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Abstract: This paper concerns the modeling of the spread of information through a complex, multi-
layered network, where the information is transferred from an initial transmitter to a final receiver.
The mathematical model is deduced within the framework of operatorial methods, according to the
formal mathematical apparatus typical of quantum mechanics. Two different approaches are consid-
ered: one based on the (H, ρ)-induced dynamics and one on the Gorini–Kossakowski–Sudarshan–
Lindblad (GKSL) equation. For each method, numerical results are presented.

Keywords: operatorial models; Heisenberg dynamics; (H, ρ)-induced dynamics; GKSL equations;
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1. Introduction

The rapid development of social media and collaborative web platforms had drastically
altered how information is disseminated, making users both creators and transmitters
of news. Although this global evolution had accelerated the spread of information, it
had introduced significant challenges in determining the information’s reliability. In
fact, information can be readily manipulated, skewed, or partially omitted, resulting in
widespread misinformation, baseless rumours, or outright falsehoods. Consequently, it
is not surprising that there has been an overall rise in the development of mathematical
models designed to capture these phenomena. Many models are based on the framework
usually adopted in epidemiological models and graph analyses [1–4], but also operatorial
methods [5] have been used.

In this paper, we continue the analysis first undertaken in [5] with the goal of modeling
the spread of information through a complex, multi-layered network, where the information
is transferred from an initial transmitter to a final receiver. The intermediate layers in this
model, besides transferring the information, may possibly distort it. Our approach is
based on the idea of exchanging packets of information and uses some of the mathematical
apparatuses of quantum mechanics; the main motivation for this specific choice is that, in
the last few years, operatorial techniques have been used to model successfully several
macroscopic systems (see the recent monographs [6,7] and references therein). In particular,
and to cover a large spectrum of possibilities, we shall adopt two different approaches: one
based on the (H, ρ)-induced dynamics [8] and one on the Gorini–Kossakowski–Sudarshan–
Lindblad (GKSL) equation [9]. More specifically, concerning the (H, ρ)-induced dynamics
approach, our framework involves a Hamiltonian operator H built with appropriate ladder
operators, followed by inferring the Heisenberg equations of motion to derive the time
evolution of the significant observables of the system. According to the (H, ρ)-induced
dynamics methodology [6,8], we introduce a rule-oriented dynamics typical of cellular
automata into the Heisenberg dynamics. This approach enables us to incorporate into our
model certain effects that cannot easily be described by a purely Hamiltonian approach. In
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the second part of the paper, when dealing with the GKSL equation, we shall mainly obtain
the dynamics by introducing suitable Lindblad operators [9] and compare these results
with those deduced with the previous approach. A quantitative measure of the reliability
of the information transmitted is achieved through the computation of the mean values
of suitable density operators. One key advantage of this second approach is its ability to
naturally implement the irreversible nature of the transmission mechanisms between the
various layers, reflecting the fact that (usually) transmitters do not receive information
from the lower receiving layers.

The aim of both models is to assess, within the inherent uncertainty characterizing the
spread of information via unreliable agents, whether a final receiver interprets information
as good or fake. This is achieved through the computation of certain mean values, which
are phenomenologically interpreted as a measure of the information credibility or lack
thereof. We would like to emphasize that the terms ’good’ and ’fake’ are not limited strictly
to their usual definitions, but can represent any dichotomy within the information. For
example, a piece of news can be conveyed emphasizing the benefits (interpreted as ’good’)
or drawbacks (equated to ’fake’) of a particular subject. The ultimate goal is to characterize
the innate uncertainty linked to the propagation of information through unreliable channels,
primarily social media. We use the models in some scenarios that incorporate unique behav-
iors of the agents (i.e., different rules ρ or different rates of transmission between the layers)
that are able to significantly transform how the information is perceived by the receiver.

The paper is structured as follows. In Section 2, we present the macroscopic system and
the mathematical model built according to the Heisenberg dynamics of the operators. In
Section 3, we present some numerical experiments based on the (H, ρ)-induced dynamics
with different rules for a multi-layered network, whereas Section 4 is devoted to the
description of the dynamics of the network with a model derived from the GKSL equation
and suitable Lindblad operators. Finally, Section 5 summarizes our conclusions.

2. The Model and Its Dynamics

The mathematical framework and the Hamiltonian of the model were already intro-
duced in [5]. To keep this paper almost self-contained, hereafter, we give the essential steps
of our construction.

We have a piece of news N that can be transmitted as it is or changed by the agent
who transmits N . In the first case, we speak of good news, while we define fake news when
a piece of news is somehow distorted, for the agent’s convenience, ignorance, or other
reasons. We suppose that we have N agents Aα, with α = 1, 2, . . . , N, creating, receiving,
and transmitting N . Each agent is seen as a different cell of a networkR. Two cells α and
β are neighboring if the agents Aα and Aβ have a direct link to interchange information,
while, in most cases, Aα is connected to Aβ only by means of intermediate agents. As in [5],
for each Aα, we introduce two families of fermionic operators, fα (for fake news) and gα

(for good news), satisfying the canonical anticommutation rules (CAR)

{ fα, f †
β} = {gα, g†

β} = δα,β11, (1)

where {x, y} = xy + yx, with all the other anticommutators being trivial. In particular,
{ fα, fβ} = {gα, gβ} = 0, and { f ]α, g]β} = 0, where x] = x or x] = x†. We further de-

fine the number operators F̂α = f †
α fα and Ĝα = g†

αgα and the four-dimensional Hilbert
space Hα as follows: we introduce first the vacua e( f )

