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Abstract: When faced with a quantum-solving problem for partial differential equations, people
usually transform such problems into Hamiltonian simulation problems or quantum-solving prob-
lems for linear equation systems. In this paper, we propose a third approach to solving partial
differential equations that differs from the two approaches. By using the duality quantum algorithm,
we construct a quantum-solving algorithm for solving the first-order wave equation, which represents
a typical class of partial differential equations. Numerical results of the quantum circuit have high
precision consistency with the theoretical d’Alembert solution. Then the routine is applied to the
wave equation with either a dissipation or dispersion term. As shown by complexity analysis for
all these cases of the wave equation, our algorithm has a quadratic acceleration for each iteration
compared to the classical algorithm.

Keywords: quantum algorithm; quantum computation; quantum information

1. Introduction

Most scientific problems can be solved by studying the laws governing the evolution of
physical quantities in space and time. Therefore, partial differential equations undoubtedly
play an extremely important role in the field of natural sciences. However, the problem of
solving partial differential equations is extremely difficult. While if quantum algorithms
are introduced and the problems of partial differential equations are solved on a quantum
computer, it can achieve accelerated characteristics compared to classical algorithms.

The usual quantum algorithm for solving partial differential equations proceeds as
follows. First, discretize the space so that the function f (x, t) becomes a vector f(t) and map
its normalized components to the quantum state components, i.e., |x(t)〉 = ∑i f ′i (t)|xi〉,
where f ′i (t) is the i-th component of the vector f(t) after normalization. Next, the vectors
encoded onto the quantum states are mapped onto a fixed model. Most quantum algorithms
for solving partial differential equations rely on Hamiltonian simulations [1–4] or a linear
equation system-solving algorithm (HHL algorithm) [5].

In the following, the main ideas of the above two solution methods will be briefly
reviewed with examples. The solution method based on Hamiltonian simulation [6–8] that
maps partial differential equations to the Schrödinger equation will be introduced first.
This method maps equations with a similar structure to the Schrödinger equation to the
Schrödinger equation and transforms the equation solving problem into a Hamiltonian
simulation problem. For example, solving the Black–Scholes equation [9]

∂ f
∂t

= a f + b
∂ f
∂x
− c

∂2 f
∂x2 . (1)
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The equation can be written in the following form

∂ f
∂t

= A f . (2)

It is obvious that the equation is formally similar to the Schrödinger equation. Thus the A
operator can be mapped to the Hamiltonian in Schrödinger’s equation in such a way that
A = ibp̂ +

(
aI + cp̂2), p̂ = −i∂x. One can split A into Hermitian and anti-Hermitian parts,

i.e., A = AH + AaH , where

AaH = ibp̂, AH = aI + cp̂2. (3)

The vector f(t), obtained by discretizing the function, is encoded onto the state vector
|x(ε)〉, using the Trotter product formula

|x(ε)〉 = eAε|x0〉 ≈ eAHεeAaHε|x0〉. (4)

The problem of solving the partial differential equation is transformed into the problem of
a Hamiltonian simulation. The process of simulating the action of the above Hamiltonian,
i.e., the quantum state |x0〉, evolves under the designed Hamiltonian to obtain the final state.
The solution of the original equation at different moments can be obtained by measuring
the final state for different iterations.

In fact, it is efficient to use a Hamiltonian simulation to construct quantum algorithms
for solving partial differential equations, which can solve first-order partial differential
equations (requiring that the Hermitian and anti-Hermitian parts of the matrix A decompo-
sition commute with each other) and second-order partial differential equations such as the
wave equation. However, not all partial differential equations have the algebraic structure
of Schrödinger’s equation. The quantum algorithm [7,10–12] for solving partial differential
equations is presented below using the HHL algorithm. For the partial differential equation
with the following structure after spatial discretization

ẋ = Ax + b. (5)

Using Euler’s method to discretize time gives

x
(
tj+1

)
− x
(
tj
)

h
≈ Ax

(
tj
)
+ b. (6)

Let xj = x
(
tj
)
, the partial differential equation can be transformed into the following linear

equation system; as an example, only the result of j ≤ 2 is given here, I 0 0
−(I + Ah) I 0

