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Abstract: Energy-based models (EBMs) assign an unnormalized log probability to data samples.
This functionality has a variety of applications, such as sample synthesis, data denoising, sample
restoration, outlier detection, Bayesian reasoning and many more. But, the training of EBMs using
standard maximum likelihood is extremely slow because it requires sampling from the model
distribution. Score matching potentially alleviates this problem. In particular, denoising-score
matching has been successfully used to train EBMs. Using noisy data samples with one fixed noise
level, these models learn fast and yield good results in data denoising. However, demonstrations of
such models in the high-quality sample synthesis of high-dimensional data were lacking. Recently, a
paper showed that a generative model trained by denoising-score matching accomplishes excellent
sample synthesis when trained with data samples corrupted with multiple levels of noise. Here
we provide an analysis and empirical evidence showing that training with multiple noise levels
is necessary when the data dimension is high. Leveraging this insight, we propose a novel EBM
trained with multiscale denoising-score matching. Our model exhibits a data-generation performance
comparable to state-of-the-art techniques such as GANs and sets a new baseline for EBMs. The
proposed model also provides density information and performs well on an image-inpainting task.

Keywords: energy-based model; score matching; generative model

1. Introduction and Motivation

Treating data as stochastic samples from a probability distribution and developing
models that can learn such distributions is at the core of solving a large variety of application
problems, such as error correction/denoising [1]; outlier/novelty detection [2,3]; sample
generation [4,5]; invariant pattern recognition; Bayesian reasoning [6], which relies on
suitable data priors; and many others.

Energy-based models (EBMs) [7,8] assign energy E(xxx) to each data point xxx, which
implicitly defines a probability density via the Boltzmann distribution pm(xxx) = e−E(xxx)/Z.
Sampling from this distribution can be used as a generative process that yields plausible
samples of xxx.

Compared to other generative models like GANs [9], flow-based models [10,11] or
autoregressive models [12,13], energy-based models have significant advantages. First, they
provide explicit (unnormalized) density information, compositionality [14,15], better mode
coverage [16] and flexibility [5]. Further, they do not require special model architecture,
unlike autoregressive and flow-based models. Recently, energy-based models have been
successfully trained with maximum likelihood [4,5], but training can be very computa-
tionally demanding due to the need for a sampling model distribution. Variants with a
truncated sampling procedure have been proposed, such as contrastive divergence [17].
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Such models learn much faster with the drawback of not exploring the state space thor-
oughly [18].

Score Matching, Denoising-Score Matching and Deep-Energy Estimators

Score matching (SM) [19] circumvents the requirement of sampling the model distribu-
tion. In score matching, the score function is defined as the gradient of the log density or
the negative energy function. The expected L2 norm of the difference between the model
score function and the data score function is minimized.

One convenient way of using score matching is learning the energy function corre-
sponding to a Gaussian kernel Parzen density estimator [20] of the data:
pσ0(x̃xx) =

∫
qσ0(x̃xx|xxx)p(xxx)dxxx. Though hard to evaluate, the data score is well defined,

sd(x̃xx) = ∇x̃xx log(pσ0(x̃xx)), and the corresponding objective is

LSM(θ) = Epσ0(x̃xx) ‖ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ‖2 (1)

LSM is also known as the Fisher divergence or the Fisher information distance [21,22],
LSM = DFD(pσ0||pm), where pm(xxx) = e−E(xxx)/Z is the normalized distribution from the
model energy function. While the KL divergence requires the ratio between two density
functions, this metric does not depend on the normalizing constant Z, which for an energy-
based model needs global integration through sampling and is rarely accurately available.

Vincent [23] studied the connection between a denoising autoencoder and score match-
ing and proved the remarkable result that the following objective, named denoising-score
matching (DSM), is equivalent to the objective above:

LDSM(θ) = Epσ0 (x̃xx,xxx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 (2)

Note that in (2), the Parzen density score is replaced by the derivative of the log
density of the single noise kernel∇x̃xx log(qσ0(x̃xx|xxx)), which is much easier to evaluate. In the

particular case of Gaussian noise, log(qσ0(x̃xx|xxx)) = −
(x̃̃x̃x−xxx)2

2σ2
0

+ C, and therefore

LDSM(θ) = Epσ0(x̃xx,xxx) ‖ xxx− x̃xx + σ0
2∇x̃xxE(x̃xx; θ) ‖2 (3)

The intuition behind objective (3) is simple: it forces the energy gradient to align with the
vector pointing from the noisy sample to the clean data sample.

To optimize an objective involving the derivative of a function defined by a neural
network, Kingma and LeCun [24] proposed double backpropagation [25]. Deep-energy
estimator networks [26] first applied this technique to learn an energy function defined by a
deep neural network. In this work and similarly in Saremi and Hyvärinen [27], an energy-
based model was trained to match a Parzen density estimator of data with a particular
noise magnitude. The previous models could perform denoising tasks, but they could not
generate high-quality data samples from a random input initialization. Recently, Song and
Ermon [28] trained an excellent generative model by fitting a series of score estimators
coupled together in a single neural network, each matching the score of a Parzen estimator
with a different noise magnitude.