α,0 and e(g)
α,0 of fα and gα, respectively:

fα e( f )
α,0 = gα e(g)

α,0 = 0. Then, we define

e( f )
α,1 = f †

α e( f )
α,0 , e(g)

α,1 = g†
αe(g)

α,0 ,

and
ϕα:n f ,ng = e( f )

α,n f ⊗ e(g)
α,ng , (2)
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where n f , ng = 0, 1. The set Fϕ(α) = {ϕα:n f ,ng} is an orthonormal (o.n.) basis of Hα. We
call 〈., .〉α the scalar product inHα, and we have

〈ϕα:n f ,ng , ϕα:m f ,mg〉α = δn f ,m f δng ,mg .

Moreover,

F̂α ϕα:n f ,ng = n f ϕα:n f ,ng , Ĝα ϕα:n f ,ng = ng ϕα:n f ,ng . (3)

As already proposed in [5], if the system S in α is described by the vector ϕα:0,0, then N
has not reached Aα, in any of its forms. If it is described by ϕα:1,0, then the fake version of
N has reached Aα, while Aα is reached by its good version if the vector is ϕα:0,1. Finally,
both versions of N have reached Aα if S in α is described by ϕα:1,1.

Each vector uα ∈ Hα is a linear combination of the vectors ϕα:n f ,ng . Now, we can
considerH = ⊗αHα, the Hilbert space ofR, with scalar product

〈u, v〉 = ∏
α

〈uα, vα〉α,

for each u = ⊗αuα and v = ⊗αvα. Each operator X̂α acting on Hα can be extended to the
wholeH by identifying X̂α with X̂α ⊗ (⊗β 6=α11β), where 11β is the identity operator onHβ.
The initial state of S is described by the following vector onH:

Ψn,m = ⊗α ϕα:nα ,mα , (4)

where n = (n1, n2, . . . , nN), m = (m1, m2, . . . , mN). The knowledge of Ψn,m allows us to
deduce whether and which kind of information is possessed (at t = 0) by any agent Aα of
the system.

To assign a dynamics to the system, let us introduce the following Hamiltonian H of
the system, describing the main interactions occurring in S [5]:

H = H0 + HI , with

H0 = ∑
α

ω f ,α F̂α + ∑
α

ωg,αĜα,

HI = ∑
α,β

p( f )
α,β( fα f †

β + fβ f †
α ) + ∑

α,β
p(g)

α,β(gαg†
β + gβg†

α) + ∑
α

λα( fαg†
α + gα f †

α ).

(5)

We refer to [5] for some details of this Hamiltonian. Here, we limit ourselves to observing
that the contribution H0 is the free part of the Hamiltonian, the parameters therein involved
being somehow related to the inertia of the corresponding degrees of freedom. Moreover,
the first term in HI is a diffusion term for fake news, while the second one is again a
diffusion term, but for good news. The third term describes a possible change during the
time evolution of the nature of the news: a piece of good news can be transformed into
a fake one (gα f †

α ) and vice versa (by means of the adjoint contribution). The value of λα

measures the attitude of Aα to modify the news. The coefficients p( f ,g)
α,β in HI are diffusion

coefficients for the two typologies of news. We assume for the moment that they are all real
and symmetric (p( f ,g)

α,β = p( f ,g)
β,α ), and that p( f ,g)

α,α = 0, but they are not necessarily all different
from zero.

In [5], we worked under the assumption that

∑
α,β

p( f )
α,β > ∑

α,β
p(g)

α,β,

to describe the fact that fake news travels much faster than good news. Hereafter, we do
not necessarily adopt this assumption.
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Using standard computation, we use H and the CAR in Equation (1) to compute the
equations of motion for the ladder operators and the mean values of their related number
operators. In particular, using Ẋ(t) = i[H, X(t)], where [x, y] = xy− yx, we obtain ḟα(t) = −iω f ,α fα(t) + 2i ∑β p( f )

α,β fβ(t) + iλαgα(t)

ġα(t) = −iωg,α gα(t) + 2i ∑β p(g)
α,βgβ(t) + iλα fα(t),

(6)

where α = 1, 2, . . . , N. This is a closed system of linear, operator-valued, first-order differ-
ential equations that can be easily solved. In fact, if we call X(t) the 2N-column vectors
whose transpose is

X(t)T = ( f1(t), f2(t), . . . , fN(t), g1(t), g2(t), . . . , gN(t)),

and introduce the following Hermitian (time-independent) 2N × 2N matrix V,

V =



−ω f ,1 2p( f )
1,2 2p( f )

1,3 . . 2p( f )
1,N λ1 0 0 . . 0

2p( f )
1,2 −ω f ,2 2p( f )

2,3 . . 2p( f )
2,N 0 λ2 0 . . 0

2p( f )
1,3 2p( f )

3,2 −ω f ,3 . . 2p( f )
3,N 0 0 λ3 . . 0

. . . . . . . . . . . .

