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Abstract: Determining the cyclic-alternating-pattern (CAP) phases in sleep using electroencephalog-
raphy (EEG) signals is crucial for assessing sleep quality. However, most current methods for CAP
classification primarily rely on classical machine learning techniques, with limited implementation
of deep-learning-based tools. Furthermore, these methods often require manual feature extraction.
Herein, we propose a fully automatic deep-learning-based algorithm that leverages convolutional
neural network architectures to classify the EEG signals via their time-frequency representations.
Through our investigation, we explored using time-frequency analysis techniques and found that
Wigner-based representations outperform the commonly used short-time Fourier transform for CAP
classification. Additionally, our algorithm incorporates contextual information of the EEG signals and
employs data augmentation techniques specifically designed to preserve the time-frequency structure.
The model is developed using EEG signals of healthy subjects from the publicly available CAP
sleep database (CAPSLPDB) on Physionet. An experimental study demonstrates that our algorithm
surpasses existing machine-learning-based methods, achieving an accuracy of 77.5% on a balanced
test set and 81.8% when evaluated on an unbalanced test set. Notably, the proposed algorithm
exhibits efficiency and scalability, making it suitable for on-device implementation to enhance CAP
identification procedures.

Keywords: cyclic alternating pattern (CAP); time-frequency analysis; deep neural networks;
convolutional neural network (CNN); CAP sleep database (CAPSLPDB); electroencephalography
(EEG); sleep

1. Introduction

Detecting sleep stages is essential for understanding and improving sleep quality and
identifying and addressing many sleep-related pathologies. Especially the cyclic alternat-
ing pattern (CAP) is considered a key concept in evaluating the sleep process [1]. CAP is
divided, generally, into two main phases by the distinction between cerebral activation (A-
phase) and de-activation (B-phase) modes [2]. Beyond being a physiological phenomenon,
CAP is considered a reliable marker of sleep instability [3] as it can correlate with several
sleep-related pathologies [4]. Consequently, accurate detection of the CAP phases has a cru-
cial role in a sleep diagnosis. Traditionally, sleep analysis relies on polysomnography (PSG)
and is conducted by trained physicians and healthcare professionals in sleep laboratories.
This approach poses significant challenges in terms of practicality and clinical applicability.
The manual assessment process is labor-intensive, time-consuming, and susceptible to
human fatigue, subjectivity, and potential errors. The development and implementation
of such automated tools not only enhance the reliability and precision of sleep diagnosis
but also have the potential to streamline clinical workflows, reduce healthcare costs, and
ultimately improve patient care and outcomes.

To streamline and facilitate this vital process, various methods were proposed over
the years to automate the detection of the CAP phases [5–16]. Yet, a great majority of the
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current methods rely on (1) hand-crafted feature extraction, which may not capture all
relevant information of the data, and (2) traditional machine-learning-based approaches,
rather than taking advantage of the deep learning tools which have been increasingly
used in recent years [17] due to their high-performance and proven success in a broad
spectrum of tasks [18–20]. To bridge this gap, we aim to leverage the capabilities of
deep convolutional neural networks (CNN) for classifying CAP phases. Our approach is
motivated by the remarkable strides that CNNs have made in recent years [21], achieving
state-of-the-art performance in a wide range of tasks and applications, including image
classification [22], object tracking [23], text detection [24], speech and natural language
processing [25], and others.

This work proposes an end-to-end fully automatic CNN-based method for classifying
CAP phases. For this goal, we present an algorithm consisting of three main stages
(Figure 1). Firstly, we analyze each second of the long EEG signal as a distinct prolonged
1D-EEG segment, considering the contextual information of the signal. Next, we transform
each time segment into its time-frequency representation (TFR). This representation is
highly suitable for classifying CAP phases due to the non-stationary nature of the signals,
and it allows us to utilize a CNN-based architecture effectively. The TFR is treated as a 2D
image and fed into a convolutional neural network that classifies it as either an A-phase or
a B-phase sample. Our experimental results demonstrate that we achieve state-of-the-art
performance even with the compact ResNet18 architecture [26], which can be efficiently
run on-device.

Figure 1. Proposed CAP Classification Workflow: The EEG signal is segmented, transformed into
a 2D time-frequency representation (TFR), and fed into a convolutional neural network (CNN)
architecture for A/B-phase classification.

We investigated the usage of several time-frequency transforms and show that the
commonly used spectrogram, which relies on the short-time Fourier transform (STFT),
is inadequate for the CAP classification task, likely due to its limited time-frequency
resolution [27]. Alternatively, we demonstrate that adopting Wigner–Ville-distribution
(WVD)-based transformations, which in many cases capture the time-varying frequency
content of the signals more accurately [28], significantly enhances the results.

Furthermore, akin to human analysis, which considers the vicinity and context of the
EEG signal, our method incorporates extended windows to extract and leverage contextual
information from the signal. We have conducted experiments to examine the effect of
using various window sizes for improving outcomes and show that involving the sequen-
tial information of the EEG signal is crucial to classify the CAP. Finally, to improve the
generalization of our model and reduce overfitting [29–31], we used data augmentation
specially designed to preserve the time frequency and the reasonable structure of the EEG
time-frequency representation.