The questions we address here are why learning energy-based models with a sin-
gle noise level does not permit high-quality sample generation and what can be per-
formed to improve such energy-based models. Our work builds on key ideas from
Saremi et al. [26], Saremi and Hyvärinen [27] and Song and Ermon [28].

Section 2 provides a geometric view of the learning problem in denoising-score match-
ing and provides a theoretical explanation of why training with one noise level is insufficient
if the data dimension is high.

Section 3 presents a novel method for training an energy-based model, multiscale
denoising-score matching (MDSM). Section 4 describes the empirical results of the MDSM
model and comparisons with other models.
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2. A Geometric View of Denoising-Score Matching

Song and Ermon [28] used denoising-score matching with a range of noise levels,
achieving great empirical results. The authors explained that large noise perturbations
are required to enable the learning of the score in low-data density regions. But, it is still
unclear why a series of different noise levels are necessary, rather than one single noise
level that is large enough. Following Saremi and Hyvärinen [27], we analyze the learning
process in denoising-score matching based on the measure concentration properties of
high-dimensional random vectors.

We adopt the common assumption that the data distribution to be learned is high-
dimensional but only has support around a relatively low-dimensional manifold [29–31]. If
the assumption holds, it causes a problem for score matching: the density, or the gradient of
the density, is then undefined outside the manifold, making it difficult to train a valid density
model for the data distribution defined on the entire space. Saremi and Hyvärinen [27] and
Song and Ermon [28] discussed this problem and proposed to smooth the data distribution
with a Gaussian kernel to alleviate the issue.

To further understand the learning in denoising-score matching when the data lie
on a manifold X and the data dimension is high, two elementary properties of random
Gaussian vectors in high-dimensional spaces are helpful: First, the length distribution of
random vectors becomes concentrated at

√
dσ [32], where σ2 is the variance of a single

dimension. Second, a random vector is always close to orthogonal to a fixed vector [33].
With these premises, one can visualize the configuration of noisy and noiseless data points
that enter the learning process: A data point xxx sampled from X and its noisy version x̃xx
always lie on a line which is almost perpendicular to the tangent space TxxxX and intersects
X at xxx. Further, the distance vectors between (xxx, x̃xx) pairs all have a similar length

√
dσ. As

a consequence, the set of noisy data points concentrates on a set X̃√dσ,ε that has a distance

of (
√

dσ− ε,
√

dσ + ε) from the data manifold X , where ε�
√

dσ.
Therefore, performing denoising-score-matching learning with (xxx, x̃xx) pairs generated

with a fixed noise level σ, which is the approach taken previously except in [28], will
match the score in the set X̃√dσ,ε and enable the denoising of noisy points in the same set.
However, the learning provides little information about the density outside this set, farther
or closer to the data manifold, as noisy samples outside X̃√dσ,ε rarely appear in the training
process. An illustration is presented in Figure 1A.

A. Training B. Sampling

?

?

Single noise level All noise levels

Figure 1. Illustration of multiscale denoising-score matching. (A) During training, the derivative
of the log likelihood is forced to point toward the data manifold, establishing the energy difference
between points within the manifold and outside. Note that energy is negative log likelihood; therefore,
energy is higher for points further away from the data manifold. (B) During annealed Langevin
sampling, the sample travels from the outside data manifold to the data manifold. Single-step
denoised samples are shown during sampling of an energy function trained with MDSM on Fashion
MNIST (see text for details).
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Let X̃ C√
dσ,ε

denote the complement of the set X̃√dσ,ε. Even if pσ0(x̃xx ∈ X̃ C√
dσ,ε

) is tiny

in a high-dimensional space, the score in X̃ C√
dσ,ε

still plays a critical role in sampling from
random initialization. This analysis may explain why models based on denoising-score
matching, trained with a single noise level, encounter difficulties in generating data samples
with random initialization. For empirical support of this explanation, see our experiments
with models trained with single noise magnitudes (Appendix B). To remedy this problem,
one has to apply a learning procedure proposed in [28], in which samples with different
noise levels are used. Depending on the dimension of the data, the different noise levels
have to be spaced narrowly enough to avoid empty regions in the data space. In the
following, we will use Gaussian noise and employ a Gaussian scale mixture to produce the
noisy data samples for the training (for details, see Section 3.1 and Appendix A).

Another interesting property of denoising-score matching was suggested in the de-
noising autoencoder literature [1,34]. With an increasing noise level, the learned features
tend to have a larger spatial scale. In our experiment, we observe a similar phenomenon
when the training model experiences denoising-score matching with a single noise scale.
If one compares the samples in Figure A1, Appendix B, it is evident that a noise level of
0.3 produced a model that learned a short-range correlation that spans only a few pixels, a
noise level of 0.6 produced a more extended stroke structure without a coherent overall
structure and a noise level of 1 produced a more coherent long-range structure without
details such as stroke-width variations. This suggests that training with a single noise level
for denoising-score matching is insufficient for learning in a model capable of high-quality
sample synthesis. For that, a model has to capture data structures at all scales.