. . . . . . . . . . . .
2p( f )

1,N 2p( f )
2,N 2p( f )

3,N . . −ω f ,N 0 0 . . . λN

λ1 0 0 . . 0 −ωg,1 2p(g)
1,2 2p(g)

1,3 . . 2p(g)
1,N

0 λ2 0 . . 0 2p(g)
1,2 −ωg,2 2p(g)

2,3 . . 2p(g)
2,N

0 0 λ3 . . 0 2p(g)
1,3 2p(g)

3,2 −ωg,3 . . 2p(g)
3,N

. . . . . . . . . . . .

. . . . . . . . . . . .
0 0 . . . λN 2p(g)

1,N 2p(g)
2,N 2p(g)

3,N . . −ωg,N


system (6) can be rewritten in compact form as Ẋ(t) = iVX(t), whereupon the solution is

X(t) = exp(iVt)X(0). (7)

In writing the explicit form of V, we have used the equality p( f ,g)
α,β = p( f ,g)

β,α . Let us call
vi,j(t) = (exp(iVt))i,j (i, j = 1, 2, . . . , 2N), and let E = {ej, j = 1, 2, . . . , 2N} be the
canonical o.n. basis inH2N = C2N , endowed with scalar product 〈·, ·〉2N . Then, we have

fα(t) = 〈eα, X(t)〉2N , gα(t) = 〈eN+α, X(t)〉2N , (8)

α = 1, 2, . . . , N. If we call F0
β and G0

β the mean value of F̂β and Ĝβ on the vector ϕβ:nβ ,mβ
at

t = 0,
F0

β = 〈ϕβ:nβ ,mβ
, F̂β ϕβ:nβ ,mβ

〉β, G0
β = 〈ϕβ:nβ ,mβ

, Ĝβ ϕβ:nβ ,mβ
〉β,

then, setting

Fα(t) = 〈Ψn,m, F̂α(t)Ψn,m〉2N = 〈Ψn,m, f †
α (t) fα(t)Ψn,m〉2N , (9)

and
Gα(t) = 〈Ψn,m, Ĝα(t)Ψn,m〉2N = 〈Ψn,m, g†

α(t)gα(t)Ψn,m〉2N , (10)
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we obtain 
Fα(t) =

N

∑
β=1

(
|vα,β(t)|2F0

β + |vα,β+N(t)|2G0
β

)
,

Gα(t) =
N

∑
β=1

(
|vα+N,β(t)|2F0

β + |vα+N,β+N(t)|2G0
β

)
,

(11)

α = 1, 2, . . . , N. From these functions, we define the following mean values

F(t) =
1
N

N

∑
α=1

Fα(t), G(t) =
1
N

N

∑
α=1

Gα(t), (12)

which we interpret as the time evolution of the global mean values of fake and good news,
respectively. On the other hand, Fα(t) and Gα(t) are their local counterparts. Notice that,
because of the fermionic nature of the operators involved, we have Fα(t), Gα(t) ∈ [0, 1], and
therefore F(t), G(t) ∈ [0, 1], as well, for all values of t.

The resulting time evolution is, in general, quasiperiodic, so that neverending os-
cillations occur. This is a general fact (see [10,11]), due to the fact that our Hamiltonian
in Equation (5) is Hermitian and that S is finite-dimensional. As we will show below,
some more interesting dynamical behaviors can be recovered when introducing some more
components in the analysis of S , such as using the (H, ρ)-induced dynamics approach or
Lindblad operators.

3. The Network Model

In this section, we suppose that information is conveyed from an initial transmitter
to a final receiver through sub-agents. The scheme of the network is depicted in Figure 1
and consists of three distinct layers, with the first layer being the transmitter, Agent 1 (T ),
and the final layer being the receiver, Agent 6 (R). The middle layer is composed of several
agents that act as mediators between the transmitter and the receiver. We imagine that the
flow of information follows a one-directional path, starting from the transmitter T and
ending at the receiver R, passing through the middle layer (this point, however, will be
adequately relaxed adopting the “Hermitian” approach with the aid of the rules).

Ag. 2 Ag. 3 Ag. 5Ag. 4

T = Ag. 1

R = Ag. 6

Figure 1. Schematic representation of the network composed of three layers. The top and bottom
layers consist of only one agent (Agent 1, T , the transmitter, and Agent 6,R, the receiver, respectively).
The middle layer is composed of four agents interacting with the top and bottom layers. Links
between the various agents are also shown.
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Given our focus on the duality of information as either good or fake (or pros and cons),
we assume, as previously explained in Section 2, that each agent in the network is connected
to two separate fermionic modes, one of which is responsible for the transmission of good
information and the other one for fake information. This means that the entire network
involves 12 fermionic modes. Moreover, we assume that the agents in the middle layer,
namely Agents 2–5, have different behaviors: Agents 2 and 5 receive the news from T
and only send the good and fake parts of the news, respectively. Conversely, Agent 3 and
Agent 4 have the ability to modify the way in which news is transmitted to the lowest
layer, changing the nature of the information received from good to fake and vice versa,
respectively. This is an important aspect of our model, as it adds an element of complexity
to the transmission process. Overall, our analysis aims to shed light on the intricate ways
in which information is conveyed through complex networks, with a particular focus on
the role of individual agents in shaping the final outcome of the transmission process.

