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Abstract: The main challenge for constrained many-objective optimization problems (CMaOPs)
is how to achieve a balance between feasible and infeasible solutions. Most of the existing con-
strained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the
maintenance of population convergence and diversity when dealing with conflicting objectives and
constraints. This might lead to the population being stuck at some locally optimal or locally feasible
regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named
DP-NSGA-III, where the two populations exchange information through the offspring. The main
population based on the NSGA-III solves CMaOPs and the auxiliary populations with different
environment selection ignore the constraints. In addition, we designed an ε-constraint handling
method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main
population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series
of benchmark problems. The experimental results show that the proposed evolutionary algorithm is
highly competitive in solving CMaOPs.

Keywords: constrained many-objective optimization; evolutionary algorithm; dual-population;
coevolution; ε-constraint handling

1. Introduction

Constrained multi-objective optimization problems (CMOPs) widely exist in the real
world, such as the design of the water distribution network [1] and the vehicle routing
problem with time windows [2]. In this paper, a dual-population-based NSGA-III with
an auxiliary population that ignores constraints is proposed. The offspring of its auxiliary
population can guide the evolution of the main population.

In the last decade, several new methods have been proposed to solve uncon-
strained multi/many-objective optimization problems, such as a new competitive
mechanism [3], adaptive operator selection [4], and adaptive weight vector genera-
tion strategy [5]. In recent years, CMOPs have attracted increasing research interest
in the field of evolutionary computation. Constrained multi-objective evolutionary
algorithms (CMOEAs), such as PPS [6], ToP [7], and c-DPEA [8], have achieved good
performance on CMOPs. However, CMaOPs involve both complex constraints and high-
dimensional objective spaces, so it is inefficient to solve CMaOPs directly with existing
CMOEAs. Specifically, the difficulties in solving CMaOPs are as follows: first, even
in the unconstrained case, balancing convergence and diversity in a high-dimensional
objective space is difficult to achieve [9]. Although CMOEAs can handle constraints,
they cannot efficiently select excellent solutions in a high-dimensional objective space.
Meanwhile, the algorithm should balance the search between feasible and infeasible
regions. Particularly, some CMaOPs have complex constraints. It is difficult for indi-
viduals to cross multiple disjoint infeasible regions to approach the constraint Pareto
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front (CPF), which leads to poor convergence and diversity of the population [10]. In
addition, most evolutionary algorithms just simply push solutions toward the feasible
boundary, and it is difficult to balance the search between feasible and infeasible re-
gions [11]. This may cause the population to fall into locally optimal or locally feasible
areas, especially when the feasible region is discrete, narrow, or far from the uncon-
strained Pareto front (UPF) [12]. To alleviate the above problems, this article proposes
a dual-population-based constrained many-objective evolutionary algorithm, named
DP-NSGA-III. It includes two collaborative and complementary populations. The main
characteristics of DP-NSGA-III are as follows:

1. To take advantage of the infeasible solution with excellent objectives, we introduce
an auxiliary population, and its environmental selection [13] is different from the
main population, using p-norm to select individuals. Two populations cooperate by
exchanging offspring. Each population can evolve more efficiently using information
from the other population. Specifically, Population1 is the main population, which
finds the CPF by the ε-constraint handling method. Population2 with less convergence
pressure is the auxiliary population, which will eventually converge to UPF due to
the neglected constraints.

2. From the point of view of the problem, neither population solves the original CMaOPs.
Since the ε-constraint boundary replaces the original constraint, Population1 solves
a problem with looser constraints than the original problem and is equivalent to
the original problem at the end of evolution. Population2 solves the unconstrained
problem corresponding to the original problem. This strategy indirectly solves the
original CMaOPs.

3. To make the main population of DP-NSGA-III infeasibility-driven, we design a mono-
tonically decreasing ε-constraint handling function that takes no additional parame-
ters. That is, the ε-bounded boundary is larger in the early period and close to 0 in
the late period. Therefore, this function has a greater impact in the early evolutionary
period. The function aims to involve partially infeasible solutions in the evolution,
balancing convergence and diversity by using excellent infeasible solutions.

The rest of this article is organized as follows: Section 2 briefly introduces the existing
CMOEAs or CMaOEAs. The details of the proposed DP-NSGA-III are described in Section 3.
Sections 4 and 5 present the experimental setup and experimental results, respectively. Finally,
the conclusions and future work are given in Section 6.

2. Related Work

This section presents some representative CMOEAs and CMaOEAs from the perspective
of constraint handling methods. According to the research trend of constraint handling
techniques in evolutionary algorithms in earlier years, early constraint handling techniques
can be broadly categorized into (1) penalty function-based methods [14]; (2) feasibility-oriented
approaches [15]; (3) stochastic ranking [16]; (4) ε-constrained methods [17]; (5) multi-objective
optimization-based approaches [18]; and (6) hybrid methods [19].

The constraint-dominance principle(CDP) [15] was one of the earlier well-known con-
straint handling methods. NSGA-II [15] employs the CDP to compare pairs of solutions.
For two infeasible solutions, the one with less constraint violation is better; the two fea-
sible solutions are still compared by the Pareto dominance. Both C-NSGA-III [20] and
C-MOEA/D [20] are well-known representative algorithms that embed this technique. Fan et
al. [21] proposed an angle-based CDP, which considers the ratio of feasible solutions and the
angular relationship between individuals. Among the above algorithms, NSGA-III is designed
for many-objective optimization problems, so C-NSGA-III can solve some CMaOPs.

In recent years, some evolutionary algorithms based on multiple stages have been
designed to solve CMOPs. PPS [6] divides the search process into two stages: Push and Pull.
The Push phase does not consider constraints, which helps to cross large infeasible areas and
push the population to UPF. In the Pull phase, an improved ε-constraint handling method is
used to pull the population back to the CPF. Liu et al. [7] proposed a phased framework ToP.
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In ToP, the first stage uses a weighted sum to transform the CMOP into an unconstrained
single objective optimization problem to find a promising feasible region. The second stage
uses the existing CMOEA to find the CPF of the original problem. CMOEA-MS [22] is also a
two-stage evolutionary algorithm, which adjusts the fitness evaluation strategies during the
evolutionary process to adaptively balance objective optimization and constraint satisfaction.

In addition, dual-population-based or coevolutionary technique has also been applied
to CMOEAs or CMaOEAs. c-DPEA [8] is a typical dual-population-based evolutionary
algorithm. Population1 uses an adaptive penalty function named saPF to handle infeasible
solutions, and Population2 is oriented to feasibility. At the same time, an adaptive fitness
function called bCAD is designed to better balance the convergence and diversity in the
evolution process. Although c-DPEA can handle CMOPs well, it is inefficient in solving
CMaOPs. C-TAEA [11] is an evolutionary algorithm with two archives. It maintains two col-
laborative archives simultaneously. The convergence-oriented archive (CA) aims to optimize
constraints and objectives to ensure feasibility and convergence, while the diversity-oriented
archive (DA) mainly tends to explore the areas that have not been exploited by the CA
without considering feasibility. It is worth noting that C-TAEA is one of the few evolutionary
algorithms designed for high-dimensional constrained objective spaces.

3. Proposed Algorithm: DP-NSGA-III

This section presents the proposed dual-population-based many-objective evolution-
ary algorithm, named DP-NSGA-III. The procedure of DP-NSGA-III is shown in Figure 1.
DP-NAGS-III is a cooperative evolutionary algorithm that evolves two populations, namely,
Population1 and Population2. The populations in DP-NSGA-III are evolved separately,
only sharing all the offspring in each generation, where Population1 uses the ε-constraint
handling method and Population2 ignores the constraint. Population2 can provide so-
lutions for Population1 that violate the constraint but have excellent objective values to
participate in evolution. The final output population of the algorithm is Population1. The
ε-constraint handling method and the detailed evolution process of each population will be
described below.
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Figure 1. The procedure of DP-NSGA-III.