3. Learning Energy-Based Model with Multiscale Denoising-Score Matching
3.1. Multiscale Denoising-Score Matching

Motivated by the analysis in Section 2, we strive to develop an EBM based on
denoising-score matching that can be trained with noisy samples in which the noise level
is not fixed but drawn from a distribution. The model should approximate the Parzen
density estimator of the data pσ0(x̃xx) =

∫
qσ0(x̃xx|xxx)p(xxx)dx. Specifically, the learning should

minimize the difference between the derivative of the energy and the score of pσ0 under the
expectation EpM(x̃xx) rather than Epσ0 (x̃xx)

, the expectation taken in standard denoising-score
matching. Here, pM(x̃xx) =

∫
qM(x̃xx|xxx)p(xxx)dx is chosen to cover the signal space more evenly

to avoid the measure concentration issue described above. The resulting multiscale score
matching (MSM) objective is

LMSM(θ) = EpM(x̃xx) ‖ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ‖2 (4)

Compared to the objective of denoising-score matching (1), the only change in the new
objective (4) is the expectation. Both objectives are consistent if pM(x̃xx) and pσ0(x̃xx) have the
same support, as shown formally in Proposition A1 of Appendix A. In Proposition A2, we
prove that Equation (4) is equivalent to the following denoising-score-matching objective:

LMDSM∗ = EpM(x̃xx)qσ0 (xxx|x̃xx)
‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 (5)

The above results hold for any noise kernel qσ0(x̃xx|xxx), but Equation (5) contains the re-
versed expectation, which is difficult to evaluate in general. To proceed, we choose qσ0(x̃xx|xxx)
to be Gaussian, and also choose qM(x̃xx|xxx) to be a Gaussian scale mixture:
qM(x̃xx|xxx) =

∫
qσ(x̃xx|xxx)p(σ)dσ and qσ(x̃xx|xxx) = N (xxx, σ2 Id). After algebraic manipulation and

one approximation (see the derivation following Proposition A2 in Appendix A), we can
transform Equation (5) into a more convenient form, which we call multiscale denoising-score
matching (MDSM):

LMDSM = Ep(σ)qσ(x̃xx|xxx)p(xxx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 (6)
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The square loss term evaluated at noisy points x̃xx at larger distances from the true
data points xxx will have a much larger magnitude. Therefore, in practice, it is necessary to
add a monotonically decreasing term l(σ) to balance the loss in different noise scales, e.g.,
l(σ) = 1

σ2 . Ideally, we want our model to learn the correct gradient everywhere, so we need
to add noise at all levels. However, learning denoising-score matching at very large or very
small noise levels is useless. At huge noise levels, the information of the original sample
is completely lost. Conversely, in the limit of small noise, the noisy sample is virtually
indistinguishable from real data. In neither case, one can learn an informative gradient
about the data structure. Thus, the noise range must only be broad enough to encourage the
learning of data features over all scales. Particularly, we do not sample σ but instead choose

a series of fixed σ values σ1 · · · σK. Further, substituting log(qσ0(x̃xx|xxx)) = −
(x̃̃x̃x−xxx)2

2σ2
0

+ C into

Equation (4), we arrive at the final objective:

L(θ) = ∑
σ∈{σ1···σK}

Eqσ(x̃xx|xxx)p(xxx)l(σ) ‖ xxx− x̃xx + σ2
0∇x̃xxE(x̃xx; θ) ‖2 (7)

It may seem that σ0 is an important hyperparameter for our model. Still, after our
approximation, σ0 becomes just a scaling factor in front of the energy function. It can
be set to one as long as the temperature range during sampling is scaled accordingly
(see Section 3.2). Therefore, the only hyperparameter is the range of noise levels used
during training.

On the surface, Objective (7) looks similar to the one in Song and Ermon [28]. The
important difference is that Equation (7) approximates a single distribution, namely pσ0(x̃xx),
the data smoothed with one fixed kernel qσ0(x̃xx|xxx). In contrast, Song and Ermon [28]
approximate the score of multiple distributions, the family of distributions {pσi (x̃xx) : i =
1, ..., n}, resulting from the data smoothed by kernels of different widths σi. Because our
model learns only a single target distribution, it does not require noise magnitude as
the input.

3.2. Sampling by Annealed Langevin Dynamics

Langevin dynamics has been used to sample from neural network energy
functions [4,5]. However, those studies described difficulties with mode exploration un-
less many sampling steps were used. We propose incorporating simulated annealing in
the Langevin dynamics to improve mode exploration. Simulated annealing [35,36] im-
proves mode exploration by sampling first at a high temperature and then cooling down
gradually. This has been successfully applied to challenging computational problems like
combinatorial optimization.