For such a model, we specialize the Hamiltonian operator H in Equation (5); namely,
we consider

H =
6

∑
α=1

(
ω f ,α f †

α fα + ωg,αg†
αgα

)
+ ∑

α∈{1,3,4,6}
λα( fαg†

α + gα f †
α )

+
5

∑
β=2

(
p( f )

1,β ( f1 f †
β + fβ f †

1 ) + p(g)
1,β(g1g†

β + gβg†
1)
)

+ ∑
β∈{3,4,5}

(
p( f )

β,6 ( fβ f †
6 + f6 f †

β )
)
+ ∑

β∈{2,3,4}

(
p(g)

β,6(gβg†
6 + g6g†

β)
)

,

(13)

where all the parameters are real and positive.
The Hamiltonian Equation (13) involves several parameters, and different choices for

the values of the parameters, as well as the initial conditions, describe different situations
and, not surprisingly, give different results.

Hereafter, we show the results of the numerical solutions by fixing the following set
of parameters:

ω
( f )
1 = 1, ω

( f )
2 = 1.2, ω

( f )
3 = ω

( f )
4 = ω

( f )
6 = 0.6, ω

( f )
5 = 0.8,

ω
(g)
1 = 1, ω

(g)
2 = ω

(g)
3 = ω

(g)
4 = 0.8, ω

(g)
5 = 1.2, ω

(g)
6 = 0.6,

λ1 = λ3 = λ4 = λ6 = 0.2,

p( f )
1,2 = p( f )

1,3 = p( f )
1,4 = p( f )

4,6 = 0.5, p( f )
1,5 = 0.7, p( f )

3,6 = 0.3, p( f )
5,6 = 0.9,

p(g)
1,2 = 0.7, p(g)

1,3 = p(g)
1,4 = p(g)

1,5 = p(g)
3,6 = 0.5, p(g)

2,6 = 0.9, p(g)
4,6 = 0.3.

(14)

Some comments on the rationale for this choice are in order:

• the inertia parameters associated with Agent 1 are equal (a form of neutrality of
the transmitter); Agent 2 (Agent 5, respectively) has the higher value of the inertia
parameter for fake news (for good news, respectively); for the remaining agents, the
inertia parameters associated with fake news are smaller than those associated with
good news;

• the interaction parameters responsible for the conversion of good news into fake news
and vice versa are all equal, except for Agents 2 and 5, where this interaction is absent;

• the coefficients related to the diffusion of good and fake news between the transmitter
and the agents in the intermediate layer are all equal, except the coefficients involving
Agents 2 and 5.

The main idea behind this particular choice of the values of the parameters is that, in
general, fake news is more volatile than good news; moreover, Agent 2 exchanges with the
receiver only good news, whereas Agent 5 transmits to the receiver only fake news; finally,
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Agent 3 (Agent 4, respectively) conveys to the receiver more fake news than good news
(more good news than fake news, respectively).

Additionally, we choose the following initial values for the mean values:

F1(0) = G1(0) =
1
2

, Fα(0) = Gα(0) = 0, α = 2, . . . , 6, (15)

which describe the fact that, at t = 0, only agent 1 possesses some information, but its
nature is not clear.

The quadratic nature and the hermiticity of Equation (13), combined with the finite
dimensionality of the system, imply that the solution of the differential equations derived
in the Heisenberg view is, in general, quasiperiodic. This is evident in Figure 2.

Figure 2. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right).

In what follows, we switch to the (H, ρ)-induced dynamics (see [8] for details of the
procedure). In particular, the rule ρ that we introduce prescribes that the inertia parameters’
ω( f )s and ω(g)s are periodically modified as a consequence of the evolution of the system;
thus, the model adjusts itself during the time evolution, and this self-modification may be
thought of as a surreptitious way to account for the influence of the external world on the
attitudes of the various agents.

Essentially, we start with the Hamiltonian Equation (13), where we fix the values of
the parameters therein involved, and we compute, in a time interval of length τ > 0, the
evolution of annihilation and creation operators, whereupon, choosing an initial condi-
tion for the mean values of the number operators, we obtain their time evolution (our
observables). The variations in the values of the observables in the time interval [0, τ]
determine, in a way that we describe below, a change in the inertia parameters. Then, a
new Hamiltonian with the same functional structure but (possibly) different parameters
arises, and we follow the continuous evolution of the system under the action of this new
Hamiltonian for the next time interval of length τ, i.e., for t ∈ [τ, 2τ], and so on. In fact,
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taking a time interval [0, T] where we study the evolution of the system, and splitting it
into n = T/τ (n is supposed, without loss of generality, to be an integer) subintervals of
length τ, we construct a sequence of Hamiltonians, differing from each other only in the
values of some parameters; the global dynamics in the whole time interval [0, T] is obtained
by gluing the local evolutions in each subinterval. The result of this procedure is what we
call (H, ρ)-induced dynamics. The choice of τ plays a role in the dynamics too. Indeed, if τ
is very large, τ ' T, it is as if no rule ρ is truly acting on S ; vice versa, if τ ' 0, it is as if ρ is
acting continuously on S [12], producing a form of Zeno effect.

It is worth stressing that there is no quantum feedback control in the approach of
(H, ρ)-induced dynamics, except that at a qualitative level. The main technical reason for
the use of a rule ρ relies on the need to have, in each time subinterval, time-independent
linear Heisenberg equations, so as to limit the computational complexity for systems
involving a large number of fermionic or bosonic modes. This approach allows us to
modify some of the parameters entering the Hamiltonian according to the evolution of
the system. In [8], we showed that this approach can provide similar results to the ones
derived when considering open quantum systems or in the case where the Hamiltonian is
time-dependent (see also [12]). The remarkable effect of the approach, besides keeping low
the computational complexity, is that of producing time evolutions usually approaching
some equilibrium state, even for finite-dimensional systems. Then, the (H, ρ)-induced
dynamics can be seen as an alternative to other existing methods usually adopted in the
literature to describe systems that, after some transient, reach an equilibrium.