3.1. Constraint Handling

A CMOP can be mathematically defined as:

min F(x) = ( f1(x), f2(x), · · · , fM(x))

s.t. g(x) = (g1(x), . . . , gk(x)) ≤ 0

where x = (x1, . . . , xD) ∈ Ω

(1)

where x is a decision vector in decision space Ω. F(x) is the objective vector that consists of
M conflicting objective functions in objective space. gj(x) is the j-th inequality constraint.
A solution x is called a feasible solution in case g(x) ≤ 0; otherwise, it is an infeasible
solution. In particular, when M > 3, the problem is called a constrained many-objective
optimization problem (CMaOP), and the objective space is said to be high-dimensional.
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In this article, the constraint violation is defined as the normalized violation of x
on all constraints:

cv(x) =
1
q

q

∑
i=1

Gi(x)
max{maxx∈P{Gi(x)}, 1} (2)

where P denotes the initial population, and Gi(x) represents the degree of the constraint
violation of x on the i-th constraint:

Gi(x) = max
{

gj(x), 0
}

, i = 1, 2, · · · , q (3)

To avoid a population excessively weighted towards feasibility and to be able to
involve infeasible solutions with excellent objective values in evolution, a parameter-free
ε-constraint boundary function to deal with constraints is proposed, with the detailed
formulation given as follows:

ε(t) =
cv0(x)

1 + e20( t
MaxT−0.4)

, t = 1, 2, · · · , MaxT (4)

where cv0(x) is the constraint violation of population initialization, and t is the number
of iterations. The constraint boundary is a monotonically decreasing function with an
initial value approximating cv0(x). As the population iterates, the constraint boundary
value approaches 0. Therefore, at the end of evolution, this ε-constraint handling method is
consistent with Deb’s CDP, i.e., feasible solutions are preferred over infeasible solutions.

Based on the above designed ε(t), the evolutionary algorithm solves the problem as
shown below:

min f (x) = ( f1(x), f2(x), · · · , fM(x))

s.t. g(x) = (g1(x), . . . , gk(x)) ≤ ε(t)

where ε(t)→ 0

(5)

The problem is equivalent to the original CMaOPs with relaxed constraints in the early
stage. In the late stage, since g(x)→ 0, it is equivalent to the original problem.

Based on the proposed ε-constraint handling method, the proposed evolutionary
algorithm will solve Equation (1) indirectly. The main population solves the problem
represented by Equation (5), and the auxiliary population solves the unconstrained problem
corresponding to Equation (1).

3.2. Mating Selection and Offspring Reproduction

Population1 uses the ε-constraint handling method to deal with constraints. To make
the offspring satisfy the ε-constraint boundary to the greatest extent, Population1 prefers an
ε-feasible solution to an ε-infeasible solution, or a solution with a small constraint violation
to a solution with a large constraint violation as the parent and puts it into the mating pool1.
Algorithm 1 describes the above tournament selection procedure in detail.

Population2 does not consider constraints, so the nondominated solution is preferred
as the parent and puts it into the mating pool2. If the two solutions do not dominate each
other, then the selection is made by survival score [13].

Once the mating pool is constructed, the offspring of the population of size N is created
using simulated binary crossover (SBX) [23] and polynomial mutation (PM) [24] operators.
Finally, coevolution is achieved by merging Population1 (or Population2) with offspring 1
and offspring 2.
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Algorithm 1: Tournament selection of Population1
input : candidate solutions x1 and x2
output : mating parent p

1 if one and only one of x1 and x2 is ε-feasible then
2 Select the ε-feasible solution as p
3 else if x1 is ε-infeasible and x2 is ε-infeasible then
4 if cv(x1) 6= cv(x2) then
5 select x1 or x2 with smaller cv as p
6 else
7 p← random(x1, x2)
8 end
9 else

10 p← random(x1, x2)
11 end

3.3. Environmental Selection of Population1

The environment selection of Population1 is based on NSGA-III combined with the
ε-constraint handling method. This stage will select N outstanding individuals from
Population1, offspring1, and offspring2 as new Population1.

The simplest case is that the number of ε-feasible solutions N f is less than N. Then, the
new population consists of all ε-feasible solutions and N − N f solutions with the smallest
constraint violation.

Otherwise, N f is more than N. The reference-point-based nondominated sorting
with two steps is performed. First, different nondominated levels are classified by using
the nondominated sorting based on M + 1 objectives: ( f1(x), f2(x), · · · , fM(x), cv(x)).
Note that the constraint violation is treated as a new objective in this process. Then,
Population1 is distinguished into F1, F2, · · · , Fk, · · · , Fn and satisfies |F1 ∪ F2 ∪ · · · ∪ Fk−1| ≤
N, |F1 ∪ F2 ∪ · · · ∪ Fk| > N. Second, reference-point-based elite selection is used to maintain
population diversity. N − |F1 ∪ F2 ∪ · · · ∪ Fk−1| solutions are selected in Fk based on the
association between solutions and the predefined reference points (see Algorithm 2).

It is worth noting that, since the environmental selection of Population1 tends to
ε-feasible solutions, the excellent infeasible solutions in offsping2 also have the possibility
of entering the next generation. That is, the ε-constraint handling method provides the
possibility of retaining the excellent offspring in coevolution.

Algorithm 2: Reference-point-based nondominated sorting
input : ε-feasible set S, reference points Z
output : Population1 Pt+1

1 Performing nondominated sorting on S based on ( f1(x), f2(x), · · · , fM(x), cv(x)) to form the
nondomination levels F1, F2, · · · , Fk , · · · , Fn

2 Let Pt+1 = F1 ∪ F2 ∪ · · · ∪ Fk−1
3 while |Pt+1| < N do
4 Normalize ( f1(x), f2(x), · · · , fM(x))
5 Association Operation:
6 Associate each solution of Pt+1 with the nearest reference point. The number of solutions

associated with each reference point r is called niche count (r).
7 p← argmin niche count(r)
8 Niche-Preservation Operation:
9 Let Tp ⊆ Fk be a set of solutions associated with p

10 if |Tp| = 0 then
11 Z = Z\p
12 else
13 if nichecount(p) = 0 then
14 Select the solution x which has the smallest distance to p
15 else
16 Select a solution x randomly from Tp
17 end
18 end
19 Pt+1 = Pt+1 ∪ {x}, Fk = Fk\x
20 nichecount(p)++

21 end
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3.4. Environmental Selection of Population2

Population2 does not consider the constraint and eventually aims to converge to the
UPF. Its environment selection [13] evaluates the solutions by p-norm, which can well
distinguish the solutions in the high-dimensional objective space. This stage will select N
outstanding individuals from Population2, offspring1, and offspring2 as new Population2.
First, the nondominated levels are still divided by nondominated sorting. The following
steps will be completely different from Population1. In each generation, Population2 is
assigned fitness according to a fitness function called survival score. The survival score is
composed of the ratio of the diversity score and the convergence score.

3.4.1. The p-Norm of the First Front F1

The distance of the solution to the real PF reflects the convergence. However, the real
PF is unknown, so the convergence is usually expressed as the Euclidean distance from the
solution to the ideal point Zmin = (0, 0), i.e., the 2-norm of the solution. In Figure 2a, B is
located at f1 + f2 = 1, C is located at f1 + f2 = 1.2, and A is located at the intersection of
the red dashed line and the blue line. According to the Euclidean distance, since points A
and B lie on the same circle, 1 = ‖A‖2 = ‖B‖2 > ‖C‖2. However, the green line shows that
A and C have the same distance to the real PF (assuming we know it), while B is the farthest.
Therefore, in this case, 2-norm does not correctly represent the distance from the solution
to the real PF. However, 1-norm can derive the correct distance relationship because A
and C lie on 1-norm’s contour f 1

1 + f 1
2 = 1.2 and B is on the outside of the contour, i.e.,

1.2 = ‖A‖1 = ‖C‖1 < ‖B‖1.
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Figure 2. Solutions on different contours. (a) The real PF is the contour of 1-norm. (b) F1 is the
contour of 2-norm.

Therefore, a suitable p-norm is chosen to measure the convergence of the solution.
Since the real PF is unknown, assume that the shape of the first front F1 is the same as real
PF and use the p-norm of F1 to replace the p-norm of the real PF. A method to find the
p-norm of F1 is given below.

After normalizing the populations, the solution x = (x1, · · · , xD) in the F1 can be
regarded as on the unitary hypersurface, satisfying the unique contour equation (xp

1 + · · ·+
xp

D)
1/p = 1. This equation is equivalent to finding the zeros of h(p) = ln(xp

1 + · · ·+ xp
D).