To apply simulated annealing to Langevin dynamics, note that in a model of the
Brownian motion of a physical particle, the temperature in the Langevin equation enters
as a factor

√
T in front of the noise term; some literature uses

√
β−1, where β = 1/T [37].

Adopting the
√

T convention, the Langevin sampling process [38] is given by:

xxxt+1 = xxxt −
ε2

2
∇xxxE(xxxt; θ) + ε

√
TtN (0, Id) (8)

where Tt follows some annealing schedule and ε denotes the step length, which is fixed.
During sampling, samples behave like physical particles under Brownian motion in a
potential field. Because the particles have average energies close to their current thermic
energy, they explore the state space at different distances from the data manifold depending
on the temperature. Eventually, they settle somewhere on the data manifold. The behavior
of the particle’s energy value during a typical annealing process is depicted in Appendix F
in Figure A7B.
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If the obtained sample is still slightly noisy, we can apply a single-step gradient
denoising jump [27] to improve the sample quality:

xxxclean = xxxnoisy − σ2
0∇xxxE(xxxnoisy; θ) (9)

This denoising procedure can be applied to noisy samples with any level of Gaussian
noise because, in our model, the gradient automatically has the correct magnitude to
denoise the sample. This process is justified by the Empirical Bayes interpretation of this
denoising process, as studied in [27].

Song and Ermon [28] also call their sample-generation process annealed Langevin dy-
namics. It should be noted that their sampling process does not coincide with Equation (8).
Their sampling procedure is best understood as sequentially sampling a series of distribu-
tions corresponding to data distribution corrupted by different noise levels.

4. Image Modeling Results

Training and Sampling Details. The proposed energy-based model is trained on
standard image datasets, specifically MNIST, Fashion MNIST, CelebA [39] and CIFAR-
10 [40]. During training, we set σ0 = 0.1 and train over a noise range of σ ∈ [0.05, 1.2],
with the different noise uniformly spaced on the batch dimension. For MNIST and Fashion
MNIST, we used geometrically distributed noise in the range [0.1, 3]. The weighting factor
l(σ) is always set to 1/σ2 to make the square term roughly independent of σ. We use a batch
size of 128 and the Adam optimizer with a 5× 10−5 learning rate. For MNIST and Fashion
MNIST, we use a 12-layer ResNet with 64 filters. For the CelebA and CIFAR-10 datasets, we
used a 18-layer ResNet with 128 filters [41,42]. No normalization layer was used in any of
the networks. We designed the output layer of all networks to take a generalized quadratic
form [43]. Because the energy function is anticipated to be approximately quadratic with
respect to the noise level, this modification boosted the performance significantly. For more
detail on the training and model architecture, see Appendix D. One notable result is that
since our training method does not involve sampling, we achieved a speed up of roughly
an order of magnitude compared to the maximum-likelihood training using Langevin
dynamics (for example, on a single GPU, training MNIST with a 12-layer ResNet takes 0.3 s
per batch with our method, while maximum-likelihood training with a modest 30 Langevin
steps per weight update takes 3 s per batch. Both methods need a similar number of weight
updates to train). Our approach thus enables the training of energy-based models even
when limited computational resources prohibit maximum-likelihood methods.

We found that the choice of the maximum noise level has little effect on learning as
long as it is large enough to encourage the learning of the longest range features in the data.
However, as expected, learning with too small or too large noise levels is not beneficial and
can even destabilize the training process. Further, our method appeared to be relatively
insensitive to how the noise levels are distributed over a chosen range. Geometrically
spaced noise as in [28] and linearly spaced noise both work, although in our case, learning
with linearly spaced noise was somewhat more robust.

To sample the learned energy function, we used annealed Langevin dynamics with
an annealing schedule where the temperature varies continuously. See Figure A7B for
the particular shape of our annealing schedule. In contrast, annealing schedules with
a theoretical guaranteed convergence property takes extremely long [44]. The range of
temperatures to use in the sampling process depends on the choice of σ0 as the equilibrium
distribution contains rough images with a Gaussian noise of magnitude

√
Tσ0 added on

top. To ease traveling between modes far apart and ensure even sampling, the initial
temperature needs to be high enough to inject noise of sufficient magnitude. The choice
of T = 100, corresponding to added noise of magnitude

√
100× 0.1 = 1, is an adequate

starting point. For step length ε, we generally used 0.02, and [0.015, 0.05] appeared to be a
reasonable range for this parameter. After annealing, we performed single-step denoising
to enhance the sample quality slightly.
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Unconditional Image Generation. We demonstrate the generative ability of our
model by displaying samples obtained by annealed Langevin sampling and single-step
denoising jump. We evaluated 50k sampled images after training on CIFAR-10 with two
performance scores, Inception [45] and FID [46]. We achieved an Inception Score of 8.31
and an FID of 31.7, comparable to modern GAN approaches. In Figure 2, we display
some samples for visual inspection. The scores of the CelebA dataset are not reported here
as they are not commonly reported and may depend on the specific preprocessing used.
More samples and training images are provided in the Appendix E for visual inspection.
We believe the visual assessment is still essential because of the possible issues with the
Inception Score [47]. Indeed, we also found that the visually impressive samples were not
necessarily the ones achieving the highest Inception Score.

