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Abstract: The increasingly large structure of neural networks makes it difficult to deploy on edge
devices with limited computing resources. Network pruning has become one of the most successful
model compression methods in recent years. Existing works typically compress models based
on importance, removing unimportant filters. This paper reconsiders model pruning from the
perspective of structural redundancy, claiming that identifying functionally similar filters plays a
more important role, and proposes a model pruning framework for clustering-based redundancy
identification. First, we perform cluster analysis on the filters of each layer to generate similar sets
with different functions. We then propose a criterion for identifying redundant filters within similar
sets. Finally, we propose a pruning scheme that automatically determines the pruning rate of each
layer. Extensive experiments on various benchmark network architectures and datasets demonstrate
the effectiveness of our proposed framework.

Keywords: model compression; structure pruning; neural network acceleration; edge intelligence

1. Introduction

Compared with traditional machine learning methods, deep learning-based meth-
ods have greatly improved the performance of many computing tasks, such as image
recognition [1], object detection [2] and speech segmentation [3]. Edge AI [4–6] stands out
as a disruptive technology for 6G by embedding model training and inference capabilities
at the edge of the network, which seamlessly integrates perception, communication, com-
puting and intelligence to improve the efficiency, effectiveness, privacy and security of 6G
networks. However, in pursuit of better performance, it is often at the expense of increasing
computing power. It has gradually increased from the earliest LeNet [7] to approximately
20 layers of VGG [8]; in particular, the commonly used ResNet [9] and DenseNet [10] have
increased astonishingly to hundreds of layers. The over-parameterization and redundant
computation of the network makes it difficult to deploy on edge devices with limited
computing resources. At present, model compression techniques for how to obtain a more
efficient network have been proposed successively, including knowledge distillation [11],
quantization [12,13], low-rank decomposition [14] and network pruning [15–18]. Among
them, network pruning, which can dynamically evolve the baseline network into a more
efficient sub-network, has become a widely recognized model compression method.

Network pruning is mainly divided into unstructured pruning and structured pruning.
Unstructured pruning prunes individual weights in the model to compress the DNN (Deep
Neural Network) [19]. However, although this method can greatly reduce the parameters,
the generated unstructured matrices require a special sparse matrix operation library, which
limits its practical acceleration in the general CNN acceleration framework. Structured
pruning uses convolution kernels/channels or layers as pruning granularity for pruning. It
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has received widespread attention because of its advantages of being directly compatible
with current general-purpose hardware and highly efficient basic linear algebra subprogram
(BLAS) libraries. The research in this paper belongs to the category of structured pruning.

Typical filter pruning includes three stages [20]: (1) training a large, over-parameterized
model (sometimes a pre-trained model), (2) pruning the trained large model according to
certain criteria, and (3) fine-tuning the pruned model to restore the lost performance. Al-
though existing pruning methods have achieved good results, there are still many problems.
To assess the importance of filters, recently, a variety of filter pruning methods have been
proposed to design more effective pruning guidelines, such as the average percentage of
zero values (APoZ) [17], L1-norm [18], Taylor expansion [21], sparsity norm [22], geometric
median (FPGM) [23], high rank (Hrank) [24] and variants of the pruning mask [25]. Due to
the different distributions of the values of the convolution kernels in different layers, the
abovementioned pruning methods based on global or local criteria for sorting filters may
ignore filters with smaller values in the sorting but extract edge features. Huang et al. [26]
compared different pruning standards and found that they have strong similarities, and
that the importance of the obtained filters is almost the same, resulting in similar pruning
structures. Recent work shows that the pruning structure is the key to determining the
performance of the pruning model rather than the inheritance weight. Manually setting
the pruning rate of each convolutional layer is equivalent to redesigning the network
structure completely, and improper pruning rate settings will result in insufficient pruning
or excessive pruning. In addition, for large networks, it is very expensive to accurately
calculate the importance of the filters and set the pruning rate of each layer.

In this paper, we propose a clustering-based dynamic pruning method considering the
similarity between filters. Compared with existing importance-based methods, we analyze
the relevant information on the representational power among all filters within a layer and
remove filters with overlapping functions. The proposed scheme takes into account edge
features that are ignored based on importance ranking. Specifically, we cluster all filters
within a layer in units of filters and select one deletion in each group whose features can
be replaced by other filters. Each layer automatically generates groups according to the
parameter distribution to determine the pruning rate of each layer, avoiding the problem
of manually specifying the pruning rate. To assess the similarity of the representational
power of filters in each group, a criterion is defined to measure the relative importance of
all filters within a group. This criterion is scoped to a group and avoids the problem of
threshold specification for global or local pruning. Extensive experiments demonstrate that
our proposed method is more general than importance-based methods. Figure 1 shows a
graphical illustration of our motivation and pruning framework. To summarize, our main
contributions are as follows:

1. We propose a novel pruning scheme that does not depend on importance but is based
on the similarity between filters for channel-level pruning.

