has been revealed
in Theorems 5 and 6 that using an arbitrary general source as a coin distribution (mean-
resolvability problem) cannot go beyond the fundamental limits of the VL resolvability, in
which only VL uniform random numbers are allowed to be a coin distribution. As in the
case of source resolvability, we have discussed the δ-channel resolvability under the varia-
tional distance and the unnormalized divergence. The second-order channel resolvability
has been characterized in Theorems 7 and 8 as well as the first-order case. We notice here
that a counterpart of the VL uniform random number is the problem of VL source coding,
for which the general treatment, focused on overflow/underflow probabilities, is found
in [38]. Indeed, when the variational distance is used as an approximation measure, it turns
out that the δ-source resolvability is equal to the minimum achievable rate of VL source
codes with an error probability of less than or equal to δ. This is a parallel relationship
between FL source resolvability and the minimum achievable rate of FL source codes [6,7].
It is of interest to investigate whether there is a coding problem to which the δ-channel
resolvability is closely related.

When δ = 0, asymptotically exact approximation is required. In the case where
the channel W is the identity mapping I, it turned out that the source resolvability un-
der the variational distance and the unnormalized divergence coincides and is given
by limγ↓0 H[γ](X), where X is the general target source. This result is analogous to the
dual problem of VL intrinsic randomness [5,36], in which the maximum achievable rates of
VL uniform random numbers extracted from a given source X are the same under two
kinds of approximation measures. It should be emphasized that in the case of VL intrinsic
randomness, the use of normalized divergence as an approximation measure results in the
same general formula as with the variational distance and the unnormalized divergence,
which does not necessarily hold in the case of mean/VL resolvability (cf. Remark 11).
It is also noteworthy that whereas only the case of δ = 0 has been completely solved
for the VL intrinsic randomness, we have also dealt with the case of a δ > 0 for the
VL source/channel resolvability.

When X is a stationary and memoryless source or is even with a one-point spectrum
(cf. Corollary 1), the formulas established reduce to a single-letter characterization for the
first- and second-order source resolvability under the variational distance. In the case
where the divergence is an approximation measure and/or the channel W is a non-identity
mapping, however, it has not yet been made clear whether we can derive a single-letter
characterization for the δ-source/channel resolvability. This question remains to be studied.

As noted in Remark 10, the order of arguments in divergence D(X̃n||Xn) is important,
and it seems difficult to extend the analyses in this paper to the case with the reversed
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D(Xn||X̃n) used as an approximation measure. In the context of intrinsic randomness, the
reversed divergence is also discussed [23]. Investigating the problem of source/channel
resolvability using such divergence is an interesting research topic.
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Appendix A. Proof of Equation (31)

(i) We first show limα↑1 Hα
[δ]
(Xn) ≤ H[δ](Xn).

Fix γ > 0 arbitrarily. We choose PVn ∈ Bδ(Xn) satisfying

H[δ](Xn) + γ ≥ H(Vn). (A1)

It is well known that the Rényi entropy of order α defined as

Hα(Vn) =
1

1− α
log ∑

x∈X n
PVn(x)α (∀α ∈ (0, 1) ∪ (1,+∞))

satisfies

H(Vn) = lim
α→1

Hα(Vn). (A2)

By definition, we have

Hα(Vn) ≥ Hα
[δ](Xn) (∀α ∈ (0, 1) ∪ (1,+∞)), (A3)

leading to

H(Vn) = lim
α↑1

Hα(Vn) ≥ lim
α↑1

Hα
[δ](Xn). (A4)

Combining (A1) and (A4) yields

H[δ](Xn) + γ ≥ H(Vn) ≥ lim
α↑1

Hα
[δ](Xn). (A5)

Since γ > 0 is an arbitrary constant, we obtain limα↑1 Hα
[δ]
(Xn) ≤ H[δ](Xn).