0 −(I + Ah) I

 x0
x1
x2

 =

 xin
bh
bh

. (7)

This system of equations is then solved using the HHL algorithm to obtain the following
quantum states

|x〉 =
Nt

∑
j=0

∣∣tj
〉∣∣xj

〉
. (8)

The quantum state contains the solution of the partial differential equation t0 to tj mo-
ments. Therefore, are there any other efficient algorithms for solving partial differential
equations besides the above two methods? In this article, a third method different from the
above two, the duality quantum algorithm [13–16] with amplitude amplification [17–20],
is used to construct a quantum algorithm for solving the partial differential equation.
The duality quantum algorithm also brings a speed-up effect compared to the classical
algorithm [21–23].
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This paper is organized as follows. First of all, the duality quantum algorithm will be
used to solve the first-order wave equation with the d’Alembert solution. In the second and
third parts of this paper, we will use the duality quantum algorithm to construct a solution
algorithm to the wave equations with dissipation and dispersion terms. In these three
parts of the paper, for these three problems, we use numerical simulations and present the
results of the quantum algorithm solutions in the form of pictures for comparison with the
theoretical values. At the end of this paper, we will analyze the complexity of our algorithm
for solving the wave equations.

2. Duality Quantum Algorithm for Solving the First-Order Wave Equation

When talking about the wave equation, people must first think of the second-order
linear hyperbolic type equation

∂2u
∂t2 + k2 ∂2u

∂x2 = 0. (9)

The general solution can be written as u(x, t) = f (x− kt) + g(x + kt), where f , g are two
arbitrary functions. f (x− kt) and g(x + kt) represent waves passing along the x-axis with
constant velocity to the right and to the left. Since Equation (9) is a linear homogeneous
equations, its solutions are superposed. Therefore, f and g are two traveling waves that
propagate independently without interfering with each other. If one focuses on only one of
these two waves, Equation (9) degenerates to a linear hyperbolic equation of the first-order

∂u
∂t

+ k
∂u
∂x

= 0. (10)

In this paper, we discretize the continuous independent variable x into N points, i.e.,
x = (x0, x1, · · · , xN−1). Then the spatial part of the function u

(
x, tj

)
at the moment tj is

discretized into the vector

u
(
x, tj

)
=
(
u
(
x0, tj

)
, u
(

x1, tj
)
, · · · , u

(
xN−1, tj

))
, (11)

encode it onto the computational basis and define the quantum state |ψ〉j as

|ψ〉j =
∑N−1

i=0 u
(

xi, tj
)
|i〉√

∑N−1
i=0 u2

(
xi, tj

) . (12)

In the following, we will give the quantum algorithm for solving Equation (10) based on
the non-unitary evolution of the quantum system. First, the Taylor expansion for each
order partial differential term of Equation (10) is

∂u
∂t

=
u(x, t + τ)− u(x, t)

τ
+ o(τ),

∂u
∂x

=
u(x + h, t)− u(x, t)

h
+ o(h).

(13)

Pluging Equation (13) into Equation (10), the difference equation form of Equation (10) is
obtained as

u
(
xi, tj+1

)
− u

(
xi, tj

)
τ

+ k
u
(
xi+1, tj

)
− u

(
xi, tj

)
h

= 0. (14)

Its local truncation error is o(τ + h). When τ, h → 0, Equation (14) approximates the
original Equation (10). Organizing Equation (14) leads to

u
(
xi, tj+1

)
=

τk
[
u
(
xi, tj

)
− u

(
xi+1, tj

)]
h

+ u
(
xi, tj

)
(15)
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Let ∆ = τ
h , then the following iterative relation can be obtained from Equation (15).

u
(
xi, tj+1

)
= (1 + ∆k)u

(
xi, tj

)
− ∆ku

(
xi+1, tj

)
(16)

Taking the periodic boundary condition that u(xN , t) = (x0, t), the equation describing the
whole system can be written in the following form


u
(

x0, tj+1
)

u
(
x1, tj+1

)
. . .

u
(

xN−1, tj+1
)
 = A


u
(
x0, tj

)
u
(
x1, tj

)
. . .

u
(
xN−1, tj

)

 (17)

where

A =


1 + ∆k −∆k 0 . . . 0

0 1 + ∆k −∆k 0 . . . 0
. . .