2. We introduce an effective method for measuring the relative importance of filters,
avoiding the problems of over-pruning and under-pruning caused by threshold
specification.

3. The proposed scheme automatically determines each layer’s pruning rate according
to each layer’s parameter distribution, which avoids the problem of unreasonable
pruning structure caused by manually specifying the pruning rate.

4. A large number of experiments prove the effectiveness of the algorithm proposed in
this paper.
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Figure 1. Our proposed pruning framework. First, we traverse layer-by-layer, and use the convolu-
tion layer as the unit to cluster the filters in the convolution layer, respectively. After clustering, each 
filter gets its label and grouping, and redundant filters are removed in the similarity group accord-
ing to the proposed redundancy criterion. 
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[27]. LeCun [16] in 1990 and Hassibi [17] in 1993 proposed OBD and OBS methods, re-
spectively, which measure the importance of the weight in the network based on the sec-
ond derivative of the loss function relative to the weight (Hessian matrix). Hang Song et 
al. published a series of works on model compression for deep neural networks [28,29]. 
Among them, [29] compressed the classical networks AlexNet and VGG at that time, com-
bined with various methods, such as pruning, quantization and Huffman coding to com-
press the network size by dozens of times. However, unstructured weight pruning does 
not guarantee GPU acceleration. 

2.2. Structured Pruning 
To overcome the above limitations, SSL [18] proposed to regularize the structures 

(i.e., filters, channels, filter shapes and layer depth) of DNNs. This was the first work to 
actually measure GPU acceleration, and structured pruning gradually became the focus 
of pruning research. Studies on structured pruning have been proposed one after another. 
The simplest of them is the magnitude-based weight pruning, which evaluates the im-
portance according to the absolute value of the parameter or feature output [18,22,30,31]. 
Some studies [22,32,33] considered the impact of pruning on model loss as a criterion for 
measuring the importance of parameters. For example, Molchanov [21] was also based on 
Taylor expansion, using the first-order term’s absolute value in the objective function’s 
expansion relative to the activation function as pruning criteria. In addition, [34,35] con-
sidered the effect of pruning on the re-constructability of feature output, which minimizes 
the reconstruction error of the pruned network for feature output. 

There are also other criteria based on the weights of the importance of ranking. He et 
al. [23] proposed a filter pruning via the geometric median (FPGM) method, the basic idea 
of which was to remove redundant parameters based on the geometric median. Lin et al. 
[24] developed a mathematically formulated method to prune filters with low-rank fea-
ture maps. The disadvantage of the above greedy algorithm is that it can only find the 
optimal local solution, which ignores the relationship between parameters. Some studies 
[36–38] try to consider the relationship between parameters, trying to find a better global 
solution. For example, Peng [38] proposed the collaborative channel pruning (CCP) 
method, which considers the dependencies between channels, formalizes the channel 

Figure 1. Our proposed pruning framework. First, we traverse layer-by-layer, and use the convolution
layer as the unit to cluster the filters in the convolution layer, respectively. After clustering, each filter
gets its label and grouping, and redundant filters are removed in the similarity group according to
the proposed redundancy criterion.

2. Related Work
2.1. Unstructured Pruning

The research on network pruning originated from the 1989 paper on skeletonization [27].
LeCun [16] in 1990 and Hassibi [17] in 1993 proposed OBD and OBS methods, respectively,
which measure the importance of the weight in the network based on the second deriva-
tive of the loss function relative to the weight (Hessian matrix). Hang Song et al. pub-
lished a series of works on model compression for deep neural networks [28,29]. Among
them, [29] compressed the classical networks AlexNet and VGG at that time, combined
with various methods, such as pruning, quantization and Huffman coding to compress the
network size by dozens of times. However, unstructured weight pruning does not guarantee
GPU acceleration.

2.2. Structured Pruning

To overcome the above limitations, SSL [18] proposed to regularize the structures
(i.e., filters, channels, filter shapes and layer depth) of DNNs. This was the first work to
actually measure GPU acceleration, and structured pruning gradually became the focus of
pruning research. Studies on structured pruning have been proposed one after another. The
simplest of them is the magnitude-based weight pruning, which evaluates the importance
according to the absolute value of the parameter or feature output [18,22,30,31]. Some
studies [22,32,33] considered the impact of pruning on model loss as a criterion for mea-
suring the importance of parameters. For example, Molchanov [21] was also based on
Taylor expansion, using the first-order term’s absolute value in the objective function’s
expansion relative to the activation function as pruning criteria. In addition, [34,35] consid-
ered the effect of pruning on the re-constructability of feature output, which minimizes the
reconstruction error of the pruned network for feature output.