Testing of the proposed method was conducted over the PhysioNet’s public Cap Sleep
Database (CAPSLPDB) [2,32], considered a benchmark database for CAP identification
and classification research. A thorough experimental study shows our algorithm achieves
state-of-the-art performance on the CAP Sleep Database, reaching an accuracy of 77.5% on
a balanced test set and 81.8% when evaluated on an unbalanced test set.

To summarize, the main contributions of our work are:
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• A fully automatic classifier of cyclic alternating pattern (CAP) signals, based on
a computationally efficient neural network, which therefore can be implemented
on-device.

• Extensive experiments demonstrate state-of-the-art performance on a public CAP
benchmark database, classifying its A and B phases using only a single EEG signal.

• An ablation study was conducted to assess the impact of different time-frequency
representations, segment sizes, and types of data augmentation.

The remainder of the paper is organized as follows. In Section 2, we provide es-
sential background information on CAP. Section 3 discusses the related work in the field.
Section 4 introduces our proposed end-to-end method, while Section 5 outlines the dataset’s
description and the employed performance measures. Section 6 then demonstrates the
performance of our proposed method, including an ablation study. Finally, in Section 7, we
conclude our findings and offer some directions for future research.

2. Background

According to the guidelines set by the American Academy of Sleep Medicine (AASM) [33],
sleep is typically classified into five stages that characterize sleep’s macrostructure. These stages
include Wakefulness (W), Rapid-Eye-Movement (REM), and Non-Rapid-Eye-Movement, which
consists of three interior stages (Non-REM S1–S3). In 2001, the concept of cyclic alternating
patterns (CAP) was introduced [2] to characterize the microstructure of sleep. CAP rep-
resents a periodic EEG activity that occurs during Non-REM sleep and is characterized
by cyclic sequences of cerebral activation (A-phase) followed by periods of deactivation
(B-phase) [1]. An A-phase period and the following B-phase period define a CAP cycle; at
least two CAP cycles are required to form a CAP sequence. Figure 2 demonstrates CAP in
sleep. The figure displays data from six distinct EEG channels (C4A1–P4O2), each spanning
a duration of 60 s. The A-phase (red) period and the subsequent B-phase (blue) period
define a single CAP cycle, while the consecutive cycles collectively define a CAP sequence.

Figure 2. A demonstration of the cyclic alternating pattern (CAP) in sleep.

While B-phase is considered to be the background rhythm of the signal, A-phase can
be divided into three interior sub-types [34]:

• A1 is dominated by slow varying waves (low frequencies, 0.5 Hz–4 Hz) with a high
amplitude about the typical background, B-phase.

• A3 is characterized by increasing in frequency (8 Hz–12 Hz) along with decreasing in
the amplitude.

• A2 is a combination of both A1 and A3.
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This work focuses on the binary classification of Non-REM sleep into its A and B
CAP phases.

3. Related Work

In most studies, the standard approach for CAP classification involves using feature
extraction techniques to generate input data for a classifier, which aims to differentiate
between the A and B phases. The feature extraction is generally based on the distinctions
in energy and frequency content between the A and B phases mentioned earlier. For
instance, in [5,6], the EEG signal was divided into distinct frequency bands, and the power
spectral density (PSD) was computed for each band separately. Subsequently, PSD-based
features were extracted to feed various classifiers—Ref. [5] utilized a linear discriminant
analysis (LDA) that assumes the data to be produced based on Gaussian distributions [35],
while in [6] different supervised and unsupervised classifiers were evaluated, including
decision trees, support vector-machines (SVM), k-means clustering, and others. Similarly,
Refs. [7–10] partitioned the EEG signals into different frequency bands, while in their
studies, variance indices were utilized as features. As a classifier, a three-layer neural
network was employed in [7], while [8] used SVM and [9] utilized the LDA classifier.
In [10], all these classifiers were compared to an adaptive boosting (AdaBoost) classifier,
resulting in the superiority of the LDA classifier.

In several works [11–13,36,37], time-frequency transforms were utilized to address
the pre-mentioned distinctions among the CAP phases. Particularly, Refs. [11,13,36,37]
employed the wavelet transform, while [12] used the Wigner–Ville distribution (WVD).
Nevertheless, in all these works, the time-frequency transforms were used as a temporary
representation for hand-crafted feature extraction, similar to the previous studies.

In recent research, there has been an emerging utilization of deep learning (DL)
techniques for classifying CAP phases. Primarily, Ref. [15] achieved high performance
(82.4%± 7.08% accuracy) by employing a long short-term memory (LSTM) network. Nev-
ertheless, it is worth noting that in this work, the neural network was fed by several
hand-crafted features, and its outcomes were post-processed to improve performance by
the CAP scoring guidelines outlined in [2].