To introduce our rules, let us define

δ
( f )
α = Fα(kτ)− Fα((k− 1)τ), α = 1, . . . , 6,

δ
(g)
α = Gα(kτ)− Gα((k− 1)τ), α = 1, . . . , 6,

which are a measure of the variation in the fake and good news perceived by Agent Aα in a
time interval. These variations are used to propose six different rules, by updating at fixed
instants kτ (k = 1, 2, . . .) the inertia parameters, mimicking in this way different variations
in the attitudes of the agents of the network.

Rule 1:
ω
( f )
α → ω

( f )
α (1 + καδ

( f )
α ),

ω
(g)
α → ω

(g)
α (1 +

κα

2
δ
(g)
α );

Rule 2:
ω
( f )
α → ω

( f )
α (1 +

κα

2
δ
( f )
α ),

ω
(g)
α → ω

(g)
α (1 + καδ

(g)
α );

Rule 3:
ω
( f )
α → ω

( f )
α (1 + καδ

( f )
α ),

ω
(g)
α → ω

(g)
α (1 +

κα

2
(δ

(g)
α )2);

Rule 4:
ω
( f )
α → ω

( f )
α (1 + κα(δ

( f )
α )2),

ω
(g)
α → ω

(g)
α (1 +

κα

2
δ
(g)
α );

Rule 5:
ω
( f )
α → ω

( f )
α (1 +

κα

2
δ
( f )
α ),

ω
(g)
α → ω

(g)
α (1 + κα(δ

(g)
α )2);
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Rule 6:
ω
( f )
α → ω

( f )
α (1 +

κα

2
(δ

( f )
α )2),

ω
(g)
α → ω

(g)
α (1 + καδ

(g)
α ).

We see that, in all the rules above, some positive coefficients κα are involved; they serve
to weight differently the variations in the mean values in determining the modifications of
the inertia parameters.

Some comments about the different rules are in order. Rules 1 and 2 are such that
the various inertia parameters increase (decrease, respectively) if the corresponding mean
values of fake and good news increase (decrease, respectively) in the subinterval of length
τ, the only difference being the choice of the respective weights. Due to the interpretation
of the inertia parameters, this means that an increase in fake (or good) news tends to lower
the tendency to change in fake (or good) news.

Using rule 3 (rule 4, respectively), the variation in the inertia parameters of fake news
(good news, respectively) has the same trend as the variation in the corresponding mean
values of fake news (good news, respectively), whereas the inertia parameters of good news
(fake news, respectively) increase regardless of the sign of the variation in the mean values
of good news (fake news, respectively). This is because a square appears in the formulas.

Finally, rules 5 and 6 are similar to rules 3 and 4, except for the inverted choice of the
weights. These rules are interesting, in comparison with rules 3 and 4, to understand the
role of the weights in the above formulas.

The numerical values of the weights that we use in the numerical solutions are

κ1 = 1, κ2 = κ3 = κ4 = κ5 = 1.2, κ6 = 0.6. (16)

Therefore, the variation in the inertia parameters of the agents of the middle layer is the
largest one, and the weight associated with the variation in the inertia parameters of the
receiver is the smallest one.

Numerical Simulations

The evolution of the mean values of fake and good news in the simplified network
strongly depends, besides the choice of the rule, on the initial values of the parameters
involved in the Hamiltonian. The effect determined by the rules is emphasized using, in all
the numerical simulations, the set of initial parameters given in Equation (14).

Figures 3–8 show the time evolution of the news in the network according to the
different rules.

What can be observed in all the figures is that different rules determine different out-
comes, even if the initial condition and the initial values of the parameters are unchanged.
The receiver can obtain a different combination of fake and good news, and this depends
on the mechanisms changing the inertia parameters of the various agents. Moreover, the
rules have the effect of introducing a form of irreversibility in the dynamics, despite the
hermiticity of the Hamiltonian.

Among other effects, we observe that, adopting rule 1, 2, or 5, there results a change in
what Agent 6 perceives after some time; on the contrary, using rules 3, 4, and 6, despite
the presence of many oscillations, the overall impression of Agent 6 remains unchanged.
On the other hand, what happens for the agents in the intermediate layer shows large
variability, possibly due to the presence of agents with different attitudes in the layer.
Quite interestingly, even if the news passes from Agent 1 to Agent 6, all the figures clearly
show a feedback effect on the transmitter, which can change its perception of N with time.
This is due to the oscillatory behavior of the dynamics in each intermediate time interval
[(k− 1)τ, kτ], k = 1, 2, . . .. This means that also the transmitter T can modify its perception
as a consequence of its interaction with the other agents.
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Figure 3. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right); rule 1 with τ = 1.

Figure 4. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right); rule 2 with τ = 1.
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Figure 5. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right); rule 3 with τ = 1.

Figure 6. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right); rule 4 with τ = 1.
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Figure 7. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right); rule 5 with τ = 1.