There are also other criteria based on the weights of the importance of ranking.
He et al. [23] proposed a filter pruning via the geometric median (FPGM) method, the
basic idea of which was to remove redundant parameters based on the geometric me-
dian. Lin et al. [24] developed a mathematically formulated method to prune filters with
low-rank feature maps. The disadvantage of the above greedy algorithm is that it can
only find the optimal local solution, which ignores the relationship between parameters.
Some studies [36–38] try to consider the relationship between parameters, trying to find a
better global solution. For example, Peng [38] proposed the collaborative channel pruning
(CCP) method, which considers the dependencies between channels, formalizes the channel
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selection problem as a quadratic programming problem under constraints, and then uses
sequential quadratic programming to solve it.

2.3. Other Compression Techniques

Other types of DNN model compression techniques are also being explored.
Quantization [39,40] compressed the model by reducing the size of the weights or ac-
tivations. XNOR-Net [41] and BinaryNet [42] used binary weights and activations to
compress the model; [43,44] studied how to choose the appropriate quantization param-
eters to minimize the impact on the accuracy as much as possible; [45,46] explored how
to make the distribution of quantified objects more suitable for quantification, and [47]
introduced quantization operations during training to explore more efficient training of
low-precision quantization networks. The quantization of ultra-low precision [48] and
hybrid precision [49] has also been a popular topic in recent years. Knowledge distillation
trains another simple network by using the output of a pre-trained complex network as
a supervisory signal. The studies in [50,51] improved the prediction performance of the
student model by adjusting the temperature; [52] transferred the knowledge of multiple
teachers to a single student model so that the trained student model could handle the
original tasks of the multiple teacher models, and [53] used different knowledge forms
including output feature, intermediate feature, relational feature and structural feature.
The low-rank decomposition sparse convolution kernel matrix was created by merging
dimensions and imposing low-rank constraints. Since most of the weight vectors are
distributed in the low-rank subspace, the convolution kernel matrix can be reconstructed
with a few basis vectors to reduce the storage space. Jaderberg et al. [54] decomposed
the convolution kernel of w× h into w× 1 and 1× h, and reconstructed the learned dic-
tionary weight linearly to obtain the output feature map; Liu et al. [8] used a two-stage
decomposition method to study the redundancy between the channels; Wang et al. [55]
proposed fixed-point decomposition, and then restored the performance through pseudo-
full-precision weight repetition, weight balancing and fine-tuning; Kim et al. [56] pro-
posed tucker decomposition, which performs binary decomposition of the first tensor
along the input channel dimension to obtain convolutions of w× 1, 1× h and 1× 1, and
Lebedev et al. [57] proposed CP decomposition on the basis of ternary decomposition.

The current model compression methods through pruning still determine the impor-
tance of a single parameter or filter by looking for a criterion and combining the pruning
method and processing to restore the performance of the pruned model. Different from pre-
vious methods, we use clustering to find filters with overlapping functions more effectively
by comparing the similarity between filters.

3. Methodology

In this section, we propose a novel pruning scheme, which is the cluster similarity-
based filter pruning method. We first introduce the overall framework and related notation
definitions, and then describe the motivation and implementation details. Finally, we
propose the corresponding pruning scheme.

3.1. Overall Framework

We show the flow of a single pruning of the proposed pruning scheme in Figure 1.
First, we use a filter as the unit to cluster all the convolution kernels in one layer and obtain
the cluster label corresponding to each filter. We improved the single-threshold selection
from the previous single-dimensional space to map the filter into the multi-dimensional
space through clustering. The clustering results are used to guide the determination of
redundant filters in the next step. Since filters with similar features are in the same cluster
set, we only need to find redundant filters in each cluster space. Then, redundant filters in
each cluster are obtained according to the proposed criterion and removed. Finally, after
several iterations, we can get the final compact network structure without specifying the
pruning rate of each layer and reach the specified pruning rate constraint.
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3.2. Motivation and Definitions

One of the main problems of filter pruning is how to select effective filters and retain
as much of the expressive power of the original network as possible. Current amplitude-
based pruning algorithms all rely on the assumption that removing relatively insignificant
weights in the network has little effect on the pruned network performance. Unlike current
views based on parameter importance, we propose that the removal of any one of the filters
will not significantly impair the representational power of the network as long as there
are two sufficiently similar channels. This reduction also resonates with the well-known
Hebbian principle, which roughly states that “neurons which fire together, wire together”.
The visualization results of the filters and feature maps of the first convolutional layer of
VGG16 are shown in Figure 2. It can be seen that there are a large number of similar filters
in the trained network.
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be seen from the figure, a convolutional layer has multiple filters with similar expressive abilities,
and the feature maps obtained by similar filters after convolution are also similar.

