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Abstract: A redesign of hospitals (i.e., partitioning departments and delegating decision authority)
may be needed to deal with variable demand. Uncertain demands and throughput times often need
short reaction times. In this study, we develop quantitative methods to guide a redesign through
an information-processing approach. To demonstrate how the methods can be used in practice, we
tested them by applying them to a large perinatology care system in the Netherlands. We used
the following two methods: 1. portfolio optimization and 2. efficient coordination of workload
and reallocation of nurses. Our case study of a large perinatology care system showed that several
designs of clustered units minimized the demand uncertainty in the perinatology care system. For
the coordination strategy, the information and decision uncertainty is minimized when the decision
power is positioned at the operation level and with the help of a centralized information system.
When the operation decision-making power is not supplemented with the centralized and system-
wide information system, hospitals can better use the hierarchy model, where the manager holds
decision-making power with a system-wide overview. We also found that the speed of decision-
making in real-time depends on the level of information aggregation set up by the system. We
conclude that combining the correlation perspectives and the entropy theory is a way of quantifying
how organizations can be (re)designed.

Keywords: hospitals; organization; information processing; coordination; nurses; flexibility; entropy

1. Introduction

Uncertainty and variability make it difficult to plan the right number of resources,
such as nurses [1–3]. When understaffing occurs, new patients may be turned away,
and overstaffing is often considered to be inefficient. The development of nurse capacity
management for a short-term period is an essential step in developing the real-time control
of hospital resources, given the constraints of the organization as it is [4]. The organization
of real-time decision-making is becoming an interesting topic for hospital practitioners [5,6].

Capacity planning and control processes in hospitals are structured as being strategic,
tactical, operational, and real time (also referred to as operational online) [7,8]. Decisions
made earlier will govern the planning options and constraints at subsequent levels. Mis-
matches between resources and patient demand in real-time can be alleviated if proper
decisions regarding how to deal with variability are decided strategically. As was dis-
cussed by Van Merode et al. [9], the allocation of resources during strategic planning
should consider fluctuations in demand. Hospitals may add a certain amount of slack
capacity (i.e., buffer) to the designated capacity per department, depending on the risk
the decision-maker is willing to accept when the patient demand cannot be fulfilled [9].
The strategic planning then decides the amount of required slack capacity and where to
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position it. Although uncertainty in demand always requires some buffer, the effects can be
mitigated with pooling and supply flexibility [7].

This article is part of a research program aiming to provide insights into using quanti-
tative methods to (re-)design organizations (i.e., partitioning departments and delegating
decision authority) with uncertain demands and uncertain throughput times needing short
reaction times through an information processing approach. We applied and tested the
developed methods with regard to a large perinatology care system. This consisted of
three sub-studies.

The first study [10] addressed the need for the care system to be flexible: how to assign
the staff (nurses) to where there is work? The perinatology care system has departments
that need different types of skilled nurses. Having all nurses be flexible is unrealistic;
our method [10] proposes the number of nurses that should be cross-skilled to create the
necessary rate of flexibility. However, it is also required that the various departments are
managed in an integrated manner to make sure that the patient demand is absorbed, both
at the level of departments and in the whole care system. At the same time, the number of
transfers of nurses between departments should be restricted. We showed that, in this way,
efficient throughput of patients and the need for flexibility is realized and limited.

The second study [11] addressed how the organization structure influences the infor-
mation processing quantity and its effect on the quality of decision-making for workload
control. The quality of decision-making is determined by the time needed for processing
and the granularity of the information. An entropy concept can be used to measure the
uncertainty associated with specific (organization) structures [12–14]. According to Shan-
non [13], the higher the uncertainty in the system, the higher the entropy; consequently,
more information is required to understand what is happening in it. The entropy concept
has been applied in various fields, such as statistical thermodynamics, economics, opera-
tions research, queueing theory, manufacturing, and many more [12]. Our study showed
that entropy is very suitable for measuring the needed information and designing the
organization structure, fulfilling the required need for information processing.

While the first study [10] addressed the need to manage various departments in an
integrated manner to deal with variable demand, and the second study [11] addressed
how to quantify the integration of organization based on the information entropy theory,
this current study operationalizes the organization as a queuing network that has to be
coordinated. We studied how the total entropy of demand for perinatology care can be
partitioned in such a way that the entropy for the expected care of each department is
minimized to increase the requisite variety [15] of the queuing network. In terms of the
queuing networks, each department i becomes a queuing system with a certain arrival
rate λi and processing rate µi. Both the arrival rate and the processing rate have patterns
characterized by entropy and variety. The uncertainty that the organization is confronted
with during each operational period (i.e., the next day, the day shift, the next hour) for our
perinatology care system is determined both by the variety and entropy of demand. The
variety concerns the type of care services to be provided, the entropy, and the uncertainty
of which services have to be provided for the next hour, shift, or day. Most care services
typically belong to a specific department. For others, there is some freedom to allocate them
to that department to ensure that a queuing system is most stable. These care services can be
handled tactically, where department heads exchange the service provision to stabilize their
workload [16]. This exchange process is a type of regulation or organization of the queueing
network to improve the requisite variety. The aim of this study is directed to the operational
decision-making levels making use of information and information processing theory.

We summarize the research questions as follows:

• How can we, by decision-making on an operational level, partition the organization in such a
way that the entropy is minimized?

• How should this decision-making be organized?

This paper is structured as follows: We discuss how organizations can be considered
as queueing networks. Next, we introduce entropy theory to consider queueing network
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coordination as an information processing problem. We apply these theories and methods
to a case study, the perinatology care system, with several decision-making models to
optimize the care system as an entropy-reducing organization.

2. Theory
2.1. Queuing Theory and Utilization in a Hospital System

Servers need capacity. Various capacities are often needed when providing services,
e.g., rooms, equipment, and staff. In a perinatology care system, some equipment is not
transportable, and rooms can be dedicated. Design and configuration choices can limit
operational flexibility. In our study, we assumed that these choices had been made and did
not limit the flexible assignment of staff, but it may restrict the assignment of processes
to departments. This is realistic, as some perinatology care systems design their delivery
rooms in such a way that they can serve as patient rooms or as rooms where both ill women
and ill newborns can stay. In our study, we focused only on nurses, as they also represented
part of the focus of our two previous studies.