Figure 2. Unconditional samples from our model trained on Fashion MNIST, CelebA and CIFAR-10.
See Figures A5 and A6 in Appendix E for more samples and comparison with training data.

Although overfitting is not a common concern for generative models, we still tested
our model for overfitting. We found no indication of overfitting by comparing the model
samples with their nearest neighbors in the dataset. See Figure A2 in Appendix C.

Mode Coverage. We repeated, with our model, the three-channel MNIST mode
coverage experiment similar to the one in [16]. An energy-based model was trained on
three-channel data where each channel is a random MNIST digit. Then, 8000 samples were
taken from the model, and each channel was classified by using a small MNIST classifier
network. We obtained the results of the 966 modes, comparable to GAN approaches. The
training was successful, and our model assigned low energy to all the learned modes. But,
some modes were not accessed during sampling, likely due to the Langevin dynamics
failing to explore these modes. A better sampling technique such as HMC [48] or a
Maximum Entropy Generator [16] could improve this result.

Image Inpainting. Image inpainting can be achieved with our model by clamping
a part of the image to ground truth and performing the same annealed Langevin and
jump-sampling procedure on the missing part of the image. Noise appropriate for the
sampling temperature must be added to the clamped inputs. The quality of the inpainting
results of our model trained on CelebA and CIFAR-10 can be assessed in Figure 3. For the
CIFAR-10 inpainting results, we used the test set.

Log-Likelihood Estimation. For energy-based models, the log density can be ob-
tained after estimating the partition function with Annealed Importance Sampling (AIS) [49]
or Reverse AIS [50]. In our experiment on the CIFAR-10 model, similar to reports in [5],
there is still a substantial gap between AIS and Reverse AIS estimation, even after signifi-
cant computational effort. In Table 1, we report the results from Reverse AIS, as it tends
to overestimate the partition function, thus underestimating the density. Our reported
density value on the CIFAR dataset underperforms compared to other models, likely due
to two reasons: The model is approximating a Gaussian kernel density estimator of the data
distribution, which is not a very good model on its own. Also, the lower bound obtained
by Reverse AIS may not be tight due to the difficulty in sampling.
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Table 1. Unconditional Inception Score, FID scores and likelihoods for CIFAR-10. Arrow indicates
the better direction of the score.

Model IS ↑ FID ↓ Likelihood NLL (bits/dim) ↓
iResNet [51] - 65.01 Yes 3.45

PixelCNN [12] 4.60 65.93 Yes 3.14
PixelIQN [13] 5.29 49.46 Yes -

Residual Flow [52] - 46.37 Yes 3.28
GLOW [11] - 46.90 Yes 3.35

EBM (ensemble) [5] 6.78 38.2 Yes - 1

MDSM (Ours) 8.31 31.7 Yes 7.04 2

SNGAN [53] 8.22 21.7 No -
NCSN [28] 8.91 25.32 No -

1 Author-reported difficulties evaluating likelihood. 2 Upper bound obtained by Reverse AIS.

Figure 3. Demonstration of the sampling process (top two) and image inpainting (bottom two). The
sampling process is shown with Gaussian noise (first) and denoised by a single-step gradient jump
(second). The column next to the sampling process shows samples after the last denoising jump at
the end of sampling. Inpainting results are shown next to the initial image (left column) and the
ground-truth image (right column).
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We also report a density of 6.79 bits/dim on the MNIST dataset, again not comparable
to other density models. The density reported here follows the convention of measuring
the density of pixel values between [0, 255]. More details on this experiment are provided
in the Appendix D.

Outlier Detection. Choi et al. [3] and Nalisnick et al. [54] reported the intriguing
behavior of high-dimensional density models on out-of-distribution samples. Specifically,
they showed that many models assign a higher likelihood to out-of-distribution samples
than real data samples. We investigated whether our model behaves similarly.

Our energy function is only trained outside the data manifold where samples are noisy,
so the energy value at clean data points may not always be well-behaved. Therefore, we
added noise with magnitude σ0 before measuring the energy value. Our network behaves
similarly to previous likelihood models; it assigns lower energy, and thus a higher density,
to some OOD samples. We show one example of this phenomenon in Appendix A in
Figure A7.

We also attempted to use the denoising performance, or the objective function, to
perform outlier detection. Intriguingly, the results are similar to using the energy value.
The denoising performance correlates more with the original image’s variance than the
image’s content.