Assuming that the neural network has L convolutional layers, Nl and Nl+1 represent
the number of input channels and output channels of the lth layer convolution layer,
respectively. F(l,i) represents the ith filter of the lth layer, and the corresponding input
feature map can be expressed as F (l,i) ∈ RH×W×B, where H, W, B represent the height and
width of the feature maps and the batch size, respectively. The tensor of the connections of
the lth and l + 1th layers can be parameterized byW ∈ RNl×Nl+1×K×K, 1 ≤ l ≤ L.

We demonstrate that if there is a set of similar filters within a layer, pruning filters
randomly or selectively in that set is better than pruning the least important filters within
that layer. We assume that there is a set of similar filters Sα and another Sβ with remaining
filters in the lth layer, containing n and m filters, respectively. We choose positive constants

a, b > 0 and use the random events (
n
∑

i=1
αi ≥ a) and (

m
∑

i=1
βi ≥ b) to indicate that the filters

in Sα and Sβ perform better, and use the sum of the two to indicate the performance of the
entire layer. When removing a filter from the lth layer, there are several situations including
(1) no pruning; (2) randomly selecting a filter to prune in Sα; (3) pruning according to the
minimum rule in Sα; (4) pruning according to the minimum rule in Sβ; (5) pruning the least
important filter in the layer, i.e., min(Sα, Sβ):

po = P(
n

∑
i=1

αi ≥ a) + P(
m

∑
i=1

βi ≥ b) (1)

pαr = P(
n−1

∑
i=1

αi ≥ a) + P(
m

∑
i=1

βi ≥ b) (2)

pα = P(
n

∑
i=1

αi − α ≥ a) + P(
m

∑
i=1

βi ≥ b) (3)
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pβ = P(
n

∑
i=1

αi ≥ a) + P(
m

∑
i=1

βi − β ≥ b) (4)

pg =
n

m + n
pα +

m
m + n

pβ (5)

Note that 0 ≤ αn − α ≤ αn; therefore, we have

P(
n−1

∑
i=1

αi ≥ a) ≤ P(
n

∑
i=1

αi − α ≥ a) ≤ P(
n

∑
i=1

αi ≥ a) (6)

indicating that pαr ≤ pα ≤ po. For any filter, the contribution to the network cannot be
infinite, where the variance is uniformly bounded.

∃C1 > 0, s.t.Dηi ≤ C1, i = 1, 2, · · · , n

By Chebyshev’s inequality, for any real number ε > 0,

P(
1
n

∣∣∣∣∣ n

∑
i=1

(αi −Eαi)

∣∣∣∣∣ ≥ ε) ≤
D(

n
∑

i=1
αi)

ε2n2 (7)

From Equation (7) we can get:

Cov
(
αi, αj

)
≤
√
Dαi ·Dαj ≤ C1

We assume that there are C2n (0 ≤ C2 ≤ 1) pairs of similar filters in the set Sα, i.e.,
#
{
(i, j) : Cov

(
αi, αj

)
6= 0, i 6= j, i, j = 1, · · · , n.

}
≤ C2n , then we have:

D(
n

∑
i=1

αi) =
n

∑
i=1

Dαi + ∑
i 6=j

Cov
(
αi, αj

)
≤ C1n + C1C2n = C1(1 + C2)n (8)

Available by Equation (8):

P(
1
n

∣∣∣∣∣ n

∑
i=1

(αi −Eαi)

∣∣∣∣∣ ≥ ε) ≤ C1(1 + C2)

ε2n
→ 0 (9)

This means 1
n

n
∑

i=1
(αi −Eαi) converges in probability to zero, i.e., 1

n

n
∑

i=1
(αi −Eαi)

P→ 0.