The function is second order derivable and can be solved by Halley’s method [25] as follows:

pn+1 = pn −
h(pn)

h′(pn)

(
1− h(pn)h′′(pn)

2(h′(pn))
2

)−1

, k = 0, 1, 2, · · · (6)

The p-norm of F1 can be solved by substituting any solution in F1 into Equation (6).
Figure 2b was used to verify the correctness of Equation (6), which is the case of p = 2.
D
(
cos 7π

16 , sin 7π
16
)
, E
(
cos π

4 , sin π
4
)

and F
(
cos π

8 , sin π
8
)

are the normalized solutions in F1.
Let the initial value p0 = 1, then substitute D, E or F into Equation (6) to obtain p = p2 ≈ 2
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in only two iterations. p ≈ 2 is consistent with the actual situation, since the three solutions
lie on the contour of the 2-norm.

The computational complexity of Halley’s method is O(MT), where T is the number
of iterations, generally around 3, much smaller than the size of the population N. Therefore,
there is no impact on the time complexity of the algorithm.

3.4.2. Survival Score

Once the p-norm of the first nondominated front F1 is calculated using Equation (6),
we can measure both the convergence and diversity of F1 [13] accordingly:

convergence(x) =
∥∥∥ f n(x)− Zmin

∥∥∥
p
= ‖ f n(x)‖p (7)

diversity(x, F1) = min
y 6=x∈F1

‖ f n(x)− f (y)‖p (8)

The convergence score of an individual is the Minkowski distance of the individual
to the ideal point Zmin = (0, 0). Since the ideal point is the origin, the convergence is the
p-norm of the individual. The diversity score of an individual is computed as the minimum
Minkowski distance with the other solutions in the front F1. The survival score of each
solution x ∈ F1 consists of the ratio of diversity to convergence as follows:

survival score(x) =
diversity(x, F1)

convergence(x)
(9)

The procedure for calculating the survival score of the solution in F1 is shown in
Algorithm 3. Note that, if the solution x /∈ F1, then its survival score is the reciprocal of the
convergence score.

Algorithm 3: Survival Score of F1
input : p: exponent of estimated geometry the p-norm, Population2 - P2, offspring1 and offspring2
output : Population2 - P2

1 score[E]← +∞ ; // E = extreme points
2 Φ← E ; // Considered solutions
3 Φ̄← F1\Φ ; // Remaining solutions
4 for each solution x ∈ Φ̄ do
5 convergence(x)← ‖ f n(x)‖p

6 end
7 for each solution x1 ∈ F1 do
8 for each solution x2 ∈ F1 do
9 dist(x1, x2)← ‖ f (x1)− f (x2)‖p

10 end
11 end
12 while |Φ̄| > 0 do
13 for each solution x ∈ Φ do
14 diversity(x)← miny∈Φ dist(x, y) + miny∈Φ 2dist(x, y) ; // min2: the second minimum

distances
15 survival score(x) = diversity(x) ⁄ convergence(x)
16 end
17 x∗ ← arg minx∈Φ value(x)
18 score(x∗)← value(x∗)
19 Φ← Φ ∪ {x∗} ; // Considered solutions
20 Φ̄← Φ̄\{x∗} ; // Remaining solutions
21 end

3.5. Discussion

Population2 has a different population distribution than Population1 because it ig-
nores the constraint. On the one hand, Population2 can provide offspring with good
diversity. In Figure 3a, Population1 is trapped in a local optimum, and its Offspring1
have difficulty finding other feasible areas. Population2 is widely distributed around the
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UPF due to ignoring constraints. Through the coevolution of offspring combinations, the
better-diversified Offspring2 can lead Population1 to explore other feasible regions. On
the other hand, Population2 can provide offspring with good convergence. In Figure 3b,
Population1 falls into a local optimum away from the CPF and Population2, which does
not consider constraints and explores towards the UPF. The Offspring2 near the CPF can
pull Population1 near the CPF.
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Figure 3. Role of the Population2. (a) Offspring2 with good diversity; (b) Offspring2 with good convergence.

3.6. Time Complexity of DP-NSGA-III

The proposed ε-constraint handling method has no effect on the time complexity of
NSGA-III, so the time complexity of Population1 is still O(MN2) [9,26].

The time complexity of Population2 is influenced by nondominated sorting and the
calculation of survival score. The time complexity of nondominated sorting is the same as
Population1 with O(MN2) [26]. The computational complexity of calculation of survival
score of F1(Algorithm 3) is O(MN2) + O(N3)—specifically, O(MN2) for the loop in lines
7–10, and O(N3) for the loop in lines 12–21. The survival score of the other nondominated
levels is calculated consistently with lines 4–6 as O(MN).

Therefore, the time complexity of DP-NSGA-III is O(MN2) + O(N3).

4. Experimental Setup
4.1. Test Instances

In this article, C-DTLZ [20], DC-DTLZ [11], and MW [27] suites have been selected for
examining the performance of DP-NSGA-III. The C-DTLZ suite is based on the DTLZ suite,
and four constraints are added to the objective space, while the DC-DTLZ suite introduces
three types of constraints in the decision space. The DC-DTLZ suite involves many local
optima in infeasible regions, which causes the algorithm may easily fall into some infeasible
local optima and cannot enter the feasible region. The objective number of the C-DTLZ
suite and the DC-DTLZ suite is scalable. The MW suite was recently proposed, and it
contains a variety of features, such as a small feasibility area, multiple complex nonlinear
constraints, a scalable number of objectives, and high-dimensional decision vectors. Since
some of the test functions in the MW suite have a fixed objective number, in this section,
we only test MW4, MW8, and MW14 with variable objective space dimensions.

According to the relationship between UPF and CPF, the above test problems can be
divided into three categories [20]:

Type-I: The CPF is the same as the UPF. MW4, MW14, C1DTLZ1, C1DTLZ3, DC2DTLZ1,
and DC2DTLZ3 are Type-I problems.

Type-II: Infeasible area makes the UPF partly feasible and the CPF is a part of the UPF.
MW8, C2DTLZ2, DC1DTLZ1, and DC1DTLZ3 are Type-II problems.

Type-III: The UPF is completely infeasible and the CPF is located on the boundary of
the feasible region. C3DTLZ4, DC3DTLZ1, and DC3DTLZ3 are Type-III problems.
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4.2. Performance Metrics

To measure the performance of DP-NSGA-III and other peer CMaOEAs, the following
two commonly used metrics are adopted. Furthermore, the Wilcoxon rank sum test with a
significance level of 0.05 is adopted to perform statistical analysis.

(1) Inverted Generational Distance (IGD) [28]: Given P∗ as a set of points uniformly
sampled along the PF and P as the set of solutions obtained from an evolutionary
algorithm. The IGD value of P is calculated as

IGD(P, P∗) = ∑x∈P∗ dist(x, P)
|P∗| (10)

where dist(x, P) is the Euclidean distance between x and its nearest neighbor in P.

(2) Hypervolume (HV) [29]: Let zr =
(
zr

1, · · · , zr
m
)T be the worst point dominated by all

the Pareto optimal objective vectors. The HV of P is defined as the volume of the
objective space dominated by solutions in P and bounded by zr

HV(P) = VOL

(⋃
z∈P

[z1, zr
1]× · · · × [zm, zr

m]

)
(11)

4.3. Algorithms for Comparison

Four state-of-the-art and representative CMaOEAs were chosen for performance com-
parison: C-NSGA-III [20] (Abbreviated as NSGA-III), C-TAEA [11], DCNSGA-III [30], and
MOEA/D-2WA [31]. NSGA-III and C-TAEA have been briefly introduced in Section 2. Thus,
we briefly describe others’ basic ideas as follows:

DCNSGA-III: It is an improved NSGA-III that uses dynamic multi-objective techniques
to solve CMaOPs. It is more suitable for processing CMaOPs than NSGA-III due to
the upgrade of the constraint processing method.
MOEA/D-2WA: It is a modified MOEA/D using two-type weight adjustments. Dur-
ing the search, the number of infeasible weights is dynamically lowered to help
infeasible solutions with greater convergence transcend the infeasible areas, as well as
to help infeasible solutions with better diversity identify many feasible sub regions.