−∆k 0 . . . 0 1 + ∆k

 (18)

Then the state |ψ〉j+1 of the system at the next moment, i.e., the moment tj+1, can be
expressed as A|ψ〉j. It is obvious that the A-matrix is not an unitary matrix, so there is no
way to achieve it directly by the product of quantum logic gates. Instead, the A-matrix
has to be split into linear combinations of the unitary operators by the duality model of
quantum computation, i.e., A = (1 + ∆k)A0 − ∆kA1, where A0 is a unitary matrix of order
N and

A1 =


0 1 0 0
0 0 1 . . . 0
· · ·

0 0 0 1
1 0 0 0 0


N⊗N

. (19)

By introducing an auxiliary qubit, the operation of the linear combination of unitary
operators can be realized and thus equivalently the non-unitary evolution, i.e., A|ψ〉j. Its
quantum circuit is shown in Figure 1.

… …

Figure 1. Quantum circuit for solving the first-order wave equation.

Where the matrix A1 can be decomposed into Cn(X) gates as well as X gates with
O(log2 N). The specific quantum circuit that implements the A1 operation is shown in
Figure 2.

… …

Figure 2. Quantum circuit for realization A1 operation.
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According to Lemma 5.5 and Lemma 7.1 in article [24], a total of 4N − 5 log2 N − 4
CNOT gates and single-qubit rotating gates are needed if the A1 operation continues to be
disassembled. The following will explain the duality quantum algorithm for the solution of
the first-order wave equation according to Figure 1, where first the auxiliary qubit passes
through the W0 gate, which has the following effect

W0 : |0〉 → (1 + ∆k)|0〉 − ∆k|1〉√
(1 + ∆k)2 + (∆k)2

. (20)

Next, after two controlled quantum gates |0〉〈0| ⊗ A0 and |1〉〈1| ⊗ A1, the quantum state
evolves as

(1 + ∆k)|0〉A0|ψ〉j − ∆k|1〉A1|ψ〉j√
(1 + ∆k)2 + (∆k)2

. (21)

Then the quantum state after the Hadamard transformation is

1√
2
|0〉

 (1 + ∆k)A0|ψ〉j − ∆kA1|ψ〉j√
(1 + ∆k)2 + (∆k)2

+
1√
2
|1〉

 (1 + ∆k)A0|ψ〉j + ∆kA1|ψ〉j√
(1 + ∆k)2 + (∆k)2

. (22)

Finally, after the measurement to select the state of the auxiliary qubit as 0, the state of the
working qubits at this time is |ψ〉j+1, that is

(1 + ∆k)A0|ψ〉j − ∆kA1|ψ〉j√
(1 + ∆k)2 + (∆k)2

. (23)

Define the coefficients Cj as√√√√N−1

∑
i=0

u2
(
xi, tj

)[
(1 + ∆k)2 + (∆k)2

]
. (24)

The amplitude under the computational basis of the quantum state |ψ〉j+1 is enlarged by a
factor of Cj to obtain the column vector u(xi, tj+1), which is the state of the system at the
moment tj+1. The analysis yields that the computational complexity of this algorithm is
O(N) per iteration, while the complexity of the classical algorithm is O

(
N2). The specific

calculation of the complexity is presented at the end of this paper.
The following equation will be used as an example{

∂u
∂t + 2 ∂u

∂x = 0
u(x, 0) = − sin 2πx + sin 4πx

2 − sin 6πx
3

(25)

to show the duality quantum algorithm for the solution of the first-order wave equation.
First of all, one period of the function, i.e., [0, 1], is chosen, and this interval is discretized
into 32 points, i.e., h = 0.03125 in Equation (15). Thus, the function value of 32 discrete
points can be encoded using 5 qubits. Choose ∆ = 0.1 in Equation (16). Then τ = 0.003125,
which represents the time interval for each iteration of the system evolution. According to
Equation (20), the effect of the action of W0 can be determined as

W0 : |0〉 → 6
√

37
37
|0〉 −

√
37

37
|1〉 (26)

This gives W0 as Ry(−0.33). Thus far, the quantum circuit for each iteration of the solution
to Equation (25) can be given in Figure 3.
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Figure 3. Example of quantum circuit for solving the first-order wave equation, where θ0 = −0.33.