We consider the filter’s contribution to be a positive number that expects a uniform positive
lower bound:

∃ε0 > 0, s.t.Eαi ≥ ε0, i = 1, 2, · · · , n

By Equation (9) we can get:

P( 1
n

n
∑

i=1
(αi −Eαi) > − ε0

2 ) = P(
n
∑

i=1
αi >

n
∑

i=1
Eαi − ε0

2 n)

= P(
n
∑

i=1
αi >

ε0
2 n +

n
∑

i=1
(Eαi − ε0))

≤ P(
n
∑

i=1
αi >

ε0
2 n) ≤ P(

n
∑

i=1
αi > b)

(10)

Letting n→ +∞ , then 1
n

n
∑

i=1
(αi −Eαi)

P→ 0, and we have:

lim
n→∞

P(
n

∑
i=1

αi > b) ≥ lim
n→∞

P(
1
n

n

∑
i=1

(αi −Eαi) > −
ε0

2
) = 1 (11)

lim
n→∞

P(
n

∑
i=1

αi − αr > b) = lim
n→∞

P(
n

∑
i=1

αi − α > b) = 1 (12)

Therefore, we have pαr ≈ pα ≈ po for an n that is large enough. Furthermore,
pβ ≤ po ≈ pα, and since pg is the average of pα and pβ, there is pβ ≤ pg ≤ pα. In summary,
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we have pβ ≤ pg ≤ pαr ≤ pα ≤ po, which indicates that pruning filters in a similar set
(even randomly) works better than pruning the least important filter in that layer. This
provides the basis for our pruning below. The next challenge is how to find similar sets
and how to determine which filters within a set are redundant.

3.3. Cluster Pruning

K-means clustering provides a solution for how to find similar convolution kernels
within a layer. For the lth layer, Nl+1 filters are divided into k clusters, then the clustering re-
sult is {S1, S2, S3, · · · , Sk}, k ≤ Nl+1, where S1 = {F1, F3, F7, F9, F12}, S2 = {F2, F5, F14}, . . . ,
Sk =

{
F6, F10, F13, FNl+1

}
. We divide each layer into different sets in which convolutional

kernels contain similar feature information. At the same time, we also get the centroid
{C1, C2, C3, · · · , Ck}, representing the set information:

Ck =

∑
Fi∈Sk

Fi

|Sk|
(13)

where Ck represents the center of the kth cluster, |Sk| represents the number of objects in the
kth cluster and Fi represents the ith object in the kth cluster.

After getting sets containing similar information, the task is to find redundant filters in
each set. The cluster center anchors the representative information of all filters in a similar
cluster. After obtaining the cluster center of each similar cluster, it is intuitive to choose to
keep the cluster center and delete other filters of the same cluster. However, this simple
pruning method causes a large number of filters to be discarded, resulting in a sharp drop
in performance. We look for a reasonable criterion for progressive pruning to determine
redundant kernels in a cluster. In contrast to the intuitive pruning approach, we propose
that cluster centers can be pruned. Since the cluster center is the mean value of all filters in
clusters in each dimension, the cluster center of the remaining filters is still in the original
cluster center position after removing the cluster center. This indicates that the information
contained in all filters in the cluster is not lost after removing the cluster center.

The above claim is in the ideal state, that is, the centroid of each cluster is exactly one
element in the set. In experiments, it is difficult to find the element in the cluster set that
happens to be the cluster center for each clustering. We find a compromise scheme, where
each time we find the element closest to the cluster center, the information represented by
this element can be transferred to other filters, and the original cluster set still retains the
original information. First, we calculate the distance between all filters and cluster center
in the kth cluster set of the lth layer:

Dk
i = dist(Fk

i , Ck), 1 ≤ i ≤ |Sk|

=

√
Nl+1

∑
n=1

K
∑

k1=1

K
∑

k2=1

∣∣W i(n, k1, k2)− Ck(n, k1, k2)
∣∣2 (14)

where W i(n, k1, k2) is each weight parameter in the ith filter, Ck(n, k1, k2) is each weight
parameter in the cluster center of the kth cluster and Fk

i is the ith filter in the kth cluster.
Then, the filter that needs to be pruned in the similar cluster is:

Pk = arg min
1≤i≤|Sk |

Dk
i (15)

where Pk is the filter to be pruned in the kth cluster. Finally, the set of all pruned filters in
the lth layer is {Pl

1, Pl
2, Pl

3, · · · , Pl
k}.
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3.4. Pruning Scheme

In the above section, we propose how to identify redundant filters from a clustering
set. However, for the number of hundreds or even thousands of filters in the current
network structure, the number of redundant filters obtained by one clustering is far from
enough. Therefore, we propose an iterative pruning scheme to identify more redundant
filters to meet the compression requirements of large pruning rates and large network
structures. After one pruning is completed, the next pruning continues to cluster to find a
new similarity set and delete the redundant filters in the set. Compared with the current
method of manually specifying the pruning rate of each layer, we only need to adjust one
parameter to control the pruning rate of all layers. This is very efficient for large networks
with hundreds of layers.