Each department can be considered a queueing system, such as the M/M/c system.
In an M/M/c system, patients arrive at a rate (λ) according to a Poisson process and stay
in the department according to the service rate (µ). The department has a finite capacity
of c, whereas the resource capacity is determined per department far in advance, based
on the forecasted demand. Based on the available capacity (c), patients are admitted on
a first-come, first-served basis. Examples of measured performances include the average
time a patient spends in the system, server utilization, and the number of patients in the
system at time n.

Interrelated queuing systems can be analyzed as a queuing network, where each
routing path connects each department. Given the route probability of patients (rij) from
ward i to ward j and λi as the arrival rate of patients to department i, the effective arrival
rate (Eff λi) is the external arrival (if any) to ward i, and the internal patients that finished
their care at ward j are then routed to ward i for the next stage of care services.

E f f λi = λoi + ∑M
j=1 λjrji (1)

The utilization of wards per day is calculated based on the following traffic equation:

ρ =
λ

c·µ (2)

The utilization formula (ρ = λ/cµ) from the queuing theory intuitively portrays the
following: if patients (λ) are arriving faster than they can be served (capacity c and the
service rate µ), then utilization will be more than 100%. Consequently, the queue will grow,
and the system will become unstable. Thus, for a stable system, a department requires a
condition where λ < cµ.

Although the capacity c is determined in advance, dependent on the workload of
departments, if needed, possible nurses can be temporarily assigned to another department.
Each department can be in a state of high, medium, or low workload in an operational time
horizon (a day, a shift, an hour). A department can switch staff if one department is in a
high-workload state and another in a low-workload state [16]. For instance, if we have a
system with four departments, each department has queueing system M/M/ci. If a nurse
is reassigned from department 1 to, for example, department 2 for a certain period (e.g., the
next two hours), the capacity of the following two queueing systems changes: c1 − 1, c2 + 1.
M/M/ does not change in this process. If the variety of services changes, the M/M/ of at
least two departments’ changes.

Stability of each department and the whole care system is needed. How can this
be accomplished? The variety and its entropy should be reduced as much as possible,
but still, the transfer of nurses is sometimes needed. As stated earlier, a stable queueing
system should have a utilization degree of less than 100%. To avoid peaks, the average
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utilization degree could be set (as an example) to 80%. This has to be determined through
experimentation. At the same time, the care system would like to restrict the number of
transfers between departments.

We propose the following two methods: Portfolio optimization [17] and the efficient
coordination of workload and the reallocation of nurses from an information processing
perspective [18]. In terms of portfolio optimization, Van Merode et al. [9] suggested
considering the correlation perspective when calculating the required capacity, whereas
departments’ demands that correlated negatively were clustered together. This is in line
with the portfolio approach of Markowitz [17]; an optimal portfolio is chosen when the
variance in the workload of the shop is less than the sum of variances of the several
processes (i.e., demand) allocated to the shop. In statistics, a perfect negative correlation is
represented by the value −1, and +1 indicates a perfect positive correlation. For example, if
units i and j have a negative correlation, i will decrease as j increases in value; similarly, if i
decreases in value, j will increase. Any value closer to 0 is considered a weakly negative or
positive correlation. Hence, the theory [17] suggests that the less correlated each demand is
with one another, the less volatile the portfolio (of the shop) will be [18]. A recent study
applied fictitious data to illustrate the theoretical value of using a portfolio approach in
a hospital capacity pooling context and showed some opportunities, such as increased
service levels, given the same capacity [19]. When using this approach to structure the
organization, one also reduces the uncertainty of patient demand associated with the
departments. In other words, this approach tries to optimize uncertainty reduction by
organization structuring.

As for determining the coordination system, we must first know the coordination task.
In our approach, sufficient nurses in a department determine the flow. If there are not
enough nurses, this should be signaled, and a nurse is reassigned upon receiving the signal.
However, by whom and to whom? And when a nurse is transferred to a department, how
long will the nurse stay there? This is considered an information processing task and is
discussed in the following subsection.

2.2. Information Processing Organizations in Hospitals

According to Ashby’s law of requisite variety [15,20], a system can be classified into
the following three stages: an input (i.e., that has a variety and uncertainty), a regulatory
process, and an outcome. A regulatory process responds to the input variation, which in
turn, leads to the desired output. In other words, given the uncertainty that can disturb the
organization in various ways, the organization needs multiple options to solve it.

In the context of mismatches between the available nurses and the actual demand
in real-time, certain actions are needed to solve the mismatches, such as reallocating
nurses from an under-utilized ward to the needed ward or admitting patients to an under-
utilized ward. The following several scenarios are possible when a nurse is reallocated to a
department with a high workload:

- Once the workload is back to a medium or low level, the nurse returns to his/her
primary department;

- Once the workload is at a medium or low level, the nurse has to ask the care system’s man-
agement what to do: stay, return to the home department, or go to another department;

- The nurse stays until the end of a period, and then he/she returns to the primary
department;

- The nurse stays until the end of a period and asks the care system’s management
where to go;

- The nurse stays until the end of their shift.

To organize the above scenarios in practice, three essential elements play a role:

• The distribution of authority

Following the framework of Sandoe [21], processing the information to coordinate
the workload and reallocation of nurses in real-time can be carried out through hierarchy,
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network, and hub strategies. For the hierarchy strategy, the decision-making authority to
allow nurses to go or return to a specific department is positioned higher in the organization
pyramid, for example, at the manager level. Local information regarding the workload is
centralized and processed by the decision-maker (i.e., the manager). She/he provides the
solution to reallocate nurses to a specific department.

In the network strategy, the decision authority to reallocate nurses is given to the staff
at the operational level, such as the planner. Each planner contacts other planners to obtain
and share the needed information. In this strategy, the local information regarding the
workload is decentralized at the planner of each unit. In the hub strategy, the decision-
making authority is also given to the planner. However, the strategy allows each planner
to organize the process with the help of centralized information technology. Each planner
is responsible for managing the local information available in the information system that
all the other planners can assess. Contrary to the network strategy, where the information is
decentralized at each planner, the hub strategy centralizes the detailed information with the
help of information technology. Nevertheless, each planner still decides what (detailed)
information is essential and acts accordingly.