5. Discussion

The central goal of our work is to investigate how to build EMBs in high-dimensional
spaces with an objective function similar to denoising-score matching or the “Fisher diver-
gence”. We first provided analyses and empirical results for understanding the limitations
of learning the structure of high-dimensional data with denoising-score matching. We
found that the objective function LSM confines learning to a small set due to the measure
concentration phenomenon in high-dimensional random vectors. Therefore, sampling the
learned distribution starting from outside the set, where the gradient is learned more accu-
rately, does not produce good results. In our opinion, the expectation with respect to the
target distribution Epσ0(x̃xx) is not of critical importance, and it only enforces the score match-
ing in the confined high-probability region. Since sampling from a random initial location
requires the model score to match the target distribution score everywhere, we propose
that Epσ0(x̃xx) should be replaced by EpM(x̃xx), where pM(x̃xx) covers a much larger range in the
signal space than pσ0(x̃xx). This leads to the multiscale denoising-score matching, which can
be viewed as “multiscale Fisher Divergence.” The resulting multiscale denoising-score match-
ing (MDSM) EBM model can denoise, produce high-quality samples from random noise,
perform image inpainting, etc. While also providing density information, our model learns
an order of magnitude faster than the models based on maximum likelihood and sampling.

Previous efforts to learn energy-based models with score matching [24,55] cannot
produce high-quality samples and sometimes are computationally intensive.
Saremi et al. [26] and Saremi and Hyvärinen [27] trained energy-based models with the
denoising-score-matching objective. Their method is computationally efficient, but the
resulting models cannot perform sample synthesis from random noise initialization. The
NCSN recently proposed by Song and Ermon [28] is not an EBM, but it is capable of high-
quality sample synthesis. This model learns a sequence of score functions. Each approxi-
mates the data distribution smoothed by a different-sized Gaussian. Sample generation in
NCSN is achieved by sequential sampling from this set of distributions. Our MDSM method
instead learns an energy-based model corresponding to pσ0(x̃xx) for a fixed σ0. This method
improves score matching in high-dimensional space by matching the gradient of an energy
function to the score of pσ0(x̃xx) in the whole space and avoids measure-concentration issues.

All told, we offer a novel EBM model that achieves high-quality sample synthesis,
which provides a new state-of-the-art approach among EBM approaches. Compared to
the NCSN model, our model is more parsimonious and can support single-step denoising
without prior knowledge of the noise magnitude. Our model performs slightly worse
than the NCSN model in terms of sample quality, which could have several reasons. First,
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the derivation of Equation (6) requires an approximation to keep the training procedure
tractable, which could be inaccurate. Second, the NCSN’s output is a vector that, at least
during optimization, does not always have to be the derivative of a scalar function. In
contrast, in our model, the network output is scalar. Thus, the NCSN model may perform
better because it explores a more extensive set of functions during optimization.
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Abbreviations
The following abbreviations are used in this manuscript:

EBM Energy-based model
GAN Generative Adversarial Networks
SM Score matching
MDSM Three-letter acronym
MNIST Modified National Institute of Standards and Technology database
CelebA CelebFaces Attributes Dataset

CIFAR-10
Tiny image classification dataset https://www.cs.toronto.edu/~kriz/cifar.html,
accessed on March 2019

ResNet Residual Networks
HMC Hamiltonian Monte Carlo
AIS Annealed Importance Sampling
OOD Out of distribution
NCSN Noise Conditional Score Networks

Appendix A. MDSM Objective

In this section, we provide a formal discussion of the MDSM objective and suggest it
as an improved score-matching formulation in high-dimensional space.

Vincent [23] illustrated the connection between the model score −∇x̃xxE(x̃xx; θ) and the
score of the Parzen window density estimator ∇x̃xx log(pσ0(x̃xx)). Specifically, the objective is
Equation (1), which we restate here:

LSM(θ) = Epσ0(x̃xx) ‖ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ‖2 (A1)

Our key observation is: in high-dimensional space, due to the concentration of mea-
sure, the expectation with respect to pσ0(x̃xx) overweighs a thin shell at a rough distance of√

dσ to the empirical distribution p(x). Though this is not a problem in theory, in practice,
this results in the score being only well matched on this shell. Based on this observation,
we suggest replacing the expectation with respect to pσ0(x̃xx) with a distribution pσ′(x̃xx) that
has the same support as pσ0(x̃xx) but can avoid the measure concentration problem. We call
this multiscale score matching, and the objective is the following:

LMSM(θ) = EpM(x̃xx) ‖ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ‖2 (A2)

Proposition A1. LMSM(θ) = 0 ⇐⇒ LSM(θ) = 0 ⇐⇒ θ = θ∗.

https://github.com/zengyi-li/MDSM
https://www.cs.toronto.edu/~kriz/cifar.html
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Proof. Given that pM(x̃xx) and pσ0(x̃xx) have the same support, it is clear that LMSM = 0
would be equivalent to LSM = 0. Due to the proof of Theorem 2 in Hyvärinen [19], we
have LSM(θ) ⇐⇒ θ = θ∗. Thus, LMSM(θ) = 0 ⇐⇒ θ = θ∗.

Proposition A2. LMSM(θ) ^ LMDSM∗ = EpM(x̃xx)qσ0(xxx|x̃xx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2.

Proof. We follow the same procedure as Vincent [23] to prove this result.