(ii) Next, we shall show limα↑1 Hα
[δ]
(Xn) ≥ H[δ](Xn).

Fix γ > 0 arbitrarily. We choose some α0 ∈ (0, 1) satisfying

lim
α↑1

Hα
[δ](Xn) + γ ≥ Hα0

[δ]
(Xn). (A6)

For this α0 we choose PVn ∈ Bδ(Xn) satisfying

Hα0
[δ]
(Xn) + γ ≥ Hα0(Vn). (A7)

Since Hα(Vn) is a nonincreasing function of α, we have
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Hα0(Vn) ≥ H(Vn), (A8)

and it follows from (A6)–(A8) that

lim
α↑1

Hα
[δ](Xn) + 2γ ≥ Hα0(Vn) ≥ H(Vn). (A9)

Since H(Vn) ≥ H[δ](Xn), due to PVn ∈ Bδ(Xn), and γ > 0 is arbitrarily fixed, we obtain
the desired inequality.

Appendix B. Proof of Equation (34)

To prove the alternative formula (34) for the v(δ)-resolvability Sv(δ|X), we shall show

lim
γ↓0

H[δ+γ](X) = inf
V∈Bδ(X)

H(V) (δ ∈ [0, 1)). (A10)

(i) We first show lim
γ↓0

H[δ+γ](X) ≤ inf
V∈Bδ(X)

H(V).

Fix γ > 0 arbitrarily. We choose Ṽ = {Ṽn}∞
n=1 ∈ Bδ(X) satisfying

H(Ṽ) ≤ inf
V∈Bδ(X)

H(V) + γ. (A11)

For Ṽ ∈ Bδ(X), we have d(Xn, Ṽn) ≤ δ + γ for all n ≥ n0 with some n0 > 0, yielding

H[δ+γ](Xn) ≤ H(Ṽn) (∀n ≥ n0). (A12)

Thus, it follows from (A11) and (A12) that

H[δ+γ](X) ≤ inf
V∈Bδ(X)

H(V) + γ. (A13)

Since γ > 0 is an arbitrary constant, letting γ ↓ 0 on both sides yields the desired inequality.

(ii) Next, we shall show lim
γ↓0

H[δ+γ](X) ≥ inf
V∈Bδ(X)

H(V).

Fix λ > 0 arbitrarily. We choose an arbitrary decreasing sequence of positive numbers
{γi}∞

i=1 satisfying γ1 > γ2 > · · · → 0. Then, we have

lim
γ↓0

H[δ+γ](X) = lim
i→∞

H[δ+γi ]
(X). (A14)

Additionally, by the definition of the limit superior, for each i = 1, 2, · · · we have

1
n

H[δ+γi ]
(Xn) ≤ H[δ+γi ]

(X) + λ (∀n ≥ ni) (A15)

with some 0 < n1 < n2 < · · · . Now, for each n = 1, 2, · · · , we denote by in the index
i satisfying

ni ≤ n < ni+1. (A16)

Then, from (A15), we obtain

1
n

H[δ+γin ]
(Xn) ≤ H[δ+γin ]

(X) + λ (∀n ≥ n1). (A17)

On the other hand, by the definition of H[δ+γin ]
(Xn), for each n = 1, 2, · · · , we can

choose some Vn
in ∈ Bδ+γin

(Xn) satisfying

1
n

H(Vn
in) ≤

1
n

H[δ+γin ]
(Xn) + λ. (A18)

We now construct the general source Ṽ = {Vn
in}

∞
n=1. Since Vn

in ∈ Bδ+γin
(Xn) for all n ≥ n1

indicates that
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lim sup
n→∞

d(Xn, Vn
in) ≤ δ + lim

n→∞
γin = δ, (A19)

the general source satisfies Ṽ ∈ Bδ(X).
From (A17) and (A18), we obtain

1
n

H(Vn
in) ≤ H[δ+γin ]

(X) + 2λ (∀n ≥ n1). (A20)

In view of (A14) and the fact Ṽ ∈ Bδ(X), taking lim sup
n→∞

on both sides yields

inf
V∈Bδ(X)

H(V) ≤ H(Ṽ) ≤ lim sup
n→∞

H[δ+γin ]
(X) + 2λ

= lim
γ↓0

H[δ+γ](X) + 2λ. (A21)

Since λ > 0 is an arbitrary constant, letting λ ↓ 0 yields the desired inequality.