In [14], a one-dimensional convolutional neural network (1D-CNN) was suggested for
both CAP classification and sleep macrostructure scoring task. Similarly, Ref. [38] employed
a comparable 1D-CNN architecture to classify CAP phases of healthy and sleep-disordered
individuals. The raw EEG signal was standardized in their works before feeding the 1D-
CNN. The trained model was tested on both balanced and unbalanced test sets. At the
same time, the outcomes indicated moderate performance when tested on an unbalanced
dataset (52.99% in [14] and 60.59% in [38]). A 1D-CNN was also utilized in [16] but using a
significantly more complex model based on the U-Net framework and a gated-transformer
module to extract local features and global contexts.

To conduct training and testing, most of the previously mentioned studies [5,6,10–16,38]
used CAPSLPDB. In general, these studies employed datasets comprised of only normal pa-
tients for evaluation purposes. Nevertheless, several studies employed datasets that included
both normal and disordered subjects [11,15,16,38].

Inspired by the demonstrated effectiveness of deep learning techniques, our objective
is to classify the EEG signal into its respective CAP phases by leveraging its time-frequency
representation and employing a 2D convolutional neural network (2D-CNN). The subse-
quent section provides a comprehensive explanation of our proposed method.

4. Proposed Method

Our method consists of three key components, which are driven by three primary
considerations:

• Context—Incorporating contextual information of the signal to make the predic-
tion more analogous to the human diagnosis, which inherently involves close vicin-
ity analysis.
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• CAP prior knowledge—Utilizing the distinct features of the A-phase events, which
are characterized by higher energy levels and high-frequency spectral content com-
pared to the B-phase background.

• Deep learning—Employing a CNN-based architecture as a classifier to leverage the
CNN’s high-performance capabilities.

The proposed method consists of three main building blocks (Figure 3), which align
with these factors. The first component involves pre-processing, where each analyzed 1 s
EEG is treated as a more extended time window. This window contains the central part we
want to classify, along with the near vicinity of the signal that is added to provide contextual
information. Each 1D-EEG segment is transformed into a 2D time-frequency matrix in
the second stage. This representation captures the non-stationary signal’s energy and
spectral content, which vary over time. From this point, the obtained 2D time-frequency
representations are treated as images, and the proposed method adopts a deep learning
framework. In line with that, the received images are stacked into 4D tensors, normalized,
and augmented to preserve their time-frequency structure. The processed images are finally
fed into a CNN-based architecture for training in a supervised manner. Next, we detail
each of these components.

Figure 3. Proposed method scheme.

4.1. Pre-Processing

To address the extended length of full-night input signals, which typically last between
9 and 10 h, we initiate the process with data segmentation. The annotations of the data
pertain to each second of the signal; however, considering the sequential nature of EEG
data, the analysis of each signal second involves the inclusion of preceding and subsequent
seconds, resulting in prolonged EEG segments that incorporate the contextual information
of the signal. In this work, we evaluated different window lengths, ranging from the plain
1 s windows lacking contextual information to 11 s ones at most. Utilizing even longer
windows appears to over-emphasize the contextual information and poses storage and
computational efficiency challenges.

Since each EEG segment is an extension of its central second, for all window lengths,
the label assigned to each segment is determined solely by the label of its central second,
regardless of the labels of its other components. For instance, a 5 s segment composed of
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2 s of B-phase followed by 3 s of A-phase would be labeled as an A-phase segment due
to its central A-phase second, while on the other hand, a similar 5 s segment made up of
3 B-phase seconds at the beginning followed by 2 A-phase seconds, would be designated as
a B-phase segment due to its B-phase center. These two scenarios are illustrated in Figure 4.

Figure 4. Incorporated Contextual Information: Each signal second extends to include preceding and
subsequent seconds, labeled by its central (main data) second. The figure illustrates A-phase (left)
and B-phase (right) 5 s data segments.

Ultimately, due to the different sampling rates of the signals at CAPSLPDB, which
vary across recordings between 100 Hz to 512 Hz, we downsampled each segment to 32 Hz
as a significantly lower sampling rate that preserves the frequency content relevant to the
CAP phases. Thus, an identical resolution at the analysis is obtained, and the complexity of
calculations is significantly reduced.

4.2. Time-Frequency Analysis

Time-frequency analysis is applied to the signals to reveal and exploit both spectral
structure and temporal changes of the EEG segments, which is essential for the distinction
between A and B phases due to their non-stationary nature. Additionally, the transition of
the 1D time segments to 2D time-frequency images allows using a CNN-based classifier.
In this study, we explored the use of several time-frequency transformations, including
spectrograms (SPECs), Wigner–Ville distributions (WVDs), and smoothed pseudo-Wigner–
Ville distributions (SPWVDs). Definitions and additional details for these representations
are given in the following paragraphs.

4.2.1. Spectrogram (SPEC)

The spectrogram is widely acknowledged as a prevalent method for analyzing time-
varying and non-stationary signals. The spectrogram definition is based on the short-time
Fourier transform (STFT), as for a signal, x(t), the STFT is defined as

X(t, f ) =
∫ ∞

−∞
x(t1)h∗(t1 − t)e−j2π f t1 dt1, (1)

where h(t) is a window function centered at time t. The window function cuts the signal
just close to the time t, and the Fourier transform will be an estimate locally around this
time instant.