Numerical simulation of the first 10 iterations of this quantum circuit, whose results are
shown in Figure 4. Where the orange curve represents the theoretical value. The blue points
represent the results given by the numerical simulation of the quantum solution algorithm.

Figure 4. Numerical simulation of a quantum solution algorithm for the first-order wave equation.
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3. Duality Quantum Algorithm for the Solution of the Traveling Wave
Dissipation Problem

By adding the dissipation term to Equation (10), the traveling wave equation with
dissipation is obtained as

∂u
∂t

+ k
∂u
∂x
− α

∂2u
∂x2 = 0. (27)

The Taylor expansion for each term of Equation (27) is

∂u
∂t

=
u(x, t + τ)− u(x, t)

τ
+ o(τ),

∂u
∂x

=
u(x + h, t)− u(x, t)

h
+ o(h),

∂2u
∂x2 =

u(x− h, t)− 2u(x, t) + u(x + h, t)
h2 + o

(
h2
)

.

(28)

Differentiating Equation (27) yields

u
(

xi, tj+1
)
− u

(
xi, tj

)
τ

+k
u
(
xi+1, tj

)
− u

(
xi, tj

)
h

−α
u
(
xi−1, tj

)
− 2u

(
xi, tj

)
+ u

(
xi+1, tj

)
h2 = 0.

(29)

The collation leads to

u
(

xi, tj+1
)
=τk

u
(
xi, tj

)
− u

(
xi+1, tj

)
h

+ τα
u
(
xi−1, tj

)
− 2u

(
xi, tj

)
+ u

(
xi+1, tj

)
h2 + u

(
xi, tj

)
.

(30)

Let ∆ = τ
h and ∆1 = α ∆

h , then the following iterative relation can be obtained

u
(

xi, tj+1
)
= ∆1u

(
xi−1, tj

)
+ (k∆− 2∆1 + 1)u

(
xi, tj

)
+ (∆1 − k∆)u

(
xi+1, tj

)
. (31)

Take the periodic boundary condition that u(xN , t) = u(x0, t). Then, the equation describ-
ing the whole system can be written in the following form

u
(

x0, tj+1
)

u
(

x1, tj+1
)

. . .
u
(

xN−1, tj+1
)
 = A


u
(
x0, tj

)
u
(
x1, tj

)
. . .

u
(
xN−1, tj

)
. (32)

In Equation (32)

A =


a b 0 . . . 0 c
c a b 0 . . . 0

. . .
0 . . . 0 c a b
b 0 . . . 0 c a

, (33)

in which
a = k∆− 2∆1 + 1,

b = ∆1 − k∆,

c = ∆1.

(34)

Following the encoding method of Equation (12), then the state |ψ〉j+1 of the system at
the next moment, i.e., the moment tj+1, can be expressed as A|ψ〉j. The matrix A =

(k∆− 2∆1 + 1)A0 + (∆1 − k∆)A1 + ∆1 A2 , where A2 = A†
1. Thus the operation of a linear
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combination of unitary operators can be equivalently implemented by introducing two
auxiliary qubits, whose quantum circuit is shown in Figure 5.

… …
Figure 5. Quantum circuit for solving the dissipation problem of the first-order wave equation.