4.4. Parameter Settings

(1) Algorithms and reproduction operators: To make a fair comparison and ensure the
performance of each algorithm, the parameters of all the compared algorithm and
their reproduction operator parameters, such as the simulated binary crossover and
polynomial mutation, are set as suggested in their original papers. All the compared
algorithms were implemented in PlatEMO [32].

(2) Population size and the number of function evaluations: Table 1 shows the number
of reference points and population size of each algorithm for different numbers of
objectives M [11,27]. The number of function evaluations is the termination condition
of all algorithms [11,27]. The details are shown in Table 2.

Table 1. The number of reference points and corresponding population size for different numbers
of objectives.

Objectives/Dimension No. M Reference No. Popsize N

3 91 92
5 210 212

10 275 276
15 135 136
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Table 2. The number of maximum function evaluations for different problems.

Problem M = 3 M = 5 M = 10 M = 15

C1DTLZ1 46,000 127,200 276,000 204,000
C1DTLZ3 92,000 318,000 966,000 680,000
C2DTLZ2 23,000 74,200 207,000 136,000
C3DTLZ4 69,000 265,000 828,000 544,000

DC1DTLZ1 69,000 265,000 828,000 544,000
DC1DTLZ3 69,000 265,000 828,000 544,000
DC2DTLZ1 138,000 530,000 1656,000 1088,000
DC2DTLZ3 138,000 530,000 1656,000 1088,000
DC3DTLZ1 69,000 265,000 828,000 544,000
DC3DTLZ3 69,000 265,000 828,000 544,000

MW4 55,200 127,200 165,600 81,600
MW8 55,200 127,200 165,600 81,600

MW14 55,200 127,200 165,600 81,600

5. Experimental Results

This section focuses on analyzing the performance of the proposed DP-NSGA-III with the
peer CMaOEAs on three test suites. Note that the following population distribution plots or
Parallel coordinate plots (PCPs) are taken for the median IGD of 30 independent experiments.

5.1. Performance on C-DTLZ Suite

Wilcoxon’s test results on C-DTLZ suite are summarized in Table 3. According to the
IGD values, the results show that DP-NSGA-III is significantly better than its competitors
on at least 7/16 and at most 14/16 test problems. The results indicate that DP-NSGA-III
performs much better than its rivals on at least 8/16 and at most 12/16 test problems, based
on the HV values.

Table 3. Wilcoxon’s test results on C-DTLZ suite 1.

IGD (−/+/=) HV (−/+/=)

DP-NSGA-III vs. NSGA-III 2/13/1 4/11/1
DP-NSGA-III vs. C-TAEA 2/13/1 3/11/2
DP-NSGA-III vs. DCNSGA-III 0/14/2 2/12/2
DP-NSGA-III vs. MOEA/D-2WA 6/7/3 6/8/2

1 “+”, “−”, or “=” denote the number of the performance of DP-NSGA-III is significantly better than, worse than,
or comparable to its peer, respectively.

Tables A1 and A2 show the mean value and standard deviation of the IGD and HV
values obtained from the above-mentioned five algorithms over 30 runs on the C-DTLZ
suite with 3, 5, 10, and 15 objectives. The C-DTLZ suite is moderately difficult, and the
proposed algorithm achieves good results on all but C3DTLZ4.

For C1DTLZ1, only a narrow section near PF is feasible. Both the DP-NSGA-III and
comparison algorithms converge on this problem. Figure 4 shows that differences in perfor-
mance metric are mainly influenced by the uniformity of population distribution. C-TAEA
has a messy population distribution and therefore has the worst performance metric.

The C1DTLZ3 problem has a highly multimodal landscape and infeasible region
barriers that pose a challenge to the convergence of CMaOEA. Populations have difficulty
crossing infeasible barriers and are easily trapped in localized feasible areas. The IGD of
the proposed DP-NSGA-III is better than other peer algorithms by more than an order of
magnitude in all four dimensions. The global optimal value of C1DTLZ3 is between 0 and
1. Figure 5 indicates that DP-NSGA-III converges to the global optimum except for a very
small number of solutions. The other algorithms only converge to the boundary of the
local feasible region and fall into the local optimum with a large number of solutions with
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objective values greater than 1. For DP-NAGA-III, the auxiliary populations that ignore the
constraints help the main population to cross a huge infeasibility region.
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Figure 4. Scatter plots of the population obtained by the peer algorithms and DP-NSGA-III on
3-objective C1DTLZ1 (median IGD value). The grey area is the real Pareto front.
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The CPF of C2DTLZ2 is part of the UPF, and the areas are not connected. This
problem mainly tests the diversity maintenance ability of the algorithm. Most evolutionary
algorithms found the CPF, and DP-NSGA-III performed relatively well.

The CPF of C3DLTZ4 is far from the UPF and is the boundary of the feasible area.
In this issue, DP-NSGA-III was able to find CPF, but the population diversity was poor.
Figure 6 shows the most uniform population distribution obtained by MOEA/D-2WA with
two-type weight.
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Figure 6. Scatter plots of the population obtained by the peer algorithms and DP-NSGA-III on
3-objective C3DTLZ4 (median IGD value).The grey area is the real Pareto front.

5.2. Performance on DC-DTLZ Suite

Wilcoxon’s test results on DC-DTLZ suite are summarized in Table 4. According to the
IGD values, the results show that DP-NSGA-III is significantly better than its competitors
on at least 14/22 and at most 20/22 test problems. The results indicate that DP-NSGA-III
performs much better than its rivals on at least 12/22 and at most 21/22 test problems,
based on the HV values.
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Table 4. Wilcoxon’s test results on DC-DTLZ suite 1.

IGD (−/+/=) HV (−/+/=)

DP-NSGA-III vs. NSGA-III 1/20/1 2/18/2
DP-NSGA-III vs. C-TAEA 0/19/3 1/21/0
DP-NSGA-III vs. DCNSGA-III 0/19/3 0/17/5
DP-NSGA-III vs. MOEA/D-2WA 4/14/4 2/12/8

1 “+”, “−”, or “=” denote the number of the performance of DP-NSGA-III is significantly better than, worse than,
or comparable to its peer, respectively.

Tables A3 and A4 show the mean value and standard deviation of the IGD and HV
values obtained from the above-mentioned five algorithms over 30 runs on the DC-DTLZ
suite with 3, 5, 10, and 15 objectives.

DC1DTLZ1 and DC1DTLZ3 are the Type-II problems. The CPF consists of multiple
disjoint feasible areas. The obtained population is easily trapped in the local optimal region,
and it is difficult to find the complete PF. Performance metrics show that DP-NSGA-III
has a greater advantage over DC1DTLZ3 than DC1DTLZ1. Figure 7 illustrates that the
population of DP-NSGA-III is evenly distributed on two separated PFs of DC1DTLZ1,
while MOEA/D-2WA fails to find the PF above.
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Figure 7. Scatter plots of the population obtained by the peer algorithms and DP-NSGA-III on
3-objective DC1DTLZ1 (median IGD value).The grey area is the real Pareto front.

DC2DTLZ1 and DC2DTLZ3 belong to the Type-I problems. Although it has the
same CPF as UPF, the infeasibility region is huge and only the region near PF is feasible.
Moreover, there exist many local optima in infeasible regions, making it much harder
for solutions to escape. DP-NSGA-III achieved the best results in all four dimensions of
DC2DTLZ1. Figure 8 demonstrates that DP-NSGA-III and MOEA/D-2WA perform best
on DC2DTLZ3; in particular, the convergence and diversity of DP-NSGA-III are improved
over NSGA-III and DCNSGA-III. NSGA-III and DCNSGA-III have objective values greater
than 1 in multiple dimensions, indicating that there are solutions that fail to converge to
the global optimum. Ignoring the few solutions with objective values greater than 1, the
polyline in parallel coordinates for C-TAEA was not uniformly distributed compared to
DP-NSGA-III, indicating an uneven distribution of the population.
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Figure 8. PCPs of the populations obtained by the peer algorithms and DP-NSGA-III on 15-objective
DC2DTLZ3 (median IGD value).