The overall workflow of our cluster-based pruning algorithm is shown in Algorithm 1
and can be summarized as follows:

• For each convolutional layer, first initialize each cluster center {µ1, µ2, µ3, . . . , µk} and
compare any filter in the layer with each cluster center to construct a Nl+1 × k distance
matrix. In each iteration, λi = argmink∈{1,2,3,...,k}di,k is obtained in each row, and the
corresponding filter is divided into the corresponding cluster k, and, finally, the cluster
set Sl =

{
Sl

1, Sl
2, Sl

3, . . . , Sl
k

}
and cluster center Cl =

{
Cl

1, Cl
2, Cl

3, . . . , Cl
k

}
are obtained.

• For each cluster set Sl
k obtained, each filter in the set and the cluster center Cl

k obtain a∣∣∣Sl
k

∣∣∣-dimensional vector according to Equation (2), and the filter corresponding to the
minimum value in the vector is determined as the layer that needs to be pruned filter.

• After one pruning, calculate the pruning end condition, that is, the amount of compu-
tation rateFLOPs or parameters rateparams after pruning, prune in a loop until the given
pruning rate is reached and fine-tune the generated model to restore performance.

Algorithm 1: Iterative pruning algorithm.

Input: Training dataset D; the model withW , and each layer withW ∈ RNl×Nl+1×K×K , 1 ≤ l ≤ L;
FLOPs or params pruning rate: rateFLOPs/rateparams.
Output: The pruned modelWP

1: W ← train(W ,D)
2: while pruned rate = 0 to rate do
3: for l = 1, 2, . . . , L do
4: initialize the clusters {µ1, µ2, µ3, . . . , µk}
5: for i = 1, 2, . . . , Nl+1 do
6: di,k = ‖Fi − µk‖2
7: λi = argmink∈{1,2,3,...,k}di,k
8: Sλi = Sλi ∪ {Fi}
9: end for
10: Sl =

{
Sl

1, Sl
2, Sl

3, . . . , Sl
k

}
11: Cl =

{
Cl

1, Cl
2, Cl

3, . . . , Cl
k

}
12: for k = 1, 2, . . . , k do
13: for j = 1, 2, . . . ,

∣∣∣Sl
k

∣∣∣ do

14: Dk
j = dist(Fk

j , Cl
k)

15: Pk = argmin
1≤i≤|Sl

k |
Dk

j

16: end for
17: end for
18: Pl =

{
Pl

1, Pl
2, Pl

3, · · · , Pl
k

}
19: end for
20: WP ←W − P
21: end while
22: W ← f inetune(WP,D)
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In the network structure, the processing of special structures, such as dense block,
residual block and inverted residual block, also has a greater impact on the final compres-
sion performance. In these structures, we process in blocks and perform pruning on the
basis of satisfying the original relative relationship. For example, in a residual block, the
number of input channels and output channels of each block is the same, and there are
also constraints on the number of three convolutional layers in the block. According to
previous work [9], the 3 × 3 convolution kernel in the residual block has the same number
of input and output channels, that is, the output channels of the previous layer and the
input channels of the last layer are the same, as shown in Figure 3.
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4. Experiments
4.1. Experimental Settings

We evaluate the effectiveness of our algorithm on CIFAR-10, CIFAR-100 [58] and
ILSVRC-2012 [1] datasets using representative CNN architectures VGGNet [8] and
ResNet [9]. CIFAR10 contains 50,000 training images and 10,000 testing images (size
32 × 32), which are categorized into 10 different classes. CIFAR100 is similar to CIFAR-10
but has 100 classes. ImageNet contains 1.28 million training images and 50 k validation
images of 1000 classes. VGGNet and ResNet represent two typical network structures with
single branch and multiple branches, respectively. All experiments are implemented on
four NVIDIA TITAN Xp GPUs using PyTorch.

We measure the complexity of the network using floating point operations (FLOPs)
required for forward propagation. The computational cost of one convolutional layer is:

FLOPs = HW
(

Cin K2 + 1
)

Cout

Params =
(

Cin K2 + 1
)

Cout (16)

where H and W are the height and width of the input feature map of the layer, respectively,
and Cin and Cout are the number of input channels and output channels. In this paper, we
use the drop rate of FLOPs to evaluate the compression performance of each algorithm,
that is, the smaller the accuracy drop of the compressed network model under the same
compression ratio, the better the algorithm performance:

rateFLOPs = 1−
FLOPsoriginal

FLOPscompressed

rateparams = 1−
Paramsoriginal

Paramscompressed
(17)
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4.2. Results on CIFAR-10/100 Datasets

We evaluate the effectiveness of the proposed framework using VGG16 [8] and ResNet-
32/56/110 [9] on CIFAR10 and CIFAR100 datasets [58] and compare with existing al-
gorithms, such as L1 [18], Molchanov et al. [21], SFP [59], FPGM [23], Hrank [24] and
SRR-GR [60]. All the networks are trained using SGD with Nesterov momentum [61] of 0.9,
a weight decay parameter of 10−4 and an initial learning rate of 0.1. The learning rate is
set to 0.001 when updating parameters or fine-tuning. For VGG16, the baseline network is
trained for 300 epochs with a batch size of 256. For ResNet, the baseline network is trained
for 200 epochs with a batch size of 256.