The spectrogram, Sx(t, f ), is formulated as the squared magnitude of the STFT:

Sx(t, f ) = |X(t, f )|2 . (2)

The spectrogram is the most widely known and commonly used time-frequency trans-
form [28]. It is well understood, easily interpretable, and has fast implementations, e.g.,
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fast Fourier transform. However, its drawbacks are the limited and fixed resolution in time
and frequency which is determined by the length of the window h(t) [27].

4.2.2. Wigner–Ville Distribution (WVD)

The Wigner–Ville distribution of a signal x(t) is given by

Wx(t, f ) =
∫ ∞

−∞
x(t +

τ

2
)x∗(t− τ

2
)e−j2π f τdτ . (3)

The WVD has the best possible concentration in the time-frequency domain [39], and in
particular, can attain a perfect localization for pure frequency-modulated signals [40].

However, the notable drawback of the WVD is known as the cross-terms (CTs) [39].
These artifacts arise when the signal contains a mixture of several signal components, which
significantly reduces the readability of the time-frequency representation. The origin of
CT lies in the non-linear nature of the WVD transform, which causes the superposition
of several components to generate not only the desired auto-term (AT) components but
also CT. One of the methods to address this problem is the smoothed pseudo-Wigner–Ville
distribution method, as explained immediately.

4.2.3. Smoothed Pseudo Wigner–Ville Distribution (SPWVD)

The smoothed pseudo-Wigner–Ville distribution of a signal x(t) can be formulated
as the two-dimensional convolution of the Wigner–Ville distribution, Wx(t, f ), with a
low-pass-nature kernel, Φ(t, f ):

Wsp
x (t, f ) = Wx(t, f ) ∗ ∗Φ(t, f ), (4)

where ∗∗ represents a 2D convolution.
Equation (4) can be expressed explicitly:

Wsp
x (t, f ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x(u +

τ

2
)x∗(u− τ

2
) ·Φ(ν, τ)ej2π(νt− f τ−νu)dudτdν

=
∫ ∞

−∞

∫ ∞

−∞
Ax(ν, τ)Φ(ν, τ)e−j2π( f τ−νt)dτdν,

(5)

where Ax(ν, τ) is called the ambiguity function (AF) and is defined as

Ax(ν, τ) =
∫ ∞

−∞
x(t +

τ

2
)x∗(t− τ

2
)e−j2πνtdt . (6)

Equation (4) formulates the SPWVD as a filtered version of the WVD, whereas the last term
in (5) demonstrates that this filtering is achieved through the multiplication of the AF with
the low-pass-nature kernel, Φ(ν, τ). This observation can be rationalized considering that
the AF can be viewed as a time-frequency (TF) auto-correlation function of the original
signal x(t) [41]. As such, it exhibits most properties of a correlation function, including
that its modulus is maximum at the origin [42]. As for the multi-component signal case,
the total AF consists of both auto-terms neighboring the origin of the time-frequency plane
(ν = 0 and τ = 0) and cross-terms which are mainly located at a time-frequency distance
from the origin. This distance depends directly on the separation in time and frequency of
the individual components of the signal. Considering this perspective, it is intelligible that
low-pass filtering of the AF means suppressing the cross-terms alongside preserving the
desired auto-terms. In that way, the SPWVD is an effective method to deal with the WVD
cross-term drawback.

Figure 5 demonstrates the abovementioned forms. It shows an example of a 5 s EEG
signal taken from CAPSLPDB (patient ’n1’) and its different time-frequency representations.
The increased spectral content of the signal, which exists at the low frequencies (up to 2 Hz)
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and 8 Hz, is reflected from all the different representations. However, it can be seen that
Wigner-based representations have a prominent better resolution in time and frequency
compared to the spectrogram. Additionally, it presents the interference in visualization
caused by the cross-terms when using WVD, and the mitigation to that problem comes by
employing an SPWVD technique.
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(b) Spectrogram
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(c) Wigner–Ville distribution
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(d) Smoothed pseudo-Wigner–Ville distribution
Figure 5. Example of (a) 5 s 1D-EEG segment from channel E4-A1 and its corresponding time-
frequency representations (TFRs): (b) spectrogram (SPEC), (c) Wigner–Ville distribution (WVD),
and (d) smoothed pseudo-Wigner–Ville distribution (SPWVD). The WVD exhibits a distinct energy
concentration when compared to SPEC, albeit with the tradeoff of noticeable cross-term patterns.

4.3. Deep Learning Architecture

In this phase, the 2D time-frequency images generated in previous stages are stacked
into tensors and employed as training data for a convolutional neural network. Table 1
outlines the hyperparameters employed in the training process. The chosen model details
and further extensions that were executed, such as normalization and augmentation, will
be discussed subsequently. A demonstration of the training progress evolution of our
model is provided in Appendix A.
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Table 1. Hyperparameters used in the proposed framework.