• The measurement of workload

Information, such as the expected workload in the coming period, is needed to co-
ordinate the transfer of nurses in the care system. One important piece of information is
positional information [11,12], which refers to a patient’s actual position in the system.

• The frequency of capacity adjustments (i.e., per specific planning period or per shift).

The determination of the planning period is also essential. The planning period can
be defined as a minimum of a few hours to a maximum of one day, depending on the
department’s ability to mitigate capacity problems when understaffing occurs (e.g., by
using flexible nurses); however, it also depends on the capability of organizations to process
the required information. Among the three strategies discussed by Sandoe [21], information
technology is assumed to be available to support information acquisition and processing in
organizations, although the level of information aggregation can be varied per organization.

The speed of decision-making in real-time also depends on the level of information
aggregation set up by the system. The level of information aggregation involves the concept
of coarse-graining. A fine-grained description is a detailed description of the system’s
microscopic behavior, while a coarse-grained description is one where the fine detail has
been smoothed over through aggregation. The level of information aggregation can further
dictate the required frequency of nurse reallocations. When the information from all of
the units is aggregated only to report their workload (i.e., the number of occupied beds),
instead of every detail on patient mismatches, the department can have a shorter planning
horizon (i.e., greater feedback frequency) to acquire and process information from the units.

Furthermore, the organization of local and system-wide information also dictates the
speed of decision-making. In the hierarchy strategy, local information is positioned locally at
each unit (i.e., decentralized). Local information is microscopic. When the decision-maker
needs to execute a task to solve the supply and demand mismatches, she/he needs system-
wide information to avoid making suboptimal interventions. She/he then integrates the
local information to obtain the aggregated system information. In the network strategy, the
local information is decentralized at each unit. However, information aggregation does
not necessarily happen because the decision-maker (i.e., the planner) decides which local
information from which unit is needed to complete the tasks. For the hub strategy, the
decentralized local information is automatically integrated. Based on this, the decision-
makers execute their task.

2.3. Measuring Entropy in Hospital’s Information Processing

Due to the uncertainty of patient demand prominent in hospital operations, develop-
ing capacity planning for short-term planning is essential in developing real-time control
of hospital resources. The literature suggests that organizations need to build information
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processing capability to minimize decision-making delays in organizations [12,22,23]. A
given system design follows a specific structure in which information is gathered and
processed. An information entropy model can be used to measure the amount of informa-
tion [14]. Entropy is defined as a measure of randomness or disorder in a system [12,24].
Information entropy values can be assigned to specific structures so that we can compare
them to gain insights into the factors that lead to effective decision-making. As the higher
the uncertainty in the system, the higher the entropy; consequently, more information is
required to understand what is happening in it. Processing too much information will lead
to a delay in decision-making.

To calculate the information entropy (H), we can follow Shannon’s information entropy
formula [13]. If the average uncertainty associated with an outcome is represented by a
discrete random variable X, the Shannon’s information entropy of a discrete random
variable of X with n outcomes (x1, x2, . . . xn) is as follows:

H (x) = −∑n
i=1 P(xi)log2 P(xi) (3)

Probabilities are needed to calculate entropy, which depends on the available informa-
tion in the system. When such information is unknown, assumptions are made to estimate
probability. Instead of using an estimation, we can consider the extremum of information
entropy [12]. The extremum of information entropy is used to discover the probability
distribution, leading to the highest value for this uncertainty, assuring that no information
is carelessly assumed.

In this study, we used entropy theory to measure the three types of uncertainty that
a unit may experience; the uncertainty of patients’ arrival into the care system (i.e., the
arrival uncertainty), the uncertainty of patients’ actual position within the care system (i.e.,
the position uncertainty), and the uncertainty of (detailed) information needed to solve the
supply–demand mismatches (i.e., the decision-making uncertainty).

• Arrival entropy

In the queuing network, the effective arrival rate (Eff λi) is the external arrival (if any)
to department i and the internal patients who have finished receiving their care at ward j
and are then routed to ward i for the next stage of care services, as given in Formula (1).

The relative demand d of patients who have arrived in department i is

di =
E f f λi

∑N
i=1 E f f λi

(4)

When N is the number of departments, the arrival entropy of all departments in the
system Has is

Has = −∑N
i=1(dilog2di) (5)

To calculate the scenario of maximum entropy, the maximum probability of patients
who have arrived in department i is

dmax
i =

1
N

(6)

The maximum arrival entropy of all departments in the system ( Hmax
as ) is

Hmax
as = −∑N

i=1( dmax
i log2dmax

i ) (7)

• Positional Entropy

When a hospital system is characterized as having several workstations (i.e., depart-
ments) connected in a network, uncertainty regarding patients’ actual positions in the
system can cause delays in the decision-making process. We refer to this as positional
uncertainty [12]. This information is needed for departments to calculate the expected
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workload. When positional uncertainty is high, the expected workload may be less accurate;
hence, mismatch occurrences are still possible.

Positional uncertainty can be measured with information entropy. Given a specific
system structure, we need the information of Pki; that is, the probability of a patient
k(k = 1, 2, . . . , K) progressing to department i(i = 1, 2, . . . , N). For ∀k, ∑i Pki = 1. Having
Pki, the positional entropy of a patient in the system ( Hk) can be calculated as

Hk = −∑N
i=1(Pkilog2 Pki), ∀k (8)

The positional entropy of all patients in the system (H ps

)
is

Hps = −∑K
k=1 ∑N

i=1(Pkilog2 Pki) (9)

• Decision Structure Entropy

When a hospital system is characterized as having several layers of decision functions,
positioned vertically or horizontally, as discussed, following the framework of Sandoe [21],
uncertainty concerning the mismatches in detail causes delays in real-time decision-making.
We applied the same concept as in Formula (3). Given a specific system structure, Pab is
the probability of information being processed by decision maker a(a = 1, 2, . . . , A), given
the required information from source b(b = 1, 2, . . . , B). For ∀a, ∑b Pab = 1. Having Pab, the
decision structure entropy for position a can be calculated as follows:

Ha = −∑B
b=1(Pablog2 Pab) (10)

The decision structure in the system is (Hds):

Hds = −∑A
a=1 ∑B

b=1(Pablog2 Pab) (11)

Intuitively, when the organization as a whole loses positions, the entropy is reduced,
and when it gains positions, the entropy increases [24].