DC3DTLZ1 and DC3DTLZ3 can be generated as Type-III problems, which are a
mixture of the first two kinds of test instances. As the number of objectives increases, the
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feasible region becomes smaller and smaller. Note that no feasible solutions are found for
all algorithms on the DC3DTLZ1 problems when M ≥ 10. Figure 9 shows that, except for
DP-NSGA-III, all the algorithms fail to jump out of the infeasible region on DC3DTLZ3.
DP-NSGA-III has the best convergence and distribution.
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Figure 9. Scatter plots of the population obtained by the peer algorithms and DP-NSGA-III on
3-objective DC3DTLZ3 (median IGD value).The grey area is the real Pareto front.

5.3. Performance on MW Suite

Wilcoxon’s test results on MW suite are summarized in Table 5. According to the
IGD values, the results show that DP-NSGA-III is significantly better than its competitors
on at least 6/12 and at most 10/12 test problems. The results indicate that DP-NSGA-III
performs much better than its rivals on at least 6/12 and at most 10/12 test problems, based
on the HV values.

Table 5. Wilcoxon’s test results on MW suite 1.

IGD (−/+/=) HV (−/+/=)

DP-NSGA-III vs. NSGA-III 3/8/1 2/6/4
DP-NSGA-III vs. C-TAEA 2/10/0 2/10/0
DP-NSGA-III vs. DCNSGA-III 1/9/2 2/7/3
DP-NSGA-III vs. MOEA/D-2WA 6/6/0 1/7/4

1 “+”, “−”, or “=” denote the number of the performance of DP-NSGA-III is significantly better than, worse than,
or comparable to its peer, respectively.

Tables A5 and A6 show the mean value and standard deviation of the IGD and HV
values obtained from the above-mentioned five algorithms over 30 runs on the MW suite
with 3, 5, 10, and 15 objectives.

MW4, MW8, and MW14 are the problems with the adjustable number of objectives in
this suite. From Figure 10, we can see that DP-NSGA-III and MOEA/D-2WA perform com-
parably and better than other algorithms on the MW8 problem. NSGA-III and DCNSGA-III
do not cover areas with a value of 1 in the first few dimensions. Different objectives of
the MW14 have different ranges of value domains, with a maximum value of 5 when
M = 15. Figure 11 shows that MOEA/D-2WA, which relies entirely on the reference vector,
has degraded performance in this problem. When M ≤ 14, the population obtained by
MOEA/D-2WA fails to find areas with an objective value of 1, while DP-NSGA-III still
performs well in higher dimensions.
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MW14 (median IGD value).

5.4. Stability of DP-NSGA-III

To evaluate the stability of each algorithm, box plots are used to represent the statistical
results of IGD metrics for 30 experiments of the algorithms on each problem (M = 15). For
convenience, each algorithm is abbreviated with its initials. Each subplot corresponds to the
case of M = 15 in Tables A1, A3, and A5. Figure 12 shows that, while the other algorithms
have more outliers and larger deviations, DP-NSGA-III has only a few outliers and small
deviations on individual problems. DP-NSGA-III has the smallest inter-quartile range and
the best stability for most problems. In general, DP-NSGA-III has obvious advantages in
median, inter-quartile range and outliers, reflecting that DP-NSGA-III can better balance
convergence and diversity on 15-dimensional CMaOPs and has better algorithm stability.
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6. Conclusions

This paper proposed a dual-population-based constrained many-objective evolution-
ary algorithm, named DP-NSGA-III. Compared with existing CMaOEAs, DP-NSGA-III
coevolves by exchanging the offspring of two populations. Two populations use different
environmental selection to select superior individuals. Among them, the Auxiliary pop-
ulation deals with CMaOP that ignores constraints, and the main population focuses on
solving the original CMaOP. The main population can make full use of the information
of infeasible solutions in the auxiliary population to solve the constraint problem more
effectively. From the problem perspective, the designed dual population solves the original
CMaOPs indirectly. The main population solves the problem of loose constraints and the
auxiliary population solves the problem of ignoring constraints. In addition, to improve the
ability of the main population to handle constraints, this paper designed a parameter-free
ε-constraint handling method. In the main populations driven by infeasible solutions,
ε-feasible solutions can provide the impetus for evolution.

The performance of DP-NSGA-III has been studied for a series of suites with complex
constraints with up to 15 objectives. Thanks to the proposed constraint handling methods
that reduce the difficulty of handling constraints, the experimental results fully demonstrate
the competitiveness of DP-NSGA-III in CMaOPs compared to the four state-of-the-art
CMaOEAs, especially in DC-DTLZ suite with highly complex constraints. However, if
the CPF is not a regular surface, or if the UPF is separated from the CPF, DP-NSGA-III
performs poorly. On C3DTLZ4 with both features, DP-NSGA-III converged to CPF, but
the populations were not as well distributed as NSGA-III. The solutions provided by the
auxiliary population have a side effect instead. In the future, it is necessary to further
explore the underlying mechanisms of dual-population and design better dual-population
strategies. In terms of environment selection, more efficient scalar methods need to be
designed to replace Pareto dominance relationships that make it difficult to distinguish
individuals in a high-dimensional objective space.
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Appendix A

Appendix A.1

Table A1. IGD values obtained by DP-NSGA-III and other peer algorithms in the C-DTLZ suite 1.

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

C1DTLZ1

3 2.0316 × 10−2(1.66 × 10−4)= 2.3218× 10−2(5.64× 10−4)− 2.0292 × 10−2(1.01 × 10−4)= 2.0347 × 10−2(1.06 × 10−4)= 2.0342 × 10−2(9.94 × 10−5)
5 5.2160× 10−2(2.95× 10−4)− 5.9101× 10−2(8.92× 10−4)− 5.2108× 10−2(3.15× 10−4)− 5.1891 × 10−2(2.70 × 10−4)= 5.1815 × 10−2(2.52 × 10−4)
10 1.0934× 10−1(3.38× 10−3)− 1.3960× 10−1(2.37× 10−3)− 1.1167× 10−1(7.28× 10−3)− 1.0487 × 10−1(5.67 × 10−4)+ 1.0799 × 10−1(5.86 × 10−4)
15 1.8281× 10−1(3.39× 10−3)− 2.1208× 10−1(7.95× 10−3)− 1.8062 × 10−1(7.67 × 10−3)= 1.3518 × 10−1(4.24 × 10−3)+ 1.7936 × 10−1(4.43 × 10−3)

C1DTLZ3

3 3.2850 × 100(3.93 × 100)− 7.3722× 10−2(1.25× 10−2)− 5.1328 × 100(3.85 × 100)− 4.3406 × 100(4.00 × 100)− 5.4508 × 10−2(2.67 × 10−5)
5 4.9508 × 100(5.52 × 100)− 8.9646 × 100(4.88 × 100)− 5.7600 × 100(5.56 × 100)− 6.2536 × 100(5.77 × 100)− 1.6513 × 10−1(5.32 × 10−5)
10 5.0854 × 100(6.58 × 100)− 1.1983 × 101(5.15 × 100)− 6.6092 × 100(6.80 × 100)− 1.1406 × 101(5.59 × 100)− 4.2023 × 10−1(4.00 × 10−4)
15 1.2705 × 101(4.54 × 100)− 1.1425 × 101(5.39 × 100)− 1.2603 × 101(4.75 × 100)− 1.3781 × 101(2.49 × 100)− 6.2255 × 10−1(9.07 × 10−4)

C2DTLZ2

3 4.8008× 10−2(4.54× 10−4)− 5.7025× 10−2(1.50× 10−3)− 4.7951× 10−2(4.62× 10−4)− 4.9627× 10−2(4.03× 10−4)− 4.7472 × 10−2(4.66 × 10−4)
5 1.3891× 10−1(2.42× 10−4)− 1.4714× 10−1(1.25× 10−3)− 1.3881× 10−1(3.48× 10−4)− 1.3911× 10−1(6.53× 10−4)− 1.3759 × 10−1(6.92 × 10−4)
10 3.3032× 10−1(1.65× 10−1)− 3.4636× 10−1(3.60× 10−2)− 2.6499× 10−1(2.11× 10−3)− 2.8945 × 10−1(6.53 × 10−2)= 2.5890 × 10−1(2.36 × 10−3)
15 4.0334× 10−1(1.69× 10−1)− 2.7026 × 10−1(5.04 × 10−3)+ 3.3055× 10−1(7.04× 10−2)− 3.3590× 10−1(1.19× 10−1)− 2.7237 × 10−1(2.85 × 10−3)