Appendix C. Proof of Proposition 1

We shall prove the equality and inequality in (40). Equation (41) is an immediate
consequence of (40) because Hδ(X) is a right-continuous function [2].

(i) We first shall show the equality in (40): H[δ](X) = G[δ](X).

We show H[δ](X) ≤ G[δ](X). For any given γ > 0 and PXn , let A∗n ⊆ X n be a subset
of X n which satisfies

Pr{Xn ∈ A∗n} ≥ 1− δ (A22)

and

G[δ](Xn) + γ ≥ ∑
x∈A∗n

PXn(x) log
1

PXn(x)
=: F(A∗n). (A23)

Choose x0 ∈ X n \ A∗n arbitrarily. Set PX̃n so that

PX̃n(x) =


PXn(x) for x ∈ A∗n
α0 for x = x0

0 otherwise,

(A24)

where we define α0 = Pr{Xn 6∈ A∗n}.
The variational distance between PXn and PX̃n satisfies

d(PXn , PX̃n) =
1
2 ∑

x 6∈A∗n
|PXn(x)− PX̃n(x)|

≤ 1
2 ∑

x 6∈A∗n
(PXn(x) + PX̃n(x)) ≤ α0 = 1− Pr{Xn ∈ A∗n} ≤ δ, (A25)

where the last inequality is due to (A22). Therefore, PX̃n ∈ Bδ(Xn), and this implies

H[δ](Xn) ≤ H(X̃n) = F(A∗n) + α0 log
1
α0

≤ G[δ](Xn) + α0 log
1
α0

+ γ

≤ G[δ](Xn) +
log e

e
+ γ, (A26)

where the first inequality is due to (A23) and the last inequality is due to the inequality
x log x ≥ − log e

e for all x > 0. Thus, we obtain the desired inequality: H[δ](X) ≤ G[δ](X).
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Next, we shall show H[δ](X) ≥ G[δ](X). Assume, without loss of generality, that the
elements of X n are indexed as x1, x2, · · · ∈ X n so that

PXn(xi) ≥ PXn(xi+1) (∀i = 1, 2, · · · ). (A27)

For a given δ ∈ [0, 1), let j∗ denote the integer satisfying
j∗−1

∑
i=1

PXn(xi) < 1− δ,
j∗

∑
i=1

PXn(xi) ≥ 1− δ. (A28)

Let Vn
δ be a random variable taking values in X n whose probability distribution is given by

PVn
δ
(xi) =



PXn(xi) + δ for i = 1

PXn(xi) for i = 2, 3, · · · , j∗ − 1

PXn(xi)− εn for i = j∗

0 otherwise,

(A29)

where εn := δ − ∑i≥j∗+1 PXn(xi). It is easily checked that 0 ≤ εn ≤ PXn(xj∗) and the
probability distribution PVn

δ
majorizes (for a sequence u = (u1, u2, · · · , uL) of length L,

we denote by ũ = (ũ1, ũ2, · · · , ũL) a permuted version of u satisfying ũi ≥ ũi+1 for all
i = 1, 2, · · · , L− 1, where ties are arbitrarily broken. We say u = (u1, u2, · · · , uL) majorizes
v = (v1, v2, · · · , vL) if ∑

j
i=1 ũi ≥ ∑

j
i=1 ṽi for all j = 1, 2, · · · , L.) any PVn ∈ Bδ(Xn) [39].