• The total associated entropy in the system

For each care system configuration and associated coordination system, we measure
the uncertainty based on the arrival uncertainty, the patient position uncertainty, and the
decision-making uncertainty. Since we quantify the uncertainty in terms of the entropy in
bits, the total uncertainty in the system is the total entropy of the three entropy measures.

Entropy total = Has + Hps + Hds (12)

3. Methodology
3.1. Study Settings

At Radboud University Medical Center in Nijmegen, the Netherlands, the perinatology
care system consists of two local systems: obstetrics and neonatology. The obstetrics local
system has three units: the nursery ward (25 beds for adults and 7 for newborns), the
obstetrics high-care unit (OHC) (3 beds), and the delivery room (6 beds). These different
units are based on the type of care given to the adults (the mothers) and will hereafter
be referred to as O1, O2, and O3, respectively. There are also the following three units
within the neonatology local system: the neonatal intensive-care unit (NICU) (14 beds), the
neonatal post-intensive-care unit (Post-IC) (4 beds), and the neonatal high-care/medium-
care unit (HC/MC) (11 beds). We will refer to these units as N1, N2, and N3, respectively.
There are a total of 70 beds in the perinatology care system. In this study, we focused on
the flow of newborns in the perinatology care system, as shown in Figure 1.



Entropy 2023, 25, 1447 8 of 23

Entropy 2023, 25, x FOR PEER REVIEW 8 of 24 
 

 

the neonatology local system: the neonatal intensive-care unit (NICU) (14 beds), the neo-
natal post-intensive-care unit (Post-IC) (4 beds), and the neonatal high-care/medium-care 
unit (HC/MC) (11 beds). We will refer to these units as N1, N2, and N3, respectively. There 
are a total of 70 beds in the perinatology care system. In this study, we focused on the flow 
of newborns in the perinatology care system, as shown in Figure 1. 

 
Figure 1. The flow of newborns in the perinatology care system in Radboud UMC. 

3.2. Study Method 
The method of this study is presented in Figure 2. We begin by accepting the current 

perinatology configuration (i.e., our case study for the care system) with 2 separate de-
partments with 6 units total, whereas 4 units provide care for newborns. This is decided 
at a strategic level, with a planning horizon of 1–2 years (or possibly longer). At this plan-
ning level, the decision-making structure is also defined, following the framework of San-
doe [21] (i.e., the hierarchy strategy). 

Given the information presented in Figure 1, we developed a queuing network model 
in EXCEL. Discrete Event Simulation (DES) was performed to evaluate the effect of varia-
ble demand on a daily level on the perinatology case system’s care configuration and de-
cision-making structure. 

 
Figure 2. Simulation and experimentation flow chart. 

Figure 1. The flow of newborns in the perinatology care system in Radboud UMC.

3.2. Study Method

The method of this study is presented in Figure 2. We begin by accepting the current
perinatology configuration (i.e., our case study for the care system) with 2 separate depart-
ments with 6 units total, whereas 4 units provide care for newborns. This is decided at a
strategic level, with a planning horizon of 1–2 years (or possibly longer). At this planning
level, the decision-making structure is also defined, following the framework of Sandoe [21]
(i.e., the hierarchy strategy).
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Given the information presented in Figure 1, we developed a queuing network model
in EXCEL. Discrete Event Simulation (DES) was performed to evaluate the effect of variable
demand on a daily level on the perinatology case system’s care configuration and decision-
making structure.

In this study, we experimented with different configurations of department partition-
ing, modeled as an M/M/c queuing network. We developed four scenarios of department
partitioning; Model 1 is the current situation with 5 separated departments, Model 2 is the
combined settings of the high- and medium-care unit (N3) with the nursery ward (O1),
Model 3 is the combined settings of the high- and medium-care unit (N3) with the post-
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intensive-care unit (N2), and Model 4 is the combined settings of the post-intensive-care
(N2) unit with the nursery ward (O1). The overview of variables is given in Table 1.

Table 1. Overview of variables.

Care System Configuration Controllable Variable
(Name of Intervention) Dependent Variable

Model 1: Current configuration
(five separate units)

Queuing network analysis
(i.e., under/overutilized capacity and number of days with

overutilized capacity)
R1

Arrival (max) entropy R2

Positional (max) entropy R3

Decision structure entropy: Hierarchy R4

Decision structure entropy: Network R5

Decision structure entropy: Hub R6

Model 2: Pooling Neonatal HC/MC
with OBS Nursery Wards

Queuing network analysis
(i.e., under/overutilized capacity and number of days with

overutilized capacity)
R7

Arrival (max) entropy R8

Positional (max) entropy R9

Decision structure entropy: Hierarchy R10

Decision structure entropy: Network R11

Decision structure entropy: Hub R12

Model 3: Pooling Neonatal Post-IC
with Neonatal HC/MC

Queuing network analysis
(i.e., under/overutilized capacity and number of days with

overutilized capacity)
R13

Arrival (max) entropy R14

Positional (max) entropy R15

Decision structure entropy: Hierarchy R16

Decision structure entropy: Network R17

Decision structure entropy: Hub R18

Model 4 pooling Neonatal Post-IC
with OBS Nursery Wards (Pooling

Neonatal Post-IC with Neonatal
HC/MC)

Queuing network analysis
(i.e., under/overutilized capacity and number of days with

overutilized capacity)
R19

Arrival (max) entropy R20

Positional (max) entropy R21

Decision structure entropy: Hierarchy R22

Decision structure entropy: Network R23

Decision structure entropy: Hub R24

Given the simulated input data of patient arrivals, the associated length of stay, and
how departments are partitioned, we observe the expected days the system needs to
reallocate nurses. The steps are presented in Algorithm 1. Output variables are R1, R7, R13,
and R19. Furthermore, we observe the effect of department partitioning on the effective
arrival uncertainty (i.e., R2, R8, R14, and R20) associated with the structure. The steps are
presented in Algorithm 2. We then observe the patients’ positional uncertainty (i.e., R3, R9,
R15, and R21) when making real-time decisions. The steps are presented in Algorithm 3.
Finally, we model the decision-making structures of the perinatology care system following
the framework of Sandoe [21] (i.e., hierarchy, network, and hub) and emphasize where
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the decision power is positioned. The steps are presented in Algorithm 4. Based on the
experiment results, we found the optimal care configuration and decision-making structure,
which is the structure that results in minimum supply–demand mismatches and minimizes
associated entropies.