It can be seen from Table 1 that our proposed pruning framework achieves less ac-
curacy loss with higher computational compression using VGG16 on the CIFAR10 and
CIFAR100 datasets. We find effective channels in the network and reduce the false deletion
of channels to achieve better performance than other algorithms. Comparing the results on
the CIFAR10 and CIFAR100 datasets, the same network has different redundancy on differ-
ent datasets, as shown in Figure 4. Due to the large redundancy of VGG16 on the CIFAR10
dataset, our performance differs little from other algorithms when the compression ratio
is small. However, when the compression ratio becomes larger, the performance of each
algorithm is significantly different. For example, when the compression ratio reaches 90%
on CIFAR10, the performance of our algorithm and Hrank is quite different, that is, we
identify redundant channels more effectively. However, since VGG16 has less redundancy
on CIFAR100, pruning is more difficult. When the pruning rate is approximately 50%,
the network performance loss after pruning is obvious; however, we still maintain good
performance at larger compression ratios.

Table 1. Comparison of Pruned VGG16 on CIFAR10/100 Datasets.

Model/Data Method
Baseline

Top-1 Acc
(%)

Pruned
Top-1 Acc

(%)

Top-1(↓)
Acc (%)

FLOPs
(↓) (%)

Params
(↓) (%)

VGG16/CIFAR10

L1 93.58 93.31 0.27 34.20 64.00
FPGM 93.58 93.23 0.34 34.20 64.00
Ours 93.92 93.70 0.22 40.98 42.46

Taylor 93.92 91.24 2.78 78.03 84.56
Hrank 93.96 91.23 2.73 76.50 92.00
Ours 93.92 92.49 1.43 87.49 91.20

VGG16/CIFAR100

L1 73.45 71.21 2.24 50.44 50.23
Taylor 73.45 70.34 2.36 51.48 59.89
FPGM 73.45 71.39 2.06 - 48.93
Ours 73.45 71.91 1.54 54.11 62.49
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The results of ResNet with different depths on the CIFAR10 and CIFAR100 datasets
are shown in Table 2. Pruning is more challenging due to the residual structure in ResNet.
In addition to the influence of redundant judgment criteria, the processing of residual
structures also affects the pruning performance of ResNet. As can be seen from the table,
we reduce the accuracy loss while reaching the same or higher compression ratio in ResNet
of different depths. Due to the overfitting of the network on the CIFAR10 dataset, the
accuracy of pruned ResNets of different depths does not decrease but increases after
compression. For example, our framework compresses 60.1% of the FLOPs on the ResNet-
56, but the accuracy increased by 0.54%. The uncompressed ResNet performs generally
on the CIFAR100 dataset, our algorithm still maintains the original performance after
compressing half of the parameters. However, interestingly, the redundancy of ResNet on
the CIFAR100 dataset does not increase with network depth, for example, ResNet-110 still
has a larger accuracy loss than ResNet-56 with less pruning rate.

Table 2. Comparison of Pruned ResNet on CIFAR10/CIFAR100 Datasets.

Model/Data Method
Baseline

Top-1 Acc
(%)

Pruned
Top-1 Acc

(%)

Top-1 (↓)
Acc (%)

FLOPs (↓)
(%)

ResNet-32/CIFAR10

L1 91.82 80.01 11.81 43.76
SFP 91.33 91.60 +0.27 53.16

FPGM 91.33 91.90 +0.57 53.16
Ours 91.82 92.11 +0.29 55.36

ResNet-56/CIFAR10

L1 93.04 91.31 1.75 27.60
SFP 93.59 92.26 1.33 52.60

FPGM 93.59 92.89 0.70 52.60
HRank 93.26 93.17 0.09 50.00
SRR-GR 93.38 93.75 +0.37 53.80

Ours 92.55 93.09 +0.54 60.10

ResNet-110/CIFAR10

L1 93.53 92.94 0.61 38.60
SFP 93.68 93.38 0.30 40.80

FPGM 93.68 93.73 +0.05 52.30
Hrank 93.50 92.65 0.85 68.60
Ours 93.60 93.17 0.43 70.59