In the following, the duality quantum algorithm for solving the dissipation problem
of the first-order wave equation is explained in conjunction with the quantum circuit
(Figure 5), where the first the auxiliary qubits pass through the W1 gate, which has the
following effect

W1 : |00〉 → (k∆− 2∆1 + 1)|00〉+ (∆1 − k∆)|01〉+ ∆1|10〉√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1

. (35)

Next, after three controlled quantum gates |00〉〈00| ⊗ A0, |01〉〈01| ⊗ A1 and |10〉〈10| ⊗ A2
the quantum state evolves as

(k∆− 2∆1 + 1)|00〉A0|ψ〉j + (∆1 − k∆)|01〉A1|ψ〉j + ∆1|10〉A2|ψ〉j√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1

. (36)

Then, the quantum state evolves after the Hadamard transformation of two auxiliary
qubits as

1
2
|00〉

 (k∆− 2∆1 + 1)A0|ψ〉j + (∆1 − k∆)A1|ψ〉j + ∆1 A2|ψ〉j√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1


+

1
2
|01〉

 (k∆− 2∆1 + 1)A0|ψ〉j − (∆1 − k∆)A1|ψ〉j + ∆1 A2|ψ〉j√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1


+

1
2
|10〉

 (k∆− 2∆1 + 1)A0|ψ〉j + (∆1 − k∆)A1|ψ〉j − ∆1 A2|ψ〉j√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1


+

1
2
|11〉

 (k∆− 2∆1 + 1)A0|ψ〉j − (∆1 − k∆)A1|ψ〉j − ∆1 A2|ψ〉j√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1

.

(37)

Finally, the auxiliary qubits are measured to select the state of the auxiliary qubit as 00;
then the state of the working qubit at this time is |ψ〉j+1, that is

(k∆− 2∆1 + 1)A0|ψ〉j + (∆1 − k∆)A1|ψ〉j + ∆1 A2|ψ〉j√
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1

. (38)

Define the coefficient Cj as√√√√N−1

∑
i=0

u2
(
xi, tj

)[
(k∆− 2∆1 + 1)2 + (∆1 − k∆)2 + ∆2

1

]
. (39)
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The column vector u(xi, tj+1), which is the state of the system at tj+1 moments, is obtained
by amplifying the amplitude under the computational basis of the quantum state |ψ〉j+1 by
a factor of Cj.

According to Lemma 5.5 and Lemma 7.1 in article [24] and combined with Figure 5,
the computational complexity of this algorithm per iteration is O(N), while the complexity
of the classical algorithm is O

(
N2). Thus, the present algorithm has the property of

speeding up in each iteration compared to the classical algorithm. The specific calculation
of the complexity is presented at the end of this paper.

The following equation will be used as an example{
∂u
∂t + 2 ∂u

∂x − 0.1 ∂2u
∂x2 = 0

u(x, 0) = − sin 2πx + sin 4πx
2 − sin 6πx

3
(40)

to show the duality quantum algorithm for the solution of the dissipation problem of the
first-order wave equation. First, one period of the function is chosen, i.e., [0, 1], and this
interval is discretized into 32 points, i.e., h = 0.03125 in Equation (28). Thus, the function
value of 32 discrete points can be encoded using 5 qubits. Choose ∆ = 0.2 and ∆1 = 1.28
in Equation (31). Then τ = 0.00625, which represents the time interval for each iteration
of system evolution. According to Equation (35), the effect of the action of W1 can be
determined as

W1 : |00〉 → −
√

29
9
|00〉+ 22

√
29

261
|01〉+ 32

√
29

261
|10〉. (41)

It is constructed as shown in Figure A1 with Equations (A1) and (A2). The revolving gate
Rn(θ) of the first auxiliary qubit is constructed according to Equation (A1), such that

Rn(θ)|00〉 →
(

5
√

1537
261

|0〉+ 32
√

29
261

|1〉
)
|0〉. (42)

It is obtained that Rn(θ) is Ry(1.442). According to Equation (A3), the controlled operator
U1 is to achieve the following action

U1|0〉 →
29
√

53
265

|0〉+ 22
√

53
265

|1〉. (43)

The controlled operator U1 can be obtained as Ry(1.298). At this point, we can give the
quantum circuit for each iteration of the solution Equation (40), as shown in Figure 6

Figure 6. Example of a quantum circuit for solving the dissipation problem of the first-order wave
equation, where θ1 = 1.442, θ2 = 1.298.