Algorithm 1: Calculating the number of days with overutilized staffed beds

1. Construct the queuing network of departments i = {1, 2, 3, . . ., N}, for example as {Delivery
room, NICU, Post-IC, HC/MC, Nursery ward}, based on the care configuration of Model 1.

a. Define the probability route rij of patients moving from department i to j, i 6= j based
on the historical data.

b. Assign the number of staffed beds ci ∀i
c. Assign the expected length of stay µi ∀i

2. Run a simulation with varying arrival rate λi of ∀i for d number of days. In this study,
S = {1, 2, 3, . . . d}, with |S| = 365.

a. ∀i and ∀S, calculate the effective arrival rate of patients E f f λS
i based on Formula (1)

b. ∀i and ∀S, calculate the utilization rate ρS
i of based on Formula (2)

c. ∀i and ∀S, calculate the utilization US
i = ρS

i × cS
i

d. ∀i and ∀S, calculate the overutilization and underutilization

i. If US
i > cS

i , department i has US
i − cS

i overutilized beds.
ii. If US

i < cS
i , department i has cS

i −US
i underutilized beds

e. ∀S, calculate the overutilization and underutilization of the care system

i. Overutilized system ( US
over

)
is ∑N

i=1
(
US

i − cS
i

)
, ∀S

ii. Underutilized system ( US
under

)
is ∑N

i=1
(
cS

i −US
i

)
, ∀S

3. For the care system:

a. Calculate the average number of overutilized beds per day
(
Uover ) with ∑d

S=1(US
over)

d
b. Calculate the average number of underutilized beds per day

(
Uunder ) with

∑d
S=1(US

under)
d

c. ∀S, we can calculate the frequency of d with
(
US

over
)

as the days in which we need to
reallocate nurses.

4. Construct the queuing network of departments {1, 2, 3, . . ., N} based on the care
configuration of Model 2, 3, and 4 by repeating steps 1a–3c for each model.

Algorithm 2: Calculating the arrival entropy

1. Construct the queuing network of departments i = {1, 2, 3, . . ., N}, based on the care
configuration given in Model 1.

2. Construct the probability route rij of patients moving from department i to j based on the
care configuration.

3. Given the historical data, calculate the arrival rate (λi ) of patients to department i. Then
calculate the effective arrival rate department (E f f λi ) based on Formula (1).

4. Calculate the total arrival of the system ∑N
i=1(E f f λi)

5. Calculate the relative arrival demand of each department i with Formula (4). Calculate the
arrival entropy of all departments in the system with Formula (5).

6. Calculate the relative arrival demand with the maximum probability distribution with
Formula (6), and the maximum arrival entropy of all departments in the system with
Formula (7).

7. Repeat steps 1–6 for each Model 2, 3, and 4.
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Algorithm 3: Calculating the positional entropy

1. Construct the queuing network of departments i = {1, 2, 3, . . ., N}, based on the care
configuration given in Model 1.

2. Construct the probability route rij of patients moving from department i to j based on the
care configuration. Calculate Pki; that is, the probability of a patient k = {1, 2, . . . , K}
progressing to department i(i = 1, 2, . . . , N). For ∀k, ∑

i
Pki = 1.

3. Having obtained the Pki, calculate the positional entropy of a patient in the system with
Formula (8). Calculate the positional entropy of all patients in the system with Formula (9).

4. Having obtained the maximum probability distribution of Pki = 1/N, calculate the
maximum positional entropy of a patient in the system with Formula (8). Calculate the
maximum positional entropy of all patients in the system with Formula (9).

5. Repeat steps 1–4 for Models 2, 3, and 4.

Algorithm 4: Calculating the decision-making entropy

1. Construct the coordination system, Model 1, based on the framework of Sandoe (1998) [21],
namely, hierarchy, network, and hub, with several information points of decision-makers
a = {1, 2, . . . , A}, such as {manager, team manager, planner/team leader, nurses}. And the
source of information b = {1, 2, . . . , B}, such as {team manager, planner/team
leader, nurses}.

2. Construct Pab, as the maximum probability of information being processed by decision
maker a = {1, 2, . . . , A}, given the required information from source b = {1, 2, . . . , B}. ∀a,
∑b Pab = 1. Having obtained Pab, calculate the decision structure entropy in position b with
Formula (10) and in the system with Formula (11).

3. Repeat steps 1–2 for Models 2, 3, and 4.

4. Results
4.1. Analysis of Care System Configuration

As stated earlier, we focus on the flow of newborns in the perinatology care system,
as given in Figure 1. Specifically, this includes the neonatal intensive care unit (N1), the
neonatal post-intensive-care unit (N2), and the neonatal high-care/medium-care HC/MC
unit (N3) from the neonatology local system. And it also involves the delivery room (O3)
and the nursery ward (O1) from the obstetrics local system. Based on the performed data
analysis for the data of the year 2018, the flow of patients in the care system is given in
Figure 3.

The performance of the current care configuration is presented in Table 2. Neonatal
post-IC was the bottleneck, with the highest capacity utilization in the system. HC/MC of
the neonatology department has a utilization below 50%, similar to the nursery wards of
the obstetric department. While the HC/MC cares for sick newborns, the nursery wards
care for healthy newborns.
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Figure 3. Newborn flows in the perinatology care system, where the patient movement % between
units was calculated based on historical data of patient movements from unit i to unit j. The average
birth per day in the delivery room (O3) is four newborns. In total, 68.5% of the newborns were healthy
and transported to the obstetric local system’s nursery ward (O1). A total of 15.8% of the newborns
need intensive care services at the NICU (N1), and 15.7% need high-care/medium-care services at
the HC/MC Unit (N3). Besides newborn arriving through the O3, NICU (N1) and HC/MC Unit (N3)
also admitted newborns from other hospitals. The average external arrival (from other hospitals) for
the NICU (N1) is 0.6 newborn/day, and 0.4 newborn/day for the HC/MC Unit (N2).