Hyperparameter Value

Batch size 256
Loss functions cross-entropy

Optimizer SGD
Learning rate 0.001
Momentum 0.9

Epochs 40
Dropout No

4.3.1. Model

We adopted the widely used and well-established ResNet18 architecture [26], which is
renowned for its effectiveness in visual classification tasks [43,44]. To align the ResNet18
model with our specific framework, we modified the first and last layers. These modifi-
cations were required to accommodate grayscale images as input and to enable a binary
classification at the output. Furthermore, we trained the model from scratch, consid-
ering the substantial disparities between the training data used to train the ResNet18
originally, ImageNet [19], which is composed of natural images, and our distinct time-
frequency “images”.

4.3.2. Normalization

Traditionally, the input data, xi, of neural networks is normalized to be x̃i with zero-
mean and of unit standard deviation [45,46], namely

x̃i =
xi − x̄i

σi
(7)

where x̄i is the mean of xi and σi is its standard deviation.
However, to preserve the difference in energy levels between A-phase and B-phase

samples, in this work, we selected to divide each input sample constantly by the mean
standard deviation of the train set samples, namely

x̃i =
xi − x̄i

σ̄
, σ̄ =

1
N ∑

i∈XN

σi (8)

where XN denotes the set of all train samples, and σ̄ is the mean standard deviation of the
this set.

4.3.3. Augmentations

To generalize the learned model [29] and to reduce overfitting to train data [30], we
employed a series of augmentations for every batch of data loaded. Initially, we evaluated
several traditional augmentations commonly used in computer vision tasks, including color-
jitter, rotation, and flips, as outlined in [31]. However, these augmentations led to highly
inadequate performance, likely due to their strong correlation with natural images, different
from the time-frequency “images” being analyzed [47]. Subsequently, we explored the
usage of augmentations designed explicitly for our time-frequency image data. Ultimately,
we investigated two main augmentation types:

1. Time-shifts: We employed random time-shifts by applying horizontal random crop-
ping to the training data samples. The cropping was restricted to the horizontal axis,
i.e., the time domain, to maintain the spectral information of the signals and preserve
the distinction between the different phases of CAP, which differ significantly in their
spectral characteristics.

2. Time-frequency augmentations (TF-Aug.): A specialized selection of augmentations
was utilized to characterize the time-frequency representations effectively. These
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augmentations were repeatedly applied to each data sample before inputting the
neural network. The selected augmentations are:

• Noise: Additive white Gaussian noise (AWGN) with a uniformly distributed
standard deviation. Adding noise was specified in [48] as an appropriate and
effective augmentation for EEG signals

• Gaussian blur: The time-frequency images were blurred using a Gaussian kernel.
This augmentation was randomly applied to the input samples with a probability
of p = 0.5, meaning that approximately half of the images underwent blurring.

• SpecAugment [49]: A commonly used method for augmenting spectrograms
and other time-frequency representations, typically for speech recognition tasks.
The augmentation is primarily based on applying random masks to certain
frequency bands and time steps in the spectrogram. In this study, we randomly
blocked bands up to 5% of image width for time and 3% of image height for
frequency.

• Crop and Resize: To imitate extended temporal CAP events, we randomly
cropped the images vertically and then resized them back to their original size,
slightly stretching the temporal duration of CAP events.

5. Materials and Methods
5.1. Database Description

The proposed method was developed and evaluated over the publicly available CAP
sleep database (CAPSLPDB) [2,32], considered a benchmark for CAP research. The database
contains a collection of polysomnographic recordings registered at the Sleep Disorders
Center of the Ospedale Maggiore of Parma, Italy. It includes data from a diverse group
of 108 patients: healthy individuals and those with various pathological conditions, such
as bruxism, insomnia, and others. Each record includes three or more EEG signals and a
series of other indicators, such as electrooculogram (EOG), chin and tibial electromyogram
(EMG), and ECG signals. Additionally, the database includes accurate CAP annotations
corresponding to each second of the signals. The left side of Table 2 summarizes the
sample composition per subject in the database. The database exhibits a highly imbalanced
distribution, with a significantly higher occurrence of B-phase samples than A-phase events.

Table 2. Total number of samples per healthy subject in the original CAP sleep database (CAPSLPDB)
and the corresponding number of samples selected for this study’s dataset. The original CAPSLPDB
shows a significantly higher prevalence of B-phase samples than A-phase samples. In contrast, the
dataset utilized in this study exhibits a balanced distribution of both A-phase and B-phase classes.

Subject
Name

CAPSLPDB (Unbalanced) Our Dataset (Balanced)
A1 A2 A3 Total A B A1 A2 A3 Total A B

n1 2217 747 1122 4086 21,804 2063 703 1046 3812 3812
n2 1115 590 783 2488 12,122 1036 552 693 2281 2281
n3 611 597 891 2099 15,451 550 556 830 2281 2281
n4 986 356 848 2190 15,030 928 323 797 2048 2048
n5 2854 328 620 3802 18,158 2673 314 586 3573 3573
n6 1871 970 1401 4242 17,268 1723 905 1280 3908 3908
n7 1616 564 479 2659 17,501 1508 525 438 2471 2471
n8 949 465 1868 3282 17,028 914 421 1752 3087 3087
n9 1036 377 676 2089 18,341 959 363 641 1963 1963

n10 1484 326 829 2639 13,351 1385 282 785 2452 2452
n11 1724 583 796 3103 15,377 1640 539 734 2913 2913
n12 1064 153 573 1790 18,040 986 139 515 1640 1640
n13 1628 1037 1017 3682 14,078 1532 985 955 3472 3472
n14 1035 1234 1209 3478 15,902 950 1118 1126 3194 3194
n15 1449 1046 1244 3739 18,461 1345 967 1159 3471 3471
n16 2247 1125 837 4209 17,841 2110 1041 786 3937 3937
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5.2. Performance Measures