Figure 8. Time evolution of the mean values of fake and good news for Agent 1 (top left), Agent 6
(top right), agents of the middle layer (bottom left), and all agents (bottom right); rule 6 with τ = 1.
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4. Dynamics of the System Using the GKSL Equations

In this section, we propose a different approach, based on the GKSL equation, to
solve the dynamics within the network schematized in Figure 1. Recently, the GKSL has
been used to model several types of macroscopic systems, particularly those requiring
the preservation of irreversibility in certain mechanisms, as done in recent applications
of the Lindblad approach beyond the quantum domain (see [13–17] and the interesting
discussions in [18]).

As highlighted previously, the network dynamics is based on information flowing
unidirectionally among the agents. In fact, the dynamics can be visualized as a series
of continuous transmissions of small packets of information from one agent to another.
Therefore, we expect this mechanism to be accurately described only by the operator of the
form a†

αaβ (and not considering their adjoint), where the β-th agent is transmitting to the
α-th agent, and a can be any of the f or g operators. Similarly, the process of changing the
nature of the information for a generic α-th agent can be described using operators of the
form g†

α fα or f †
α gα.

This suggests that the GKSL equation, which is well suited to solving dynamics where
non-reversible effects are predominant, could be an appropriate approach to describing the
dynamics within the network. The GKSL equation describes the evolution of the density
operator ρ(t) = |Ψ(t)〉〈Ψ(t)| (written in the usual bra–ket notation), where Ψ(t) represents
the state of the system at time t, and reads as follows:

d
dt

ρ(t) = −i[H, ρ(t)] +
N?

∑
α=1

(
Lα ρ(t)L†

α −
1
2

{
L†

αLα ρ(t)
})

, (17)

where H is the Hamiltonian of the system, which typically contains only reversible effects,
such as the ones in Equations (5) and (13), for instance. The various Lαs represent the
Lindblad operators responsible for the irreversible mechanisms, and N? is their number.
When writing the GKSL equation, we assume that the system dynamics is Markovian, and
the Lindblad operators are independent of the state of the system.

Compared to the previous approach, which was mostly based on the evolution of
operators through the Heisenberg equation, the primary difference now is that the density
operator connected to the state Ψ is evolving. Using this approach, one can easily derive
the mean values of the number operators, as shown in Equations (9) and (10), using the
standard procedure based on the computation of the traces:

Gα(t) = tr(ρ(t) Ĝα), Fα(t) = tr(ρ(t) F̂α), α = 1, . . . , N. (18)

To be more specific, we assume that H is nothing but the free and self-adjoint Hamilto-
nian H0 in Equation (5),

H = H0 =
6

∑
α=1

ω
( f )
α F̂α +

6

∑
α=1

ω
(g)
α Ĝα, (19)

whereas the various Lindblad operators responsible for the transmission between the
different layers are

Lα−1 = L(g)
α,1 = p(g)

α,1 g†
αg1, for α = 2, . . . , 5, (20)

Lα+3 = L( f )
α,1 = p( f )

α,1 f †
α f1, for α = 2, . . . , 5, (21)

Lα+7 = L(g)
6,α = p(g)

6,α g†
6 gα, for α = 2, . . . , 5, (22)

Lα+11 = L( f )
6,α = p( f )

6,α f †
6 fα, for α = 2, . . . , 5, (23)
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and those responsible for changing the nature of the information in the agents 3 and 4 are

L17 = p(g)
3,3 g†

3 f3, L18 = p( f )
4,4 f †

4 g4. (24)

Understanding how the various Lindblad operators affect the system is quite straightfor-
ward. It is well known that any initial pure state Ψ evolves into a mixture of states due to
the occurrence of evolutionary jumps [9]. Similar computations to those performed in [13]
can be useful to explain this mixture and are based on a standard perturbative approach in
Equation (17). In doing so, we can neglect the action of the Hamiltonian H, focusing only
on the Lindblad operators. To the leading order in dt, the evolved density operator ρ(dt) of
a pure state in a small time step dt is given by

ρ(dt) ≈ A ρA† +
N?

∑
α=1
Bα ρB†

α, (25)

where

A = 11− dt
2

N?

∑
α=1

L̃†
α L̃α, Bα =

√
dt L̃α, α = 1, . . . , N?; (26)

N? = 18 is the total number of Lindblad operators that are defined in Equations (20)–(24).
This means that the evolved state is a mixture of the pure states defined, with suitable
normalizations, by AΨ and by the various BαΨ. In particular, there is a probability

pA = ‖AΨ‖2 '
(

1− dt
N?

∑
α=1
‖L̃αΨ‖2

)

that the state Ψ evolves following the continuous drift-type evolution to

1
‖AΨ‖AΨ, (27)

and there is a probability pBα
= ‖Bα Ψ‖2 = dt‖L̃αΨ‖2 that evolves following the various

evolutionary jumps in
1

‖BαΨ‖BαΨ, α = 1, . . . N?. (28)

In the latter process, the evolved state does not tend to the original one as dt→ 0, as
in the process ruled by the continuous drift-type evolution, and this causes the well-known
mixture of states. We remark that all the Lindblad operators in Equations (20)–(23) are
of the type a†b, where a and b can be gj or fk, so that the evolutionary jumps work by
pushing the pure state Ψ = ∑ αn,mΨn,m with n or m (depending on whether we act with g
or f , respectively) of the form (. . . , 0︸︷︷︸

j−th

, . . . , 1︸︷︷︸
k−th

, . . .) into the state ∑ αn,mΨn? ,m? , where

n? or m? has the form (. . . , 1︸︷︷︸
j−th

, . . . , 0︸︷︷︸
k−th

, . . .), while the components different from j, k

are the same as those of n, m. For instance, the action of L̃1 = L(g)
2,1 = p(g)