Since the Shannon entropy is a Schur concave function (The function f (u) is said to be Schur
concave if f (u) ≤ f (v) for any pair (u, v), where v is majorized by u.) According to [40], we
immediately obtain the following lemma, which is of use to compute H[δ](Xn).

Lemma A1 (Ho and Yeung [39]).

H[δ](Xn) = H(Vn
δ ) (∀δ ∈ [0, 1)). (A30)

By the definition of G[δ](Xn), we obtain

G[δ](Xn) ≤
j∗

∑
i=1

PXn(xi) log
1

PXn(xi)
(A31)

≤ H(Vn
δ ) + PXn(x1) log

1
PXn(x1)

+ PXn(xj∗) log
1

PXn(xj∗)
(A32)

≤ H(Vn
δ ) +

2 log e
e

, (A33)

where the last inequality is due to x log x ≥ − log e
e for all x > 0. Thus, it follows from

Lemma A1 that

G[δ](X) ≤ lim sup
n→∞

1
n

H(Vn
δ ) = H[δ](X), (A34)

which is the desired inequality.

(ii) Next, we show the inequality in (40): H[δ](X) ≤ (1− δ)Hδ−γ(X). By the definition of
Hδ−γ(X), for any η > 0, there exists some n0 > 0 such that

Pr{Xn ∈ Tn} ≥ 1− δ (∀n ≥ n0), (A35)

where we define

Tn =

{
x ∈ X n :

1
n

log
1

PXn(x)
≤ Hδ−γ(X) + η

}
. (A36)

Choose a sequence x0 ∈ Tn arbitrarily. Set PVn so that
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PVn(x) =


αnPXn(x) + δ for x = x0

αnPXn(x) for x 6= x0, x ∈ Tn

0 otherwise,

(A37)

where we define αn = (1− δ)/ Pr{Xn ∈ Tn}. Then, the variational distance between PXn

and PVn satisfies

d(PXn , PVn) ≤ δ

2
+

1
2 ∑

x∈Tn

PXn(x)|1− αn|+
1
2 ∑

x∈Tc
n

PXn(x)

=
δ

2
+

1
2

Pr{Xn ∈ Tn}(1− αn) + Pr{Xn ∈ Tc
n}

= δ, (A38)

which indicates that PVn ∈ Bδ(Xn). The normalized Shannon entropy 1
n H(Vn) can be

upper bounded as
1
n

H(Vn) =
1
n
(αnPXn(x0) + δ) log

1
αnPXn(x0) + δ

+
1
n ∑

x∈Tn\{x0}
PVn(x) log

1
PVn(x)

≤ δ

n
log

1
δ
+

1
n ∑

x∈Tn

αnPXn(x) log
1

αnPXn(x)

=
δ

n
log

1
δ
+

αn

n ∑
x∈Tn

PXn(x)
(

log
1

αn
+ log

1
PXn(x)

)
≤ δ

n
log

1
δ
+

(1− δ)

n
log

1
1− δ

+ αn ∑
x∈Tn

PXn(x)
(

Hδ−γ(X) + η
)

=
1
n

h2(δ) + (1− δ)
(

Hδ−γ(X) + η
)
, (A39)

where we have used the fact that 1
n log 1

PXn (x) ≤ Hδ−γ(X) + η for x ∈ Tn to obtain the
second inequality, and h2(δ) := −δ log δ− (1− δ) log(1− δ) denotes the binary entropy
function. On the other hand, because PVn ∈ Bδ(Xn), there exists some n1 > 0 such that

H[δ](X) ≤ 1
n

H(Vn) + η (∀n > n1). (A40)

Combining (A39) and (A40) yields

H[δ](X) ≤ (1− δ)Hδ−γ(X) + 3η, (A41)

and since η > 0 is arbitrarily fixed, (A41) means the desired inequality.