To assess the classification performance under various configurations, we calculated
several metrics. These included the number of correctly identified A-phase events (true
positives, tp), the number of correctly recognized B-phase samples (true negatives, tn), as
well as the count of samples incorrectly classified as A-phase (false positive, fp) or as B-
phase (false negative, fn). Based on these metrics, we computed accuracy (ACC), precision
(PRE), recall (REC), specificity (SPE) and F1 score (F1) using the following expressions:

ACC =
tp + tn

tp + tn + fp + fn
, PRE =

tp

tp + fp
. (9)

REC =
tp

tp + fn
, SPE =

tn

tn + fp
. (10)

F1 =
2 · tp

2 · tp + fp + fn
. (11)

Regarding the data splitting for evaluation, in contrast to prior CAP studies [10–12,15,50]
that employed K-fold cross-validation, we adopted the standard practice of dividing the
data into three disjoint subsets: training, validation, and test sets, as seen in various
prominent works [19,51–53]. The distribution was approximately 80% for training and 10%
each for validation and test sets.

5.3. Dataset Creation

For this study, we built our dataset using the recordings of the sixteen normal (no
pathology) patients, where a single EEG channel was utilized per participant (either the
C4-A1 or the C3-A2 channel). Construction of the dataset from the long full-night EEG
signals was performed through several steps. To ensure the spread of the samples in the
training, validation, and test sets throughout the entire recording, each full-night EEG
signal was divided into non-overlapping 300 s segments. The first 240 s of each segment
were assigned to the training set, the subsequent 30 s were allocated to the validation
set, and the remaining 30 s were designated as the test set. Subsequently, since our
proposed algorithm takes each second as a prolonged time window comprising contextual
information, removing the seconds at the edges of the resulting segments is essential to
achieve a complete separation between the training, validation, and test sets. Ultimately,
an appropriate percentage of B-phase samples were randomly removed per recording to
achieve a balanced dataset; i.e., the number of A-phase and B-phase samples is equal (see
right side of Table 2).

6. Numerical Results

We evaluate the performance of the proposed algorithm on the dataset described
above and compare it to the results of prior studies. An ablation study was also carried out
through a series of experiments to investigate the following aspects:

1. The influence of utilizing various time-frequency representations as input to the
classifiers.

2. The impact of incorporating the EEG signal context information by using segments
with an increased duration.

3. The determination of appropriate data augmentations strategies for analyzing EEG
signals within the proposed framework.

In the first experiment, we compared the three time-frequency representations: spectro-
gram (SPEC), WVD, and SPWVD. In this experiment, only random time-shifts were applied
without further augmentations. For the spectrogram, we used the Hanning window with
support of 20% of single data sample length and maximal overlap between subsequent
windows; namely, the window moves only one sample each time. As for the WVD and
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SPWVD, we used the built-in MATLAB function with its default parameters. Figure 6
presents the accuracy of the different representations using increasing window size from
1 s to 11 s (incremented by 2 s).

Figure 6. Comparison of performance achieved using different time-frequency representations (TFRs)
and window sizes. The blue line corresponds to the SPWVD transform, the red line to the WVD,
and the green line to the spectrogram (SPEC). The validation and test data are depicted as solid and
dashed lines, respectively.

Time-Frequency Representation Influence. The results in Figure 6 and Table 3 clearly
show that utilization of Wigner-based transforms (WVD and SPWVD) is much better
compared to a Fourier-based spectrogram (SPEC). This is evident in the higher accuracy
obtained by WVD and SPWVD for all window sizes greater than 1 s, with only SPEC
achieving better accuracy compared to WVD for the 1 s window size (65.65% compared
to 59.07% for WVD). Nevertheless, SPWVD still outperforms SPEC at the 1 s case, with
an accuracy of 66.75%. As mentioned above, the prominence of Wigner-based transforms
over the spectrogram can likely be attributed to the limitations of STFT in terms of time-
frequency resolution. In contrast, WVD provides an optimal concentration in the time-
frequency domain.

Table 3. Accuracy results (%) for different TFRs and segmentation lengths. In each cell, the upper
result refers to the validation set performance, while the lower result refers to the test set perfor-
mance. The highest results are highlighted within each column, demonstrating the superiority of
Wigner-based representations over spectrogram. Additionally, the impact of increased window size
is observable.