Numerical simulation of the first 10 iterations of this quantum circuit results in Figure 7.
The orange curve represents the resolved theoretical value. The blue points represent the
values solved by the numerical simulation of the quantum algorithm.
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Figure 7. Numerical simulation of the quantum solution algorithm for the traveling wave dissipation
problem of the first-order wave equation.
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4. Duality Quantum Algorithm for Solving Traveling Wave Dispersion Problems

By adding the dispersion term to Equation (10), the traveling wave equation with
dispersion is obtained as

∂u
∂t

+ k
∂u
∂x

+ β
∂3u
∂x3 = 0. (44)

Taylor expansion of the terms of Equation (44)

∂u
∂t

=
u(x, t + τ)− u(x, t)

τ
+ o(τ),

∂u
∂x

=
u(x + h, t)− u(x, t)

h
+ o(h),

∂3u
∂x3 =

−u(x− 2h, t) + 3u(x− h, t)− 3u(x, t) + u(x + h, t)
h3 + o

(
h3
)

.

(45)

Differentiating Equation (44) yields

u
(

xi, tj+1
)
− u

(
xi, tj

)
τ

+ k
u
(
xi+1, tj

)
− u

(
xi, tj

)
h

+ β
−u
(
xi−2, tj

)
+ 3u

(
xi−1, tj

)
− 3u

(
xi, tj

)
+ u

(
xi+1, tj

)
h3 = 0.

(46)

Let ∆ = τ
h , ∆2 = β ∆

h2 , and the following iterative relation can be obtained

u
(

xi, tj+1
)
= ∆2u

(
xi−2, tj

)
−3∆2u

(
xi−1, tj

)
+ (k∆ + 3∆2 + 1)u

(
xi, tj

)
− (k∆ + ∆2)u

(
xi+1, tj

)
.

(47)

Take the periodic boundary condition that u(xN , t) = u(x0, t). Then the equation describing
the whole system can be written in the following form

u
(

x0, tj+1
)

u
(

x1, tj+1
)

. . .
u
(

xN−1, tj+1
)
 = A


u
(
x0, tj

)
u
(
x1, tj

)
. . .

u
(
xN−1, tj

)
, (48)

where

A =



a b 0 . . . . . . 0 d c
c a b 0 . . . . . . 0 d
d c a b 0 . . . . . . 0
0 d c a b 0 . . . . . . 0

. . . . . . . . .
0 . . . . . . 0 d c a b 0
0 . . . . . . 0 d c a b
b 0 . . . . . . 0 d c a


, (49)

in which
a = k∆ + 3∆2 + 1,

b = −(k∆ + ∆2),

c = −3∆2,

d = ∆2.

(50)
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It can be seen that A = (k∆ + 3∆2 + 1)A0 − (k∆ + ∆2)A1 − 3∆2 A2 + ∆2 A3, where

A3 =



0 0 0 0 1 0
0 0 0 0 0 1
1 0 . . . 0 0 0 0
0 1 0 0 0 0

. . .
. . . 1 0 0 0 0 0

0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


N⊗N

. (51)

Therefore, the operation of the linear combination of unitary operators can be equivalently
implemented by introducing two auxiliary qubits, whose quantum circuit is shown in
Figure 8.

… …

Figure 8. Quantum circuit for solving the dispersion problem of the first-order wave equation.

It is not difficult to find A3 = A2
2, and the following will be combined with the

quantum circuit (Figure 8) to explain the duality quantum algorithm for the solution of
the dispersion problem of the first-order wave equation. First, the auxiliary qubits pass
through the W2 gate, the effect of which is as follows

W2 : |00〉 → (k∆ + 3∆2 + 1)|00〉+ (k∆ + ∆2)|01〉 − 3∆2|10〉+ ∆2|11〉√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2

. (52)

Next, after four controlled quantum gates, |00〉〈00| ⊗ A0, |01〉〈01| ⊗ A1, |10〉〈10| ⊗ A2 and
|11〉〈11| ⊗ A3, the quantum state evolves as

(k∆ + 3∆2 + 1)|00〉A0|ψ〉j + (k∆ + ∆2)|01〉A1|ψ〉j − 3∆2|10〉A2|ψ〉j + ∆2|11〉A3|ψ〉j√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2