Appendix D. Proof of Corollary 1

We first show (44), i.e.,

Sf(δ|X)
(a)
= Hδ(X)

(b)
= H∗(X). (A42)

Equality (a) is due to Theorem 2. To prove equality (b), we notice that

H(X) ≤ Hδ(X) ≤ H(X) (∀δ ∈ [0, 1)) (A43)

for general source X by definition. If source X is with one-point spectrum, the left-hand
side (l.h.s.) and the r.h.s. in (A43) match, i.e., H∗(X) := H(X) = H(X), and the squeeze
theorem indicates equality (b).

Next, we show (45), i.e.,
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Sv(δ|X)
(c)
= H[δ](X)

(d)
= G[δ](X)

(e)
= (1− δ)H∗(X). (A44)

Equality (d) is a direct consequence of Proposition 1. To prove equality (e), we notice a
general relationship

(1− δ)H(X) ≤ G[δ](X) ≤ (1− δ)H(X) (∀δ ∈ [0, 1)) (A45)

for general source X, where the first inequality is due to ([35], Theorem 4) and the second
one is due to Proposition 1 (cf. Equation (42)). In view of H∗(X) = H(X) = H(X) for
source X with one-point spectrum, the squeeze theorem for (A45) indicates equality (e), i.e.,

G[δ](X) = (1− δ)H∗(X) (∀δ ∈ [0, 1)). (A46)

The r.h.s. of (A46) is obviously right-continuous in δ ∈ [0, 1), and so is the l.h.s. side
G[δ](X) = H[δ](X) if source X is with one-point spectrum. The right-continuity of H[δ](X)
and Theorem 3 indicate equality (c).

Appendix E. Proof of Lemma 1

We first show (99). For two general sources X = {Xn}∞
n=1 and X̃ = {X̃n}∞

n=1, the
following well-known inequality (cf. ([33], Problem 3.18)) holds between the variational
distance and the divergence:

2
(
d(PXn , PX̃n)

)2

ln K
≤ D(X̃n||Xn). (A47)

This inequality implies that any PVn ∈ BD
g(δ)(Xn) satisfies PVn ∈ Bδ(Xn). Thus, we have

H[δ](Xn) ≤ HD
[g(δ)](Xn). (A48)

Now, we shall show the rightmost equality of (100). It obviously follows from (99) that

lim
δ↓0

H[δ](X) ≤ lim
δ↓0

HD
[δ](X). (A49)

To show the opposite inequality, in view of (41), it suffices to show

lim
δ↓0

G[δ](X) ≥ lim
δ↓0

HD
[δ](X). (A50)

Fix δ ∈ (0, 1) and γ > 0 arbitrarily. We choose An ⊆ X n satisfying

G[δ](Xn) + γ ≥ ∑
x∈An

PXn(x) log
1

PXn(x)
, (A51)

α0 := Pr{Xn ∈ An} ≥ 1− δ. (A52)

We arrange a new random variable Vn subject to

PVn(x) =


PXn (x)

α0
if x ∈ An

0 otherwise.
(A53)

Then, we obtain

D(Vn||Xn) = ∑
x∈An

PVn(x) log
PVn(x)
PXn(x)

= log
1
α0
≤ log

1
1− δ

, (A54)

and, thus, letting h(δ) = log 1
1−δ , it holds that PVn ∈ BD

h(δ)(Xn). We can expand (A51) as
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G[δ](Xn) + γ ≥ α0 ∑
x∈An

PVn(x) log
1

α0PVn(x)

≥ α0H(Vn)

≥ (1− δ)HD
[h(δ)](Xn), (A55)

where the last inequality is due to (A52) and PVn ∈ BD
h(δ)(Xn). Thus, as γ > 0 is arbitrary,

G[δ](X) ≥ (1− δ)HD
[h(δ)](X). (A56)

Since δ ∈ (0, 1) is arbitrary, in view of limδ↓0 h(δ) = 0, we obtain (A50).
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