Method Window Size
1 s 3 s 5 s 7 s 9 s 11 s

SPEC
65.65
65.26

70.97
69.16

71.87
68.88

73.07
70.48

74.39
71.89

75.84
74.10

WVD
59.07
57.93

74.53
73.36

75.75
73.35

76.89
74.85

78.50
76.64

78.46
77.54

SPWVD
66.75
66.19

72.92
71.65

77.10
74.63

77.74
75.24

78.26
75.85

77.38
75.64

In general, the differences between WVD and SPWVD are negligible. This similarity
reveals that cross-terms, which substantially hinder human interpretability, are considered
tolerable by the trained model, which learns to deal with these components during the
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training process and may even leverage them as supplementary features. Yet, the 1 s window
case is an exception to this similarity, where WVD demonstrates a notably lower accuracy.

Contextual information. Additional valuable insight depicted from Figure 6 is that
increasing the window size and the additional contextual information it provides signifi-
cantly improves the accuracy across all time-frequency representations. The improvement
in accuracy reaches approximately 10% for STFT and SPWVD to roughly 20% for WVD.
Nevertheless, this trend seems to plateau at the increment from 9 s to 11 s window sizes
for WVD and SPWVD, possibly due to an excessive proportion of contextual information
about the central primary data. Further increasing the window size beyond 11 s was not
explored in this study due to the required prolonged training time.

Data Augmentations. In this experiment, three data augmentation techniques were
compared to determine an appropriate augmentation strategy for the proposed framework.
Additionally, the no-augmentation case was tested as a benchmark. In all cases, the SPWVD
was utilized as the time-frequency representation. The evaluated augmentation types were
as follows:

• TF-augmentation: TF-augmentations are applied solely. As described above, these
augmentations are designed to maintain the time-frequency structure.

• Random time-shifts: In this case, the original dataset is augmented by incorporating
random time shifts into its samples.

• TF-augmentations and random time-shifts: Both TF-augmentations and random time-
shifts are applied to the dataset.

The results presented in Figure 7 and Table 4 highlight the positive effect of augmenting
the primary dataset. The improvement in the accuracy of the trained model, with relation
to the non-augmentation case, is observed for window sizes larger than 3 s and ranging
from 1 to 2%.

When considering the comparison between the different augmentation techniques,
the disparities in accuracy results are inconsequential. However, from the perspective
of overall system considerations, it is advantageous to utilize TF-augmentations instead
of random time-shifts, since the former does not necessitate the production of extended
signals, resulting in improved storage efficiency and reduced computational complexity. It
is also noted that using both TF-augmentations and time-shifts does not result in further
performance improvements and is, therefore, unnecessary.

Figure 7. Accuracy comparison of various data augmentation techniques. The figure shows the
performance of four strategies: no data augmentation (blue), proposed TF-augmentations only (cyan),
random time-shifts only (red), and employment of both time-shifts and TF-augmentation (green).
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Table 4. Accuracy results (%) for different data augmentations and extensions of the dataset. In each
cell, the upper result refers to the validation set performance, while the lower result refers to the test
set performance. In each column, the highest results are highlighted. The results demonstrate the
effectiveness of integrating data augmentation. Notably, the highest accuracy (78.72%) was achieved
using the proposed TF-augmentations with a 9 s window size.

Dataset’s
Composition

Window Size
1 s 3 s 5 s 7 s 9 s 11 s

Basic dataset
66.70
65.57

73.21
71.19

75.48
72.90

76.49
73.57

77.63
75.77

77.22
74.06

TF-augmentations
67.55
67.39

72.03
70.08

76.02
73.82

77.53
74.73

78.72
75.76

77.74
74.24

Time-shifts
66.75
66.19

72.92
71.65

77.10
74.63

77.74
75.24

78.26
75.85

77.38
75.64

TF-augmentations &
time-shifts

67.69
67.36

72.10
71.07

76.52
74.20

77.49
75.08

78.08
75.11

77.94
74.87

A-Phase Detection

The confusion matrix of the resulting model (for a 9 s segment, SPWVD transform,
and TF-augmentations) is shown in Figure 8, which reveals that the true-positive rate
(TPR) is similar for the A-phase and B-phase classes, with TPR values of 76.7% and 80.8%,
respectively. Table 5 presents performance per A-phase subtype. As the classification is
binary, the TPR per subtype refers to the instances that were classified as A-phase generally.
The results show that the TPR of A2 and A1 subtypes is significantly higher than the TPR
of A3 (85% and 80.6% for A2 and A1, versus 66.2% for A3).

Figure 8. Confusion matrix of CAP detection using 9 s segment’s length, SPWVD, and TF-
augmentations.

Table 5. True-positive rate (%) per A-phase sub-types and B phase.

Predicted True
A1 A2 A3 B

A 1422 561 782 2914
B 343 99 400 693

TPR [%] 80.6 85 66.2 80.8
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Considering the characteristics of the different A-phase subtypes detailed above, this
finding may suggest that the learned model identifies A-phase events primarily as intense
in power events (A1) rather than an elevation in the signal’s spectral content (A3). In line
with this, A2 events are best identified by the model since they exhibit an increase in both
power and frequency.

In summary, Table 6 presents a comparative analysis of our method’s results alongside
those obtained by contemporary methods in the field. This table concludes the findings of
the numerical results section.