. (53)

Then, the Hadamard transform is performed for the two auxiliary qubits, and the quantum
state evolves as

1
2
|00〉

 (k∆ + 3∆2 + 1)A0|ψ〉j + (k∆ + ∆2)A1|ψ〉j − 3∆2 A2|ψ〉j + ∆2 A3|ψ〉j√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2


+

1
2
|01〉

 (k∆ + 3∆2 + 1)A0|ψ〉j − (k∆ + ∆2)A1|ψ〉j − 3∆2 A2|ψ〉j − ∆2 A3|ψ〉j√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2


+

1
2
|10〉

 (k∆ + 3∆2 + 1)A0|ψ〉j + (k∆ + ∆2)A1|ψ〉j + 3∆2 A2|ψ〉j − ∆2 A3|ψ〉j√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2


+

1
2
|11〉

 (k∆ + 3∆2 + 1)A0|ψ〉j − (k∆ + ∆2)A1|ψ〉j + 3∆2 A2|ψ〉j + ∆2 A3|ψ〉j√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2

.

(54)
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Finally, the state of the auxiliary qubit is selected as 00 after measurement, then the state of
the working qubits at this time is |ψ〉j+1, that is

(k∆ + 3∆2 + 1)A0|ψ〉j + (k∆ + ∆2)A1|ψ〉j − 3∆2 A2|ψ〉j + ∆2 A3|ψ〉j√
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2

. (55)

Define the coefficient Cj as√√√√N−1

∑
i=0

u2
(
xi, tj

)[
(k∆ + 3∆2 + 1)2 + (k∆ + ∆2)

2 + 10∆2
2

]
. (56)

The amplitude under the computational basis of the quantum state |ψ〉j+1 is enlarged Cj
times to obtain the column vector u

(
xi, tj+1

)
, which is the state of the system at the moment

tj+1. According to Lemma 5.5 and Lemma 7.1 in article [24], and combined with the analysis
of Figure 8, we can obtain that the computational complexity of this algorithm for each
iteration is O(N), while the complexity of the classical algorithm is O

(
N2). The specific

calculation of the complexity is presented at the end of this paper.
The following equation will be used as an example{

∂u
∂t + 2 ∂u

∂x + 0.01 ∂3u
∂x3 = 0

u(x, 0) = − sin 2πx + sin 4πx
2 − sin 6πx

3
(57)

to show the duality quantum algorithm for the solution of the dispersion problem of the
first-order wave equation. Firstly, one period of the function is chosen, i.e., [0, 1], and this
interval is discretized into 32 points, i.e., h = 0.03125 in Equation (47). Thus, the function
value of 32 discrete points can be encoded using 5 qubits. Choose ∆ = 0.05 and ∆2 = 0.512
in Equation (47). Then τ = 0.0015625, which represents the time interval for each iteration
of the system evolution. According to Equation (52), the effect of the action of W2 can be
determined as

W2 : |00〉 → 0.8359|00〉+ 0.1941|01〉 − 0.4871|10〉+ 0.1624|11〉. (58)

It is constructed as shown in Figure A1 with Equations (A1) and (A2). Construct the
revolving gate Rn(θ) of the first auxiliary qubit according to Equation (A1), such that

Rn(θ)|00〉 → (0.8581|0〉+ 0.5135|1〉)|0〉. (59)

It is obtained that Rn(θ) is Ry(1.078).
According to Equation (A3), two controlled operators U1, U2 are to be realized

as follows
U1|0〉 → 0.9741|0〉+ 0.2262|1〉,
U2|0〉 → −0.9486|0〉+ 0.3163|1〉.

(60)

The controlled operator U1 can be obtained as Ry(0.4563) and U2 as Ry(5.639). The quan-
tum circuit for each iteration of the solution Equation (57) so far is given in Figure 9.

Figure 9. Example of a quantum circuit for solving the dispersion problem of the first-order wave.
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And the specific quantum circuit of the R-operation in Figure 9 is shown in Figure 10.

Figure 10. The specific quantum circuit of the R-operation, where θ3 = 1.078, θ4 = 0.4563, θ5 = 5.639.