Table 2. Utilization results. As for units NI, N2, and N3, the arrival rate (λ) is the effective arrival
rate at the department (E f f λi ) based on Formula (1). c is the average staffed beds that each unit has
and µ is the service rate in each unit. The ρ (i.e., average utilization) is calculated using the traffic
formula, as given in Formula (2).

Delivery Room (O3) Neonatal IC Unit (N1) Neonatal Post-IC Unit (N2) Neonatal HC/MC Unit (N3) Nursery Wards (O1)

c 6 c 14 c 4 c 11 c 7
λO3 4.0 λN1 1.2 λN2 0.2 λN3 0.9 λO1 2.7
µO3 1.00 µN1 0.10 µN2 0.06 µN3 0.19 µO1 0.91

ρ 67% ρ 85% ρ 96% ρ 43% ρ 43%

For the perinatology care system, we can generally refer to O3 as the upstream unit,
N1 as the intermediate unit, and N2, N3, and O1 as the downstream units. The downstream
units need a certain buffer capacity to deal with uncertainties in terms of patient arrivals in
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the system. Pooling capacities to deal with uncertainties can be realized by combining the
downstream units. Analysis of correlations performed towards the downstream units is
given below. As is shown in Table 3, the combination of wards with a negative correlation is
found only in the nursery wards (O1) and the post-IC unit (N2). However, it is considered
to be a weak negative correlation as the value is closer to zero. Similarly, the post-IC unit
(N2) and the high-care/medium-care unit (N3) have a weak positive correlation. This
means that, when combining N2 with either O1 or N3, as the workload of N2 increases, the
workload of N3 and O1 are not simultaneously increased.

Table 3. Correlation analysis for the downstream wards. This is calculated using the Pearson
correlation coefficient function in Excel.

Post-IC Unit (N2) HC/MC Unit (N3) Wards (O1)

Post-IC Unit (N2) 1

HC/MC Unit (N3) 0.09 1

Wards (O1) −0.03 0.22 1

4.2. Simulation
4.2.1. Supply–Demand Mismatches

At the operational level (i.e., closer to the actual working time), the patient demand
might differ on a unit level compared to the predicted result. We then simulated the variable
arrival demand on the current and the new care configurations, as shown in Table 1. The
flow of patients for Models 2, 3, and 4 used for the simulation is given in Figure 4.
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Figure 4. Flows of newborns for Model 2, Model 3, and Model 4. Combining the capacity of two
units means combining the arrival demand associated with the unit. The new patient movement %
between units is calculated based on historical data of 2018.

We evaluated the supply–demand mismatches based on the average number of
over/underutilized staffed beds, and the number of days with overutilized staffed beds,
following the steps given in Algorithm 1. As is shown in Table 4, the number of days with
overutilized staffed beds is decreased when combining N2 with either O1 or N3, indicating
a more system-wide balance in the care system when dealing with the external uncertainty
of patient demand in real-time. The models with negatively correlated demand resulted in
the lowest average overutilized beds/wards (Model 4).
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Table 4. Output for Algorithm 1: the number of days with overutilized staffed beds.

Capacity Interventions Variable
Average Overutilized
Beds/Inpatient Wards

(±SD)

Average Underutilized
Beds/Inpatient Wards

(±SD)

Number of Days with
Overutilized Staffed Beds

Model 1 Capacity/department R1 −0.4 (±0.7) 12 (±4) 166

Model 2 Pooling Neonatal
HC/MC Unit (N3) with OBS
Nursery Wards (O1)

R7 −0.7 (±1.2) 7.3 (±5) 182

Model 3 Pooling Neonatal Post-IC
Unit (N2) with Neonatal HC/MC
Unit (N3)

R13 −1.5 (±1.4) 11 (±5) 69

Model 4 Pooling Neonatal Post-IC
Unit (N2) with OBS Nursery
Wards (O1)

R19 −0.3 (±0.8) 14 (±3) 80

4.2.2. Arrival Entropy

To manage the arrival uncertainty, departments may be clustered or partitioned. The
current configuration has five varieties {delivery room, NICU, post-IC unit, HC/MC unit,
nursery ward}. When combining any of the downstream units, the variety decreases; hence,
the entropy decreases, as shown in Table 5. Given the historical data, pooling the HC/MC
unit (N3) with nursery wards (O1) seems to be able to absorb the arrival uncertainties the
most. Assuming maximum entropy, pooling any downstream departments minimizes the
arrival entropy.

Table 5. Output of Algorithm 2: arrival entropy.

Arrival Entropy

Capacity Interventions Variable Arrival Entropy Arrival Max Entropy

Model 1 Capacity/department (current situation) R2 1.9 2.32

Model 2 Pooling Neonatal HC/MC Unit (N3) with
OBS Nursery Wards (O1) R8 1.24 2

Model 3 Pooling Neonatal Post-IC Unit (N2) with
Neonatal HC/MC Unit (N3) R14 1.82 2

Model 4 Pooling Neonatal Post-IC Unit (N2) with
OBS Nursery Wards (O1) R20 1.85 2

4.2.3. Positional Entropy

Given the prior decision concerning the configuration of departments (i.e., Model 1
to Model 4), decisions still need to be made in real-time to allocate patients to the right
unit within the system. As is shown in Table 6, pooling any downstream departments
minimizes the positional entropy. The structure that minimizes the positional entropy the
most is when the post-IC unit (N2) is pooled with the HC/MC Unit (N3), resulting in
2.2 bits, given the historical data, and 2.58 bits when assuming maximum entropy.

Table 6. Output of Algorithm 3: positional entropy.

Positional Entropy

Capacity Interventions Variable Positional Entropy Positional Max Entropy

Model 1 Capacity/department (current situation) R3 3.68 4.16

Model 2 Pooling Neonatal HC/MC Unit (N3) with
OBS Nursery Wards (O1) R9 3.09 3.58
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Table 6. Cont.