JMSM(θ) = EpM(x̃xx) ‖ ∇x̃xx log(pσ0(x̃xx)) +∇x̃E(x̃xx; θ) ‖2

= EpM(x̃xx) ‖ ∇x̃E(x̃xx; θ) ‖2 +2S(θ) + C

S(θ) = EpM(x̃xx)〈∇x̃xx log(pσ0(x̃xx)),∇x̃xxE(x̃xx; θ)〉

=
∫

x̃xx
pM(x̃xx)〈∇x̃xx log(pσ0(x̃xx)),∇x̃xxE(x̃xx; θ)〉 dx̃xx

=
∫

x̃xx
pM(x̃xx)〈∇x̃xx pσ0(x̃xx)

pσ0(x̃xx)
,∇x̃xxE(x̃xx; θ)〉 dx̃xx

=
∫

x̃xx

pM(x̃xx)
pσ0(x̃xx)

〈∇x̃xx pσ0(x̃xx),∇x̃xxE(x̃xx; θ)〉 dx̃xx

=
∫

x̃xx

pM(x̃xx)
pσ0(x̃xx)

〈∇x̃xx

∫
xxx

p(xxx)qσ0(x̃xx|xxx)dxxx,∇x̃xxE(x̃xx; θ)〉 dx̃xx

=
∫

x̃xx

pM(x̃xx)
pσ0(x̃xx)

〈
∫

xxx
p(xxx)∇x̃xxqσ0(x̃xx|xxx)dxxx,∇x̃xxE(x̃xx; θ)〉 dx̃xx

=
∫

x̃xx

pM(x̃xx)
pσ0(x̃xx)

〈
∫

xxx
p(xxx)qσ0(x̃xx|xxx)∇x̃xx log qσ0(x̃xx|xxx)dxxx,∇x̃xxE(x̃xx; θ)〉 dx̃xx

=
∫

x̃xx

∫
xxx

pM(x̃xx)
pσ0(x̃xx)

p(xxx)qσ0(x̃xx|xxx)〈∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)〉 dx̃xxdxxx

=
∫

x̃xx

∫
xxx

pM(x̃xx)
pσ0(x̃xx)

pσ0(x̃xx, xxx)〈∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)〉 dx̃xxdxxx

=
∫

x̃xx

∫
xxx

pM(x̃xx)qσ0(xxx|x̃xx)〈∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)〉 dx̃xxdxxx

Thus, we have:

LMSM(θ) = EpM(x̃xx) ‖ ∇x̃xxE(x̃xx; θ) ‖2 +2S(θ) + C

= EpM(x̃xx)qσ0 (xxx|x̃xx)
‖ ∇x̃xxE(x̃xx; θ) ‖2 +2EpM(x̃xx)qσ0 (xxx|x̃xx)

〈∇x̃xx log qσ0(x̃xx|xxx),∇x̃xxE(x̃xx; θ)〉+ C

= EpM(x̃xx)qσ0(xxx|x̃xx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 +C′

So LMSM(θ) ^ LMDSM∗ .

The above analysis applies to any noise distribution, not limited to Gaussian. But,
LMDSM∗ has a reversed expectation form that is difficult to work with. To proceed further,
we study the case where qσ0(x̃xx|xxx) is Gaussian and choose qM(x̃xx|xxx) as a Gaussian scale
mixture and pM(x̃xx) =

∫
qM(x̃xx|xxx)p(xxx)dx. By Propositions A1 and A2, we have the following

form to optimize:

LMDSM∗(θ) =
∫

x̃xx

∫
xxx pM(x̃xx)qσ0(xxx|x̃xx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 dx̃xxdxxx

=
∫

x̃xx

∫
xxx

qσ0 (xxx|x̃xx)
qM(xxx|x̃xx) pM(x̃xx)qM(xxx|x̃xx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 dx̃xxdxxx

=
∫

x̃xx

∫
xxx

qσ0 (xxx|x̃xx)
qM(xxx|x̃xx) pM(xxx, x̃xx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 dx̃xxdxxx

=
∫

x̃xx

∫
xxx

qσ0 (xxx|x̃xx)
qM(xxx|x̃xx) qM(x̃xx|xxx)p(xxx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 dx̃xxdxxx

≈ LMDSM(θ)

(A3)
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To minimize Equation (A3), we can use the following importance-sampling proce-
dure [56]: we can sample from the empirical distribution p(xxx), then sample the Gaussian

scale mixture qM(x̃xx|xxx) and finally weight the sample by
qσ0 (xxx|x̃xx)
qM(xxx|x̃xx) . We expect the ratio to be

close to one for the following reasons: Using Bayes rule, qσ0(xxx|x̃xx) =
p(xxx)qσ0 (x̃xx|xxx)

pσ0 (x̃xx)
, we can

see that qσ0(xxx|x̃xx) only has support on discrete data points xxx, and the same thing holds for
qM(xxx|x̃xx). Because x̃xx is generated by adding Gaussian noise to real data samples, both esti-
mators should give results highly concentrated on the original sample point xxx. Therefore,
in practice, we ignore the weighting factor and use Equation (6). Improving upon this
approximation is left for future work.