ResNet-32/CIFAR100

L1 66.48 58.11 8.37 43.76
SFP 66.48 64.27 2.21 53.16

FPGM 66.48 66.64 0.16 53.16
Ours 66.48 66.87 +0.39 50.51

ResNet-56/CIFAR100

SFP 69.08 68.03 1.05 63.16
FPGM 69.08 67.75 1.33 63.16

PGMPF 72.92 70.21 2.71 52.6
Ours 69.08 68.57 0.51 63.48

ResNet-110/CIFAR100 Ours 71.26 70.28 0.98 57.73

4.3. Results on ILSVRC-2012

In the experiments, we use ResNet-18/34/50 to demonstrate the proposed pruning
performance on a large-scale dataset, ILSVRC-2012. All the baseline networks are obtained
by training 100 epochs with a batch size of 256. We follow the same parameter settings
as [20,60]. We compare the proposed method with ThiNet [34], FPGM [23], MIL [62],
L1 [18], CP [35], SFP [59], Hrank [24], PGMPF [25] and SRR-GR [60]. All the results of the
other methods in the table are directly from their reports in the literature.

The results of ResNet with different depths on ILSVRC-2012 are shown in Table 3. It
can be seen from the table that our framework still has good compression performance
on large datasets. We reduce the accuracy loss at the same computational compression
ratio. Combined with the analysis of the above CIFAR100 dataset, it shows that the
network is more sensitive to compression on larger datasets that are underfitting. When
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the compression ratio increases, the accuracy drops significantly, and the performance of
each algorithm varies significantly. For example, on ResNet-18, when other algorithms
compress less than half of the calculation, the Top-1 accuracy drops by between 2 and 4%,
but ours controls the accuracy loss to within 2%. However, it is common sense that the
deeper the network, the greater the redundancy of the model. Under the same compression
rate, the accuracy of ResNet-50 only drops by 0.35%, and ResNet-18 drops by 1.82%.

Table 3. Comparison of Pruned ResNet on ImageNet.

Model/Data Method
Baseline

Top-1
Acc (%)

Pruned
Top-1

Acc (%)

Top-1
(↓) Acc

(%)

Baseline
Top-5

Acc (%)

Pruned
Top-5

Acc (%)

Top-5
(↓) Acc

(%)

FLOPs
(↓) (%)

ResNet-18

MIL 69.98 66.33 3.65 86.94 89.24 2.30 34.6
SFP 70.28 67.10 3.18 89.63 87.78 1.85 41.8

FPGM 70.28 67.81 2.47 89.63 88.11 1.52 41.8
PGMPF 70.23 66.67 3.56 89.51 87.36 2.15 53.5

Ours 70.48 68.66 1.82 89.60 88.44 1.16 53.8

ResNet-34

MIL 73.42 72.99 0.43 91.36 91.19 0.17 24.8
L1 73.23 72.17 1.06 - - - 24.2

SFP 73.92 71.83 2.09 91.62 90.33 1.29 41.1
FPGM 73.92 72.11 1.81 91.62 90.69 0.93 41.1

PGMPF 73.27 70.64 2.63 91.43 89.87 1.56 52.7
Ours 73.90 72.55 1.35 91.59 90.79 0.80 52.1

ResNet-50

ThiNet 75.30 74.03 1.27 92.20 92.11 0.09 36.79
SFP 76.15 74.61 1.54 92.87 92.06 0.81 41.8

FPGM 76.15 75.03 1.12 92.87 92.40 0.47 42.2
HRank 76.15 74.98 1.17 92.87 92.33 0.54 43.76
SRR-GR 76.13 75.76 0.37 92.86 92.60 0.19 44.10
PGMPF 76.01 75.11 0.90 92.93 92.41 0.52 53.5

Ours 75.82 72.47 0.35 92.95 92.68 0.27 53.1

5. Conclusions

Aiming at the problems of ignoring edge features and manually specifying the pruning
rate in current importance-based model pruning algorithms, this paper proposes a new
model pruning framework based on similarity clustering. We reconsider the redundancy
of neural network models from the perspective of similarity and find similar sets of fil-
ters through clustering and then propose a criterion for determining filter redundancy
in similar sets. In order to solve the problem of a long compression period caused by
excessive fine-tuning, we propose a corresponding iterative pruning scheme. Extensive
experiments demonstrate the effectiveness of our proposed compression framework, while
we cluster filters into multidimensional spaces and reconsider filter redundancy from a
similar perspective, without specifying pruning rate. However, multi-dimensional values
for clustering are still an unsolved problem. In the next step, we will combine this research
with reinforcement learning and continue to mine redundant parameters in the network.
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