2,1 g†
2 g1 causes a

jump from the state with n = (1, 0, . . .) to a state with n? = (0, 1, . . .). Similarly, if we act
with one of the operators in Equation (24), let us say L17, we would have that the pure
state Ψ = ∑ αn,mΨn,m with n and m of the form (. . . , 0︸︷︷︸

3−th

, . . .) or (. . . , 1︸︷︷︸
3−th

, . . .) drifts into

the state ∑ αn,mΨn? ,m? , where n? and m? have the form (. . . , 1︸︷︷︸
3−th

, . . .) or (. . . , 0︸︷︷︸
3−th

, . . .),

respectively.
From this qualitative analysis, it is expected that, in our model, all the Lindblad

operators operate in a chain driving the quantity of information contained in the first layer
toward the last layer. Hence, as time goes on, the values of G1(t) and F1(t) in the first layer
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will decrease, while the other layers will increase their relative values. Ultimately, all the
information will be contained in G6(t) and F6(t), depending on the strength of the layers
responsible for switching the information (in particular, Agents 3 and 4). In the following,
we consider three different numerical experiments intended to show how it is possible to
simulate different situations in which the news perceived byR can be dependent on the
mechanisms ruling the transmission in the middle layer.

4.1. Experiment I

In this first experiment, we present some results derived from the mechanisms de-
scribed above. The outcomes are shown in Figures 9a,b, where the time evolution of the
relevant mean values is depicted for an initial condition where G1(0) = F1(0) = 0.5, and
the model parameters are chosen as described in the captions of the figures. Note that, with
respect to Section 3, we focus our attention on the transmitter T and the receiver R, the
intermediate layer being less relevant. For this reason, the figures in this section describe
mostly what happens to these agents.

(a) (b)

(c)

Figure 9. Time evolutions of (a) the mean values G1(t) = F1(t), G6(t), F6(t); (b) the mean values
G3(t), F3(t), G4(t), F4(t). In (c), the asymptotic value G6 of G6(t) versus the parameter p(g)

3,3 . Initial
conditions G1(0) = F1(0) = 0.5 and other mean values are equal to zero. Model parameters: all

p(g, f )
α,β = 0.5 in Equations (20)–(23), p(g)

3,3 = 2, p( f )
4,4 = 0.05, all ω

(g)
α = ω

( f )
α = 1 in Equation (19).

We set the strength of transmission, governed by the parameters p(g, f )
α,β , to be equal

for all agents except for Agents 3 and 4, which are responsible for changing the nature of
the transmitted information. We choose p(g)

3,3 = 2 and p( f )
4,4 = 0.05, meaning that there is a

greater probability that the information arriving at Agent 3 will be changed from fake to
good and a lower probability that Agent 4 will change from good to fake. This explains
why the final asymptotic value of G6 is higher than that of F6. Notice from Figure 9 that
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G1(t) = F1(t) because the first layer conveys information to the middle layer with equal
strength for both good and fake information, i.e., p(g)

α,1 = p( f )
α,1 for α = 2, . . . , 5. In Figure 9b,

we observe that G3,4(t) and F3,4(t) initially increase due to the transmission from the first
layer and then start to decrease after reaching their peaks, which is also true for the other
mean values of the middle layer (not shown in the figure). It is G3(t) > F3(t) because of
the higher value of p(g)

3,3 , while F4(t) ' G4(t) due to the small value of p( f )
4,4 .

It is clear from this experiment that the ratio between p(g)
3,3 and p( f )

4,4 plays a crucial
role in determining the final asymptotic value G6 of G6(t) (the asymptotic value of F6(t)
in this case is simply 1− G6). In Figure 9c, we show G6 versus p(g)

3,3 for the same initial

conditions and model parameters, as reported in the caption. As p(g)
3,3 increases, so does G6,

although we observe a saturation effect for very large values of p(g)
3,3 , with a value close to

0.624. Clearly, modifying the other parameters and initial conditions will affect this value.

4.2. Experiment II

The following numerical experiment is intended to show that, from an initial condition
such that G1(0) < F1(0), and choosing suitable strengths of the various Lindblad operators,
it is possible to obtain G6(t) > F6(t) asymptotically, so that the nature of the transmitted
information is viewed differently from the final receiver. This is similar to what is observed
in Section 3, for instance, adopting rule 1 or rule 2. Following the mechanism described
in the previous sections, we choose p( f )

4,4 = 0, p( f )
1,3 = 5, and the other parameters as in

Experiment I. Results are shown in Figure 10 for the initial condition G1(0) = 0.2 and
F1(0) = 0.8. With this choice of parameters, we are forcing the information to travel rapidly
toward Agent 3 due to the high p( f )

1,3 = 5. Considering also p(g)
3,3 = 2 > p( f )

4,4 , this agent is
forced to modify the nature of the information and transmit it modified as “good”. The final
receiver is then receiving more “good” information, expressed by the fact that G6(t) > F6(t)
asymptotically: the original nature of N is indeed modified by the interactions acting in S .