C3DTLZ4

3 2.1730× 10−1(2.85× 10−1)− 1.1259 × 10−1(2.48 × 10−3)= 1.4665× 10−1(1.89× 10−1)− 5.7976 × 10−2(9.37 × 10−5)+ 1.4219 × 10−1(4.48 × 10−2)
5 2.4579 × 10−1(8.96 × 10−4)+ 2.9056× 10−1(2.02× 10−3)− 2.8371× 10−1(1.09× 10−1)− 2.4406 × 10−1(4.52 × 10−4)+ 2.5222 × 10−1(4.96 × 10−3)
10 5.7797 × 10−1(4.66 × 10−2)+ 6.2424× 10−1(4.86× 10−3)− 7.0682× 10−1(6.66× 10−2)− 5.6050 × 10−1(1.92 × 10−3)+ 6.0233 × 10−1(4.34 × 10−2)
15 8.8829× 10−1(5.01× 10−2)− 8.0495 × 10−1(3.51 × 10−4)+ 8.7126× 10−1(6.00× 10−2)− 8.0516 × 10−1(3.61 × 10−2)+ 8.2850 × 10−1(6.02 × 10−2)

+/−/= 2/13/1 2/13/1 0/14/2 6/7/3

1 “+”, “−”, or “=” indicates that the corresponding algorithm is significantly better than, worse than, or comparable
to DP-NSGA-III. The best average value among these algorithms on each test problem is highlighted in bold.

Table A2. HV values obtained by DP-NSGA-III and other peer algorithms in the C-DTLZ suite 1.

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

C1DTLZ1

3 8.3136× 10−1(8.55× 10−3)− 8.3071× 10−1(6.34× 10−3)− 8.3558 × 10−1(3.94 × 10−3)= 8.3578 × 10−1(4.04 × 10−3)= 8.3647 × 10−1(4.30 × 10−3)
5 9.7520 × 10−1(3.95 × 10−3)= 9.7465 × 10−1(4.62 × 10−3)= 9.7625 × 10−1(4.68 × 10−3)= 9.7527 × 10−1(3.61 × 10−3)= 9.7538 × 10−1(3.26 × 10−3)
10 9.9394× 10−1(6.75× 10−3)− 9.9842 × 10−1(1.32 × 10−3)= 9.9659× 10−1(3.92× 10−3)− 9.8515× 10−1(8.06× 10−3)− 9.9867 × 10−1(8.77 × 10−4)
15 9.9446× 10−1(6.76× 10−3)− 9.9484× 10−1(7.10× 10−3)− 9.9862× 10−1(2.56× 10−3)− 8.9223× 10−1(2.59× 10−2)− 9.9985 × 10−1(7.57 × 10−5)

C1DTLZ3

3 3.0072× 10−1(2.78× 10−1)− 5.3960× 10−1(9.57× 10−3)− 1.8095× 10−1(2.62× 10−1)− 2.2632× 10−1(2.76× 10−1)− 5.5855 × 10−1(6.05 × 10−4)
5 3.6162× 10−1(3.96× 10−1)− 1.7036× 10−1(3.14× 10−1)− 2.7564× 10−1(3.78× 10−1)− 3.4886× 10−1(3.91× 10−1)− 8.1262 × 10−1(4.19 × 10−4)
10 5.8279× 10−1(4.74× 10−1)− 8.4921× 10−2(2.46× 10−1)− 4.0252× 10−1(4.69× 10−1)− 1.9396× 10−1(3.95× 10−1)− 9.6961 × 10−1(2.85 × 10−4)
15 9.5280× 10−2(2.91× 10−1)− 5.5117× 10−2(2.10× 10−1)− 1.1506× 10−1(3.01× 10−1)− 3.3022× 10−2(1.81× 10−1)− 9.9059 × 10−1(1.37 × 10−4)

C2DTLZ2

3 5.0609 × 10−1(1.76 × 10−3)+ 5.0209× 10−1(3.47× 10−3)− 5.0232× 10−1(2.22× 10−3)− 5.1261 × 10−1(6.12 × 10−4)+ 5.0530 × 10−1(1.20 × 10−3)
5 75624 × 10−1(5.87 × 10−4)+ 7.3985× 10−1(1.77× 10−3)− 7.5597 × 10−1(6.33 × 10−4)+ 7.4867 × 10−1(1.36 × 10−3)+ 7.4777 × 10−1(1.18 × 10−3)
10 8.4100× 10−1(1.74× 10−1)− 8.7347× 10−1(4.96× 10−3)− 8.9450× 10−1(1.44× 10−3)− 8.1762× 10−1(1.29× 10−1)− 8.9540 × 10−1(1.64 × 10−3)
15 8.7433× 10−1(1.84× 10−1)− 9.3273× 10−1(3.23× 10−3)− 9.2978× 10−1(2.75× 10−2)− 8.3762× 10−1(2.39× 10−1)− 9.5717 × 10−1(3.37 × 10−4)

C3DTLZ4

3 7.5074× 10−1(1.00× 10−1)− 7.8462 × 10−1(1.02 × 10−3)+ 7.7286 × 10−1(6.60 × 10−2)+ 8.0612 × 10−1(8.42 × 10−5)+ 7.6916 × 10−1(1.83 × 10−2)
5 9.6435 × 10−1(5.90 × 10−4)+ 9.5697× 10−1(6.41× 10−4)− 9.5681× 10−1(1.85× 10−2)− 9.6535 × 10−1(2.08 × 10−4)+ 9.6111 × 10−1(1.78 × 10−3)
10 9.9912 × 10−1(1.35 × 10−3)+ 9.9904 × 10−1(4.95 × 10−5)+ 9.9549× 10−1(6.71× 10−3)− 9.9947 × 10−1(1.94 × 10−5)+ 9.9891 × 10−1(1.22 × 10−3)
15 9.9929× 10−1(6.53× 10−4)− 9.9997 × 10−1(5.39 × 10−6)+ 9.9924× 10−1(1.62× 10−3)− 9.9975 × 10−1(7.88 × 10−4)+ 9.9942 × 10−1(2.61 × 10−3)

+/−/= 4/11/1 3/11/2 2/12/2 6/8/2

1 “+”, “−”, or “=” indicates that the corresponding algorithm is significantly better than, worse than, or comparable
to DP-NSGA-III. The best average value among these algorithms on each test problem is highlighted in bold.

Table A3. IGD values obtained by DP-NSGA-III and other peer algorithms in the DC-DTLZ suite 1.

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

DC1DTLZ1

3 1.4149× 10−2(1.95× 10−4)− 1.5618× 10−2(4.13× 10−4)− 1.3807× 10−2(1.95× 10−4)− 2.7167× 10−2(5.37× 10−3)− 1.3601 × 10−2(1.51 × 10−4)
5 3.9846 × 10−2(1.65 × 10−4)+ 4.2228× 10−2(4.69× 10−4)− 4.0444× 10−2(2.61× 10−4)− 4.3698× 10−2(3.61× 10−5)− 4.0141 × 10−2(1.91 × 10−4)
10 8.6732× 10−2(3.27× 10−3)− 9.6071× 10−2(2.55× 10−3)− 8.8756 × 10−2(1.35 × 10−2)= 7.9532 × 10−2(1.44 × 10−4)+ 8.5734 × 10−2(1.12 × 10−3)
15 1.2823 × 10−1(1.99 × 10−5)= 1.4122× 10−1(5.93× 10−3)− 1.3728× 10−1(9.13× 10−3)− 1.2557 × 10−1(7.74 × 10−4)+ 1.2736 × 10−1(1.97 × 10−3)