Table 6. Summary and comparison between recent studies evaluated on a balanced CAPSLPDB-
based dataset. Our method’s results indicated in the table were obtained using the Wigner–Ville
distribution (WVD), an 11 s window size, and the proposed time-shift augmentations.

Author Method Segment
Length [s]

Number of
Subjects

Performance
Parameter [%]
on Validation

Set

Performance
Parameter [%]

on Test Set

Accuracy [%]
Evaluated on
Unbalanced

Test Set

Dhok et al. [12]

Wigner–Ville
distribution

(WVD), Renyi
entropy (RE),

support vector
machine (SVM)

2 6 patients

ACC = 72.3
PRE = 64.1
REC = 76.8
SPE = 69.2
F1 = 69.9

- -

Sharma et al.
[11]

Wavelet-based
features, SVM 2 16 patients

ACC = 75.7
PRE = 75.0
REC = 77.7
F1 = 76.0

- -

Sharma et al.
[13]

Biorthogonal
wavelet filter

bank (BOWFB),
ensemble

bagged tree

2 6 patients
ACC = 74.4
REC = 67.53
SPE = 81.3

- -

Hartmann et al.
[15]

Hand-crafted
features, long

short-term
memory
(LSTM)

1–3 16 patients
ACC = 82.4± 7.1
REC = 75.3± 12
SPE = 83.9± 8.9
F1 = 57.4± 9.6

- -

Loh et al. [14] 1D-CNN 2 6 patients ACC = 74.4

ACC = 73.6
PRE = 71.0
REC = 80.3
SPE = 67.0
F1 =75.3

53.0

Murarka et al.
[38] 1D-CNN 2 6 patients ACC = 76.7

ACC = 78.8
PRE = 82.5
REC = 73.4
SPE = 84.3
F1 = 77.7

60.6

Our method

Spectrogram,
Wigner-based

representa-
tions,

ResNet18

1–11 16 patients

ACC = 78.5
PRE = 78.9
REC = 77.8
SPE = 79.3
F1 = 78.4

ACC = 77.5
PRE = 78.4
REC = 75.9
SPE = 79.1
F1 = 77.1

81.8

7. Conclusions

In this study, we proposed a novel algorithm that employs a convolutional neural
network to automatically identify CAP phases through the classification of time-frequency
representations. Our approach leverages the sequential structure of the EEG signal, incor-
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porating contextual information into the classification process. Additionally, we developed
specially designed data augmentation techniques to preserve the time-frequency structure.
Through an ablation study, we assessed the contributions of critical components of our
method, including different time-frequency methods, various window sizes, and data
augmentation techniques. Extensive experiments on a benchmark database demonstrated
the effectiveness of our method, achieving a high-performance accuracy of 77.5% on a
balanced test set and 81.8% when evaluated on an unbalanced test set.

Overall, we have developed an end-to-end method employing an efficient CNN,
which can be readily implemented on-device, promising significant improvements in
clinical procedures. While our model has demonstrated strong performance compared
to current methods, there is room for further refinement. Future work should consider
training the model on a larger dataset encompassing both healthy and disordered patients.
This expansion in data size and diversity is anticipated to improve the model’s general-
ization and accuracy significantly. Future work may include the exploration of additional
backbone networks along with advanced architectures tailored for analyzing serial data
and the integration of multi-channel data into the process, ultimately contributing to the
advancement of CAP phase identification in clinical practice and sleep medicine.
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Abbreviations
The following abbreviations are used in this manuscript:

CAP Cyclic alternating pattern
EEG Electroencephalography
CNN Convolutional neural network
TFR Time-frequency representation
STFT Short-time Fourier transform
WVD Wigner–Ville distribution
CAPSLPDB Cap Sleep Database
AASM American Academy of Sleep Medicine
REM Rapid eye movement
PSD Power spectral density
LDA Linear discriminant analysis
SVM Support vector machines
DL Deep learning
LSTM Long short-term memory
SPWVD Smoothed pseudo-Wigner–Ville distribution
SPEC Spectrogram
CT Cross-terms
AT Auto-terms
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AF Ambiguity function
TF Time-frequency
SGD Stochastic gradient descent
AWGN Additive white Gaussian noise
EOG Electrooculogram
EMG Electromyogram
ACC Accuracy
TPR True-positive rate
RE Renyi entropy
BOWFB Biorthogonal wavelet filter bank

Appendix A

In this appendix, we present graphical representations of the training progress of our
convolutional neural network (CNN) model. We show how the accuracy and loss evolve
over epochs during the training process. Figure A1 displays the performance of the model
with the highest validation accuracy (78.72%), which was obtained using a 9 s window size,
SPWVD, and the proposed TF-augmentations.

It is evident from both graphs that the accuracy and loss for the validation data exhibit
considerable fluctuations and lack a consistent trend compared to the training set. This
variability can be largely attributed to the limited size of our dataset, comprising only
16 healthy subjects, thereby diminishing the generalization of the learned model. We
anticipate that this inconsistency will improve with the utilization of a larger dataset. In
both cases, we selected the models based on their highest accuracy on the validation set.
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Figure A1. Accuracy and loss vs. epoch number for the training (blue) and validation (orange) sets.
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