Appendix B. Problem with Single-Noise Denoising-Score Matching

To compare with the previous method, we trained an energy-based model with
denoising-score matching by using one noise level on MNIST, initialized the sampling with
Gaussian noise of the same level, sampled with Langevin dynamics at T = 1 for 1000 steps
and performed one denoise jump to recover the model’s best estimate of the clean sample,
see Figure A1. We used the same 12-layer ResNet as other MNIST experiments. The models
were trained for 100,000 steps before sampling.

0.3 0.6 1.0

Figure A1. Denoised samples from energy-based model trained with denoising-score matching
with single-magnitude Gaussian noise on MNIST. Noise magnitude used in training is shown in
above samples. Larger noise scales require the model to learn longer-range correlations in the
data distribution, which may explain why samples generated from larger noise scales show more
consistent shape.

Appendix C. Overfitting Test

We demonstrate that the model does not simply memorize training examples by com-
paring model samples with their nearest neighbors in the training set. We use Fashion
MNIST for this demonstration because overfitting can occur easier than on more compli-
cated datasets, see Figure A2.

Figure A2. Samples from energy-based model trained on Fashion MNIST (left column) next to 10
(L2) nearest neighbors in the training set.
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Appendix D. Details on Training and Sampling

We used a custom-designed ResNet architecture for all experiments. For MNIST and
Fashion MNIST, we used a 12-layer ResNet with 64 filters on the first layer, while for the
CelebA and CIFAR datasets, we used an 18-layer ResNet with 128 filters on the first layer.
All networks used the ELU activation function. We did not use any normalization in the
ResBlocks, and the filer number is doubled at each downsampling block. Details about
our networks’ structure can be found in our code release (https://github.com/zengyi-li/
ADSM). All the mentioned models can be trained on two GPUs within two days.

Since the gradient of our energy model scales linearly with the noise, we expected our
energy function to scale quadratically with noise magnitude. Therefore, we modified the
standard energy-based network output layer to take a flexible quadratic form [43]:

Eout = (∑
i

aihi + b1)(∑
i

cihi + b2) + ∑
i

dih2
i + b3 (A4)

where ai, ci, di and b1, b2, b3 are learnable parameters, and hi is the (flattened) output of
the last residual block. We found this modification to significantly improve performance
compared to using a simple linear last layer.

For the CIFAR and CelebA results, we trained for 300k weight updates, saving a
checkpoint every 5000 updates. We then took 1000 samples from each network checkpoint
and used the network with the lowest FID score. For MNIST and Fashion MNIST, we
trained for 100k updates and used the last checkpoint. During training, we padded MNIST
and Fashion MNIST to 32 × 32 for convenience and randomly flipped the CelebA images.
No other modification was performed. We only constrained the gradient of the energy
function; the energy value itself could, in principle, be unbounded. However, they naturally
stabilized, so we did not explicitly regularize them. The annealing sampling schedule is
optimized to improve the sample quality for the CIFAR-10 dataset and consists of 2700 steps.
For other datasets, the shape has less effect on the sample quality. See Figure A7B for the
shape of the annealing schedule used.

We initialized the reverse chain on test images for the log-likelihood estimation and
then sampled 10,000 intermediate distributions by using ten steps of HMC updates each.
The temperature schedule is roughly exponential-shaped, and the reference distribution is
an isotropic Gaussian. The variance in the estimation was generally less than 10% on the
log scale. Due to the high variance in the results and to avoid getting dominated by a single
outlier, we report the average of the log density instead of the log of the average density.

Appendix E. Extended Samples and Inpainting Results

We provide more inpainting examples and further demonstrate the mixing during the
sampling process in Figure A3. We also provide more samples for readers to visually judge
the quality of our sample generation in Figures A4–A6. All samples are randomly selected.

https://github.com/zengyi-li/ADSM
https://github.com/zengyi-li/ADSM
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Figure A3. Denoised sampling process and inpainting results. Sampling process is from left to right.

Figure A4. Extended Fashion MNIST and MNIST samples.
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Figure A5. Samples (left panel) from network trained on CelebA, and training examples from the
dataset (right panel).

Figure A6. Samples (left panel) from energy-based model trained on CIFAR-10 next to training
examples (right panel).
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Appendix F. Sampling Process and Energy Value Comparison

Here we show how the average energy of samples behaves vs the sampling temper-
ature. We also show an example of our model making out a distribution error that is
common in most other likelihood-based models [54] Figure A7.

B.A.

Figure A7. (A) Energy values for CIFAR-10 train, CIFAR-10 test and SVHN datasets for a network
trained on CIFAR-10 images. Note that the network does not overfit the training set, but just like
most deep likelihood models, it assigns lower energy to SVHN images than its own training data.
(B) Annealing schedule and a typical energy trace for a sample during annealed Langevin sampling.
The energy of the sample is proportional to the temperature, indicating sampling is close to a
quasistatic process.
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