Positional Entropy

Capacity Interventions Variable Positional Entropy Positional Max Entropy

Model 3 Pooling Neonatal Post-IC Unit (N2) with
Neonatal HC/MC Unit (N3) R15 2.2 2.58

Model 4 Pooling Neonatal Post-IC Unit (N2) with
OBS Nursery Wards (O1) R21 2.32 4.16

4.2.4. Decision-Making Structure

In the current system, the number of nurses scheduled per day is given in Table 7. This
is based on the nurse-to-patient (NtP) ratio, derived from expert opinions and practical
justifications, which have evolved from the past. When supply–demand mismatches are
experienced in real-time, such as when department(s) experience an overutilized staffed
bed, the decision-maker needs to decide on the capacity adjustment. For example, given
a certain planning period (e.g., per shift), reallocating nurses to a department with an
overutilized staffed bed.

Table 7. The number of nurses scheduled per day for newborns. As for the Delivery Room (O3), the
nurses are not exclusively caring for newborns but also the mothers.

Shifts N1 N2 N3 O1 O3

Day 12 2 4 1 3

Night 8 2 2 1 3

Evening 7 2 2 1 3

Total 27 6 8 3 9

In Figure 5, the hierarchy system, the decision power is positioned at the manager
level, with a system-wide overview. Once the workload is medium or low, the nurse has to
ask the team managers what to do as follows: stay, return to the home department, or go
to another department. Alternatively, the nurse stays until the end of a period and asks
the team managers where to go. The team managers gather the needed local information
from all nurses from each unit of his/her departments (Figure 5a) or gather the aggregated
information that only report the expected workload for each unit (Figure 5b) and report it
to the manager for approval.
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Figure 5. Hierarchy decision-making structure for Models 1, at the day shift. (a) portrays the
system with detailed information decentralized at the nurse level, while (b) portrays the system with
aggregated information. When units are combined, the nurses from the combined department report
to the assigned team manager, depending on the structure given in Models 2, 3, and 4.
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In Figure 6, the network strategy, the decision-making power is positioned lower at the
operational level, the planners, or the team leaders of each unit. When mismatches occur at
their unit, given the local information, they contact the other planners (or the team leaders)
from other units individually to reallocate nurses in the system.
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Figure 6. Network decision-making structure for Model 1 (a), Model 2 (b), Model 3 (c), and
Model 4 (d).

In the hub strategy, as given in Figure 7, decision-making power is also positioned
lower at the operational level; the planners or the team leaders of each unit. They have
access to a centralized information system that holds system-wide local information (i.e.,
each unit’s demand and capacity information) so that each decision-maker has sufficient
information to reallocate nurses.

The results of the entropy analysis are given in Table 8. When the decision-making
requires local information, the structure with the lowest associated uncertainty is the hub
strategy, where the planners have the power to decide where the nurses should be reallo-
cated within the system. Moreover, given a certain planning period (e.g., per shift) and
the expected workload at each local department, planners decide whether the reallocated
nurses should stay at the current department or return to their home department. These
planners are connected through centralized information technology, with integrated de-
tailed information from other departments influencing the speed of information gathering
and processing. Each planner still decides what (detailed) information is essential and
acts accordingly.
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Table 8. Output of Algorithm 4: the decision-making structure entropy, given the local information.

Decision-Making Structure Entropy

Capacity Interventions Hierarchy Networks Hub

Model 1 Capacity/department
(current situation) 11.6 18 8

Model 2 Pooling Neonatal HC/MC Unit
(N3) with OBS Nursery Wards (O1) 10.9 14.7 8.4

Model 3 Pooling Neonatal Post-IC Unit (N2)
with Neonatal HC/MC Unit (N3) 10.6 13.7 7.4

Model 4 Pooling Neonatal Post-IC Unit (N2)
with OBS Nursery Wards (O1) 11.2 15 8.6

In Table 9, entropy analysis is given when the information needed for decision-making
is aggregated only to report a workload per unit instead of per nurse. Compared to the
results in Table 8, the associated uncertainty is decreased, hence the time needed to acquire
and process information for decision-making. As can be seen, although the hub strategy
provides the lowest associated entropy, the hierarchy structure is the next best strategy.
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Table 9. Output of Algorithm 4: the decision-making structure entropy, given aggregated information.

Decision-Making Structure Entropy

Capacity Interventions Hierarchy
+ Aggregated Information

Networks + Aggregated
Information

Hub + Aggregated
Information

Model 1 Capacity/department
(current situation) 3.6 10 0

Model 2 Pooling Neonatal HC/MC Unit
(N3) with OBS Nursery Wards (O1) 2.6 6.4 0

Model 3 Pooling Neonatal Post-IC Unit
(N2) with Neonatal HC/MC Unit (N3) 3 6.4 0

Model 4 Pooling Neonatal Post-IC Unit
(N2) with OBS Nursery Wards (O1) 2.6 6.4 0

5. Discussion

In this study, we portray how organizations can be considered queueing networks and
apply the entropy theory to interpret the queueing network coordination as an information
processing task. We answer and discuss our research questions within the following.

5.1. How Can We, by Decision-Making on an Operational Level, Partition the Organization in
Such a Way That the Entropy Is Minimized?

For a hospital system, the downstream departments need a certain slack capacity to
deal with the uncertainty of patient arrivals. The analysis of the current situation in the
perinatology care system showed that the neonatal post-IC unit (N2) was the bottleneck,
with the highest capacity utilization in the system. When considering the correlation
perspective, we investigated the pooling of the HC/MC unit (N3) and nursery ward (O3),
the pooling of the post-IC unit (N2) and HC/MC unit (N3), and the pooling of post-IC
unit (N2) and nursery ward (O3). The analysis of correlations showed that combining N2
with either O1 (Model 4) or N3 (Model 3) would be best; as the workload of N2 increases,
the workload of N3 and O1 tend not to increase simultaneously, balancing out the system
utilization when dealing with the uncertainty of patient arrivals.

In the current system, the one with the negative correlation is the post-IC unit (N2) of
the neonatology care system and the nursery ward (O1) of the obstetric care system. This
can happen due to the different types of patients allocated to the unit. For instance, the post-
IC unit (N2) is designed to care for sick newborns, while the nursery ward (O1) is intended
to care for healthy newborns. The nurses’ specialization focus also differs for these units;
the neonatology nurse is assigned to N2, and the obstetric nurse is assigned to O1. In other
words, these two departments have different systems. Given the different specialization
focus of these units (post-IC unit—N2, with the nursery ward—O1), implementation might
be challenging. However, as we previously studied in Winasti et al. [10], the effects of
pooling can be achieved with a small amount of flexibility. Creating a small percentage
of nurse flexibility between the post-IC unit and the wards is a contender strategy to deal
with uncertain demand in real-time.