DC1DTLZ3

3 4.6098× 10−2(9.37× 10−4)− 4.4586 × 10−2(1.17 × 10−3)= 4.7993× 10−2(1.13× 10−2)− 4.6526× 10−2(7.32× 10−3)− 4.4474 × 10−2(1.04 × 10−3)
5 1.4445× 10−1(6.38× 10−4)− 2.2595× 10−1(2.12× 10−2)− 1.4455× 10−1(8.29× 10−4)− 1.4340 × 100(7.70 × 10−1)− 1.4325 × 10−1(9.35 × 10−4)
10 5.0342× 10−1(4.18× 10−2)− 5.1141× 10−1(2.40× 10−2)− 4.8251× 10−1(4.40× 10−2)− 3.9529 × 10−1(4.18 × 10−3)+ 4.0617 × 10−1(6.62 × 10−3)
15 7.2158× 10−1(5.90× 10−2)− 7.1515× 10−1(3.52× 10−2)− 7.0274× 10−1(4.72× 10−2)− 6.1623 × 10−1(6.01 × 10−2)= 6.0734 × 10−1(1.82 × 10−2)

DC2DTLZ1

3 1.4465× 10−1(6.13× 10−2)− 2.3327× 10−2(1.95× 10−4)− 6.9379× 10−2(7.56× 10−2)− 2.0561 × 10−2(8.29 × 10−6)= 2.0559 × 10−2(6.25 × 10−6)
5 1.4000× 10−1(3.94× 10−2)− 6.1657× 10−2(3.61× 10−4)− 8.0926× 10−2(5.34× 10−2)− 5.2707× 10−2(3.66× 10−6)− 5.2706 × 10−2(4.76 × 10−6)
10 1.7004× 10−1(2.17× 10−2)− 1.4388× 10−1(8.15× 10−4)− 1.1874× 10−1(2.31× 10−2)− 1.1113× 10−1(1.19× 10−2)− 1.0951 × 10−1(3.82 × 10−5)
15 2.7788× 10−1(3.77× 10−2)− 2.1802× 10−1(4.29× 10−3)− 1.9029× 10−1(2.61× 10−2)− 2.3111 × 10−1(5.32 × 10−2)= 1.8368 × 10−1(6.14 × 10−4)
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Table A3. Cont.

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

DC2DTLZ3

3 5.6067× 10−1(2.37× 10−4)− 6.3740× 10−2(1.24× 10−3)− 5.3745× 10−1(1.56× 10−1)− 3.7557× 10−1(2.48× 10−1)− 5.4472 × 10−2(8.30 × 10−6)
5 5.9661× 10−1(4.30× 10−4)− 1.8737× 10−1(1.98× 10−3)− 3.4857× 10−1(2.31× 10−1)− 1.6513 × 10−1(1.04 × 10−5)= 1.6513 × 10−1(1.11 × 10−5)
10 8.3041× 10−1(3.53× 10−2)− 4.3599× 10−1(3.26× 10−3)− 5.9260× 10−1(1.94× 10−1)− 4.2079 × 10−1(4.12 × 10−4)+ 4.2125 × 10−1(1.40 × 10−4)
15 1.0035 × 100(1.64 × 10−2)− 6.4346× 10−1(2.09× 10−2)− 8.6106× 10−1(1.69× 10−1)− 6.6804× 10−1(1.19× 10−1)− 6.2027 × 10−1(4.59 × 10−4)

DC3DTLZ1 3 2.2305× 10−1(1.61× 10−1)− 9.9253 × 10−3(5.08 × 10−4)= 1.0108 × 10−2(3.19 × 10−4)= 2.0631× 10−2(6.73× 10−3)− 9.9561 × 10−3(3.22 × 10−4)
5 8.8082× 10−2(5.76× 10−2)− 3.3210× 10−2(6.29× 10−3)− 2.5873 × 10−2(1.13 × 10−2)= 5.9310× 10−2(1.62× 10−2)− 2.2646 × 10−2(8.55 × 10−4)

DC3DTLZ3

3 1.5363 × 100(4.87 × 10−1)− 4.2066 × 10−2(1.63 × 10−2)= 6.2999× 10−1(2.56× 10−1)− 5.8570× 10−1(1.32× 10−1)− 3.0312 × 10−2(1.72 × 10−3)
5 9.5209× 10−1(4.83× 10−1)− 1.0169× 10−1(1.03× 10−2)− 3.1576× 10−1(2.48× 10−1)− 2.4876× 10−1(1.25× 10−1)− 8.7801 × 10−2(2.90 × 10−3)
10 1.6601 × 100(6.41 × 10−1)− 1.8491× 10−1(6.92× 10−2)− 6.3620× 10−1(3.84× 10−1)− 4.9978× 10−1(6.75× 10−2)− 1.2029 × 10−1(9.22 × 10−3)
15 3.0696 × 100(1.00 × 100)− 6.2199× 10−1(3.64× 10−1)− 7.5702× 10−1(4.11× 10−1)− 7.3173× 10−1(2.68× 10−1)− 1.4118 × 10−1(9.31 × 10−3)

+/−/= 1/20/1 0/19/3 0/19/3 4/14/4

1 “+”, “−”, or “=” indicates that the corresponding algorithm is significantly better than, worse than, or comparable
to DP-NSGA-III. The best average value among these algorithms on each test problem is highlighted in bold.

Table A4. HV values obtained by DP-NSGA-III and other peer algorithms in the DC-DTLZ suite 1.

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

DC1DTLZ1

3 6.2908 × 10−1(1.80 × 10−3)+ 6.2624 × 10−1(1.18 × 10−3)+ 6.2456 × 10−1(2.30 × 10−3)= 5.9725× 10−1(1.81× 10−2)− 6.2544 × 10−1(1.51 × 10−3)
5 7.7284 × 10−1(8.57 × 10−4)+ 7.6956× 10−1(8.87× 10−4)− 7.6977× 10−1(7.37× 10−4)− 7.6525× 10−1(1.74× 10−4)− 7.7057 × 10−1(1.18 × 10−3)
10 7.9618× 10−1(2.24× 10−4)− 7.9609× 10−1(1.14× 10−4)− 7.9345× 10−1(1.66× 10−2)− 7.5413× 10−1(5.97× 10−3)− 7.9681 × 10−1(1.11 × 10−4)
15 7.9782× 10−1(7.60× 10−6)− 7.9700× 10−1(5.69× 10−4)− 7.9658× 10−1(2.55× 10−3)− 6.3463× 10−1(2.12× 10−2)− 7.9784 × 10−1(2.01 × 10−5)

DC1DTLZ3

3 4.6783 × 10−1(1.08 × 10−3)= 4.5876× 10−1(2.86× 10−3)− 4.6354 × 10−1(2.02 × 10−2)= 4.6891 × 10−1(9.39 × 10−3)+ 4.6701 × 10−1(1.88 × 10−3)
5 7.6344 × 10−1(1.04 × 10−3)= 6.8741× 10−1(2.11× 10−2)− 7.6321× 10−1(8.69× 10−4)− 5.6919× 10−3(1.88× 10−2)− 7.6382 × 10−1(9.38 × 10−4)
10 8.6557× 10−1(9.56× 10−2)− 9.0533× 10−1(1.34× 10−2)− 8.8507× 10−1(6.10× 10−2)− 9.6234 × 10−1(6.81 × 10−4)+ 9.6086 × 10−1(1.77 × 10−3)
15 7.1236× 10−1(2.05× 10−1)− 7.6602× 10−1(2.15× 10−1)− 7.5661× 10−1(1.87× 10−1)− 9.6225× 10−1(1.39× 10−1)− 9.7225 × 10−1(1.22 × 10−2)

DC2DTLZ1

3 5.2980× 10−1(1.50× 10−1)− 8.3802× 10−1(3.19× 10−4)− 7.1724× 10−1(1.93× 10−1)− 8.4167 × 10−1(1.11 × 10−4)= 8.4168 × 10−1(9.28 × 10−5)
5 8.5826× 10−1(5.50× 10−2)− 9.7691× 10−1(2.39× 10−4)− 9.3819× 10−1(8.13× 10−2)− 9.7987 × 10−1(1.24 × 10−4)= 9.7989 × 10−1(1.22 × 10−4)
10 9.7880× 10−1(7.28× 10−3)− 9.9944× 10−1(2.90× 10−5)− 9.9753 × 10−1(7.40 × 10−3)= 9.9893 × 10−1(4.09 × 10−3)= 9.9968 × 10−1(1.55 × 10−5)
15 9.7478× 10−1(1.01× 10−2)− 9.9978× 10−1(8.11× 10−5)− 9.9493 × 10−1(1.60 × 10−2)= 9.8577× 10−1(1.44× 10−2)− 9.9992 × 10−1(9.13 × 10−6)