The result of numerically simulating the first 10 iterations of this quantum circuit is
shown in Figure 11. The orange curve represents the theoretical value. The blue points
represent the values solved by the numerical simulation quantum algorithm.

Figure 11. Numerical simulation of a quantum solution algorithm for the dispersion problem of the
first-order wave equation.
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5. Discussion

For a quantum algorithm that solves a d-dimensional partial differential equation
(meaning that there are d spatial variables) with a spatial discretization number of N,
the output is an approximation C( f ) of the function f with an error ε. In fact, for the
problem of quantum algorithms solving partial differential equations, the number of
discrete points N and the error ε are interrelated [12,25]. The correlations are as follows

N = O
(

poly
(

1
εd

))
. (61)

For the preparation of the initial state, its complexity is O(poly log(N)). The complexity
of each iteration of the algorithm in this paper will be given below. First, according to
Lemma 5.5 and Lemma 7.1 in article [24], it can be obtained that the controlled gate Cn−1(U)
for n qubits having n− 1 control qubits can be split into CNOT gates and single-qubit gates
for a total of 2n+1 − 5, where n ≥ 3. For the quantum circuit in Figure 1, the total number
of elementary quantum gates required is

3 + O
(

C2(U)
)
+ · · ·+ O(Cn(U))

= 2n+3 − 5n− 8 = 8N − 5 log2 N − 8 ' O(N)
(62)

For the quantum circuit in Figure 5, the total number of elementary quantum gates
required is

8 + 2
[
O
(

C2(U)
)
+ · · ·+ O

(
Cn+1(U)

)]
= 2n+5 − 10n− 24 = 32N − 10 log2 N − 24 ' O(N)

(63)

For the quantum circuit in Figure 8, the total number of elementary quantum gates
required is

8 + 4
[
O
(

C2(U)
)
+ · · ·+ O

(
Cn+1(U)

)]
= 2n+6 − 20n− 56 = 64N − 20 log2 N − 56 ' O(N)

(64)

It can be found that the quantum-solving algorithm given in this paper has a quadratic
acceleration for each iteration compared to the classical algorithm. However, the state of
the auxiliary qubits needs to be selected after measurement at the end of each iteration.
This result is probabilistic, and the overall success rate of the algorithm decreases expo-
nentially as the number of iterations increases if the selection is made after each iteration.
Therefore, ensuring an overall higher success rate requires the use of the quantum search
algorithm [17–20] to amplify the amplitude of the target state before measurement. Under
ideal conditions of the device, it is proved that the Grover–Long algorithm can achieve a
100% success rate in all cases [17,26,27]. Thus, using the Grover–Long algorithm under
ideal conditions to amplify the amplitude, it is possible to obtain a 100% success rate
every time. If the complexity of each iteration step is considered synthetically, then the
complexity of each iteration step is O(N) + O(

√
M), where M is the dimension of the

auxiliary qubits space.
In the future, our quantum algorithms are expected to be combined with finite element

methods to solve complex practical problems, such as those related to fluid dynamics [28].
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Appendix A

The quantum circuit for the preparation of two-qubit arbitrary quantum states is as
follows in Figure A1.

Figure A1. Preparation of two-qubit arbitrary quantum states.

First, the rotation operator Rn(θ) is constructed, such that

|00〉 →
(√

c2
0 + c2

1|0〉+
√

c2
2 + c2

3|1〉
)
|0〉. (A1)

In the second step, construct the controlled quantum gates U1 and U2, such that

√
c2

0 + c2
1|0〉

 c0√
c2

0 + c2
1

|0〉+ c1√
c2

0 + c2
1

|1〉


+
√

c2
2 + c2

3|1〉

 c2√
c2

2 + c2
3

|0〉+ c3√
c2

2 + c2
3

|1〉

,

(A2)

where

U1|0〉 →
c0√

c2
0 + c2

1

|0〉+ c1√
c2

0 + c2
1

|1〉,

U2|0〉 →
c2√

c2
2 + c2

3

|0〉+ c3√
c2

2 + c2
3

|1〉.
(A3)
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