Figure 10. Time evolutions of the mean values G1(t), F1(t), G6(t), F6(t) and F3(t). Model parameters:

all p(g, f )
α,β = 0.5 in Equations (20)–(23), except p( f )

1,3 = 5, p(g)
3,3 = 2, p( f )

4,4 = 0.05; all other parameters as
in Experiment I. In the inset, the time evolution for small times of F1(t) and F3(t).

4.3. Experiment III

For our third experiment, we propose a variation of the model by introducing a new
mechanism. While, in the previous experiments, all initial information in the first layer
was entirely sent to the final receiverR, this is not necessarily always the case. Sometimes,
news or information is continuously transmitted for a longer period of time. To model this,
we require the transmitter T to be continuously refilled with packets of information to send
to the lower layers, and this can be easily implemented by using the Lindbladian approach.
For example, an additional Lindblad operator of the form L(g) = λ

(g)
1 g†

1 will push a pure
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state Ψ = ∑ αn,mΨn,m with n of the form (0, . . .) into the state Ψ = ∑ αn,mΨn? ,m with n? of
the form (1, . . .) (similarly, L( f ) = λ

( f )
1 f †

1 will push a pure state Ψ = ∑ αm,nΨm,n toward
Ψ = ∑ αm,nΨm,n? , with obvious notation). The effect of this operator is that the value of
G1(t), or F1(t), increases over time, at least asymptotically. In other words, the introduction
of these Lindblad operators allows for the continuous refurnishing of information packets to
the transmitter T , which in turn is expected to result in a gradual increase in the quantity of
information transmitted to the lower layers of the network. Of course, the precise dynamics
of this process will depend on various factors, such as the strength of the Lindblad operator
and the initial conditions of the system.

Some numerical results are shown in Figures 11a,b, where we have chosen λ
(g)
1 6= 0,

λ
( f )
1 = 0. Our focus is solely on the pure transmission of the information, without any

alteration of its inherent nature, and, to ensure this, we set the values of p(g)
3,3 and p( f )

4,4 to be
equal to zero. All the other model parameters and initial conditions are consistent with
those used in Experiment I. As expected, the mean value G1(t), after a small transient,
increases and reaches the maximum value 1. This has as a consequence that the lower
layers continuously receive the “good” information, so that G6(t) reaches asymptotically
the maximum value 1 also. Figure 11a,b also show that the larger the value of λ

(g)
1 , the

higher the speed with which this asymptotic value is reached.

(a) (b)

Figure 11. (a) Time evolutions of the mean values G1(t), F1(t), G6(t), F6(t) when considering the

Lindblad operators λ
(g)
1 g†

1 . Model parameters: λ
(g)
1 = 0.1, p(g)

3,3 = 0, p( f )
4,4 = 0.0; all other parameters

as in Experiment I. In the inset, the time evolution for small time (b). Same as panel (a) but with

λ
(g)
1 = 0.5.

5. Conclusions

In this paper, we have proposed two different operatorial approaches to derive the
dynamics governing the transmission of information in a multi-layered network.

In the first approach, the dynamics is governed by the Heisenberg equations of motion
for operators, coupled with the application of some rules modifying the inertia parameters.
The reliability, or lack thereof, of information is determined through the computation of
suitable mean values of certain number operators. The dynamics is highly enriched by the
rules; several numerical experiments are presented to discuss the influence of these rules on
the spreading of information. Notably, we observe that the rules may allow for asymptotic
equilibria in the dynamics (a significant feature that could not be achieved using standard
Heisenberg dynamics) in the present context.

The second approach introduced is based on the GKLS equations, giving an alter-
native method to reach equilibrium in the dynamics. This method is mainly based on
the definition of particular Lindblad operators and the ideas typically characterizing the
open quantum systems. The central idea here is that Lindblad operators enable the irre-
versibility of the transmission of information from an initial transmitter to a final receiver.
This feature relaxes the constraint of the self-adjointness of the Hamiltonian present in the
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(H, ρ)-induced dynamics approach, creating a direct way to describe the mechanisms of
the transmission of the information within the network.

Both approaches allow for the derivation of plausible dynamical behaviors in which
the receiver of the information can perceive it differently, depending on the choice of the
parameters in the model. Our analysis paves the way for various potential applications,
ranging from the implementation of different rules to the modeling of specialized agents
like influencers within the network. Moreover, our models are adaptable to other systems,
and we see a robust connection to game theory as a promising future direction. These
explorations are central to our upcoming plans and represent only a small fraction of
the possible extensions of the concepts discussed in this paper, and they underscore the
versatility and potential of both the (H, ρ)-induced dynamics and the GKLS equations in
the complex study of networked systems.

The two strategies that we present are rather different, and also the results are qualita-
tively different, at least during the transient. Nonetheless, both are able to produce a time
evolution approaching some equilibrium, which is an interesting feature that is impossible
to achieve for finite-dimensional systems driven by self-adjoint Hamiltonians. Deeper
investigations are required to obtain a valuable comparison between the two strategies.

A final comment is concerned with the observables that we are mainly interested in,
in the description of the status of the various agents in the network, e.g., the mean value
of the number of operators associated with fake and good news. Other quantities could
be considered—for instance, entropies. Since a piece of news can assume two different
states, using the mean values of fake and good news as probabilities, we could consider,
for instance, Shannon entropy, and investigate its time evolution for single agents and for
the network as a whole. We plan to investigate such an aspect in the near future.
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