Furthermore, we used entropy theory to measure the following three types of uncer-
tainty a unit may experience: arrival, position, and decision-making uncertainty. The total
uncertainty associated with the model and decision-making structure is the summation of
arrival, position, and decision-making entropies, as shown in Table 10 and Figure 8. When
making a decision regarding the design that can minimize uncertainty, pooling the HC/MC
unit and the post-IC unit (Model 3) with a strategy where the decision power is positioned
at the operation level and with the help of a centralized information system is the best, with
or without the aggregation of information.
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Table 10. Summary of entropy (bits) results, calculated with Formula (12).

Capacity Interventions Without Aggregated Information With Aggregated Information

Capacity Interventions
Arrival (Max) +

Positional (Max)
Entropy + Hierarchy

Arrival (Max)+
Positional (Max)

Entropy + Networks

Arrival (Max) +
Positional (Max)
Entropy + Hub

Arrival (Max) +
Positional (Max)

Entropy + Hierarchy

Arrival (Max)+
Positional (Max)

Entropy + Networks

Arrival (Max) +
Positional (Max)
Entropy + Hub

Model 1
Capacity/department
(current situation)

18.08 24.48 14.48 10.08 16.48 6.48

Model 2 Pooling
Neonatal HC/MC Unit
(N3) with OBS Nursery
Wards (O1)

16.48 20.28 13.98 8.18 11.98 5.58

Model 3 Pooling
Neonatal Post-IC Unit
(N2) with Neonatal
HC/MC Unit (N3)

15.18 18.28 11.98 7.58 10.98 4.58

Model 4 Pooling
Neonatal Post-IC Unit
(N2) with OBS Nursery
Wards (O1)

17.36 21.16 14.76 8.76 12.56 6.16
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5.2. How Should the Decision-Making on an Operational Level Be Organized?

The speed of gathering and processing the needed information influences the effec-
tiveness of the decision-making process at the operational level. First, the organization of
local and system-wide information dictates the speed of decision-making. When the local
information is integrated, the decision power is better positioned at the operational level of
care activity (i.e., the hub strategy), as indicated by the entropy analysis. This is aligned
with a recent study by van der Ham et al. [25], where they observed that decisional support
by producing data and information for operational decision-making seems to work best
when provided to the operational decision-makers, compared to when it is provided to
(tactical and strategic) manager(s).

When the local information is not integrated to support the system-wide (i.e., hori-
zontal) overview, hospitals can better use the hierarchy model, where the manager holds
the decision-making power with system-wide information. Complementary to the hierar-
chy strategy, hospitals can invest in a vertical information system (VIS) to allow speedy
information exchanges [26] between the planners, team managers, and the manager of the
care system.

Second, the speed of decision-making in real-time also depends on the level of infor-
mation aggregation set up by the system. The manager should make use of aggregated
information (e.g., workload with the number of understaffed or overstaffed beds) instead of
detailed information to solve supply–demand mismatches at the operational level. As can
be seen in Table 10, the hierarchy model with the aggregated information performed better
than the hub strategy without the aggregated information. These results provide insights
into the role of aggregated information in optimizing decision-making process in hospital
operations. As we used the workload (i.e., under/overstaffed beds) as the aggregated
information, further research is needed to specify other relevant information that can be
used for managing hospital operations.
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6. Conclusions
6.1. Practical Implications

Organization structuring or ‘to pool or not to pool’ has been the topic of many studies
and is still relevant. In this study, we used the correlation perspective as one parameter
to combine departments and subsequently evaluate the uncertainties associated with the
system. Combining the correlation perspective and the entropy theory is a way to quantify
how organizations can be (re)designed.

The design choice to reduce the effect of uncertainty on the organization segment
would concern which demand (and its accompanying uncertainty) should be combined.
Following Markowitz’s portfolio theory, we combined the departments with less-well-
correlated demand. As expected, pooling less-well-correlated wards can lower the supply-
demand mismatches portrayed by fewer days with overutilized beds, agreeing with the
theoretical results from Fagefors and Lantz [19]. Given the fewer days of mismatches,
the frequency of reallocating nurses within the system has also decreased. When the
reallocation frequency is decreased, the system is considered to be more stable.

This method can also be used to evaluate which departments should be physically
positioned to organize the reallocation of nurses in practice. For instance, positioning
respiratory wards on the same floor (or proximity) with neurological wards might benefit
the pooling effect. Since respiratory demand has seasonality patterns [27], neurological
demand with more acute admissions does not. Combining respiratory demand with
another seasonal demand (e.g., cardiology demand, as analyzed in [28]) might not improve
the system’s performance.

Furthermore, we showed that pooling departments also decreased the associated
uncertainty experienced by the system. Minimizing the arrival entropy means that the
system would have fewer expected mismatches in real-time. Minimizing the positional
entropy means the system would have a more accurate expected workload, leading to more
accurate resource planning. Furthermore, minimizing the decision-making entropy means
the system would have a speedy decision-making process. The care system can opt for the
configuration that provides the lowest total entropy by quantifying the three entropies.

6.2. Limitations and Future Research

The current study is not without its limitations. First, implementing such a system
must be seen as an evolutionary process. As in complex systems, evolutionary systems
work based on ongoing, continuous internal processes of exploration and experimentation.
Additional research regarding how the planning system can fit into an evolutionary process
is a relevant topic for future study. Second, our proposed method is designed for specific
settings of the perinatology care system in Radboud UMC. The interpretations might be
limited to the population characteristics that belong to our case study. However, our
method provides guidelines for its use in other settings, although variation would be
needed when implementing it.

Finally, we stated several times that one of the essential elements for a successful
implementation design is adequate vertical and horizontal (i.e., system-wide) information
and communication technology (ICT). Empirical research on the decision support system
(DSS)’s role in nurse planning and control at the real-time planning level is becoming more
important. One example is using a nurse staffing tool alongside predictive analytics that
provides actual staffing ratios across outpatient centers [29]. How the staffing tool reflects
on the over/-understaffed occurrence is an interesting research direction.
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