DC2DTLZ3

3 8.1376× 10−3(1.24× 10−4)− 5.4647× 10−1(1.30× 10−3)− 4.8563× 10−2(1.47× 10−1)− 2.1007× 10−1(2.70× 10−1)− 5.5933 × 10−1(2.64 × 10−4)
5 7.1752× 10−2(3.92× 10−4)− 7.9251× 10−1(2.19× 10−3)− 5.1276× 10−1(3.74× 10−1)− 8.1267 × 10−1(3.45 × 10−4)= 8.1257 × 10−1(4.34 × 10−4)
10 2.0234× 10−1(4.70× 10−2)− 9.6831× 10−1(1.11× 10−3)− 6.6125× 10−1(3.78× 10−1)− 9.6980 × 10−1(1.76 × 10−4)= 9.6981 × 10−1(1.25 × 10−4)
15 1.8326× 10−2(1.06× 10−2)− 9.4186× 10−1(3.48× 10−2)− 3.6589× 10−1(4.69× 10−1)− 8.5857 × 10−1(3.43 × 10−1)= 9.9069 × 10−1(1.18 × 10−4)

DC3DTLZ1 3 9.6576× 10−2(1.19× 10−1)− 5.2180× 10−1(3.16× 10−3)− 5.2776 × 10−1(1.74 × 10−3)= 5.0561 × 10−1(3.22 × 10−2)= 5.2768 × 10−1(1.33 × 10−3)
5 5.4568× 10−2(6.35× 10−2)− 8.8297× 10−2(1.19× 10−2)− 1.2713× 10−1(5.84× 10−3)− 9.3507× 10−2(1.42× 10−2)− 1.2965 × 10−1(1.61 × 10−3)

DC3DTLZ3

3 0.0000 × 100(0.00 × 100)− 3.3638× 10−1(2.15× 10−2)− 1.2002× 10−2(6.57× 10−2)− 1.2125× 10−2(6.64× 10−2)− 3.5909 × 10−1(1.89 × 10−3)
5 0.0000 × 100(0.00 × 100)− 5.2458× 10−1(2.00× 10−2)− 3.0684× 10−1(2.92× 10−1)− 5.2956 × 10−1(5.67 × 10−2)= 5.7579 × 10−1(3.94 × 10−3)
10 0.0000 × 100(0.00 × 100)− 6.6668× 10−1(5.64× 10−2)− 2.5906× 10−1(3.73× 10−1)− 6.3365× 10−1(4.59× 10−2)− 7.8243 × 10−1(7.14 × 10−3)
15 0.0000 × 100(0.00 × 100)− 7.4586× 10−3(2.03× 10−2)− 1.0836× 10−2(2.96× 10−2)− 8.4142× 10−2(4.73× 10−2)− 1.1732 × 10−1(1.54 × 10−2)

+/−/= 2/18/2 1/21/0 0/17/5 2/12/8

1 “+”, “−”, or “=” indicates that the corresponding algorithm is significantly better than, worse than, or comparable
to DP-NSGA-III. The best average value among these algorithms on each test problem is highlighted in bold.

Table A5. IGD values obtained by DP-NSGA-III and other peer algorithms in the MW suite. 1

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

MW4

3 4.1535 × 10−2(1.08 × 10−4)+ 4.6663× 10−2(3.46× 10−4)− 4.2120 × 10−2(5.01 × 10−4)= 4.1993 × 10−2(9.15 × 10−4)+ 4.2103 × 10−2(3.36 × 10−4)
5 1.0474 × 10−1(2.36 × 10−4)+ 1.2218× 10−1(1.18× 10−3)− 1.0500 × 10−1(1.69 × 10−4)+ 1.0430 × 10−1(3.57 × 10−4)+ 1.0521 × 10−1(1.78 × 10−4)
10 2.1816 × 10−1(1.12 × 10−2)+ 2.7641× 10−1(6.24× 10−3)− 2.2047× 10−1(7.34× 10−3)− 2.0360 × 10−1(8.93 × 10−4)+ 2.1994 × 10−1(1.54 × 10−3)
15 3.7194 × 10−1(6.44 × 10−3)= 4.3583× 10−1(9.90× 10−3)− 3.7041 × 10−1(4.42 × 10−3)= 2.4986 × 10−1(1.21 × 10−3)+ 3.7182 × 10−1(6.68 × 10−3)

MW8

3 6.2302× 10−2(3.83× 10−2)− 5.5022× 10−2(3.58× 10−3)− 4.9781× 10−2(2.19× 10−3)− 5.1319× 10−2(3.30× 10−3)− 4.8680 × 10−2(2.65 × 10−3)
5 1.5959× 10−1(3.49× 10−2)− 1.7035× 10−1(1.87× 10−3)− 1.5266× 10−1(2.67× 10−4)− 1.5301× 10−1(4.01× 10−4)− 1.5216 × 10−1(3.66 × 10−4)
10 4.2660× 10−1(5.27× 10−2)− 4.1017× 10−1(3.11× 10−3)− 4.0947× 10−1(4.64× 10−2)− 3.9667 × 10−1(2.06 × 10−3)+ 3.9871 × 10−1(1.65 × 10−3)
15 6.4708× 10−1(1.38× 10−2)− 6.4468× 10−1(2.82× 10−3)− 6.4353× 10−1(1.22× 10−2)− 6.0777 × 10−1(4.53 × 10−3)+ 6.2793 × 10−1(2.55 × 10−3)

MW14

3 1.3425× 10−1(1.02× 10−2)− 1.1616 × 10−1(3.84 × 10−3)+ 1.3657× 10−1(2.50× 10−2)− 2.0790× 10−1(5.07× 10−3)− 1.2706 × 10−1(3.38 × 10−3)
5 3.6249× 10−1(2.95× 10−2)− 3.0987 × 10−1(6.06 × 10−3)+ 3.8139× 10−1(4.39× 10−2)− 4.6584× 10−1(7.65× 10−3)− 3.3364 × 10−1(2.80 × 10−2)
10 1.1445 × 100(2.49 × 10−2)− 1.4023 × 100(5.04 × 10−2)− 1.1844 × 100(2.65 × 10−2)− 1.4500 × 100(2.06 × 10−1)− 1.0925 × 100(2.83 × 10−2)
15 3.2374 × 100(7.09 × 10−2)− 3.0938 × 100(1.41 × 10−1)− 3.3312 × 100(1.33 × 10−1)− 3.1616 × 100(7.02 × 10−2)− 2.7544 × 100(1.58 × 10−1)

+/-/= 3/8/1 2/10/0 1/9/2 6/6/0

1 “+”, “-”, or “=” indicates that the corresponding algorithm is significantly better than, worse than, or comparable
to DP-NSGA-III. The best average value among these algorithms on each test problem is highlighted in bold.
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Table A6. HV values obtained by DP-NSGA-III and other peer algorithms in the C-DTLZ suite 1.

Problem M NSGA-III C-TAEA DCNSGA-III MOEA/D-2WA DP-NSGA-III

MW4

3 8.4121 × 10−1(1.51 × 10−4)+ 8.3793× 10−1(3.18× 10−4)− 8.4069 × 10−1(4.56 × 10−4)= 8.4026 × 10−1(2.58 × 10−3)= 8.4076 × 10−1(2.82 × 10−4)
5 9.7976 × 10−1(1.64 × 10−4)+ 9.7721× 10−1(2.88× 10−4)− 9.7969 × 10−1(1.07 × 10−4)+ 9.7957 × 10−1(1.51 × 10−4)= 9.7954 × 10−1(1.78 × 10−4)
10 9.9955 × 10−1(6.84 × 10−4)= 9.9952× 10−1(5.81× 10−5)− 9.9966 × 10−1(7.69 × 10−5)= 9.6297× 10−1(9.11× 10−3)− 9.9967 × 10−1(2.65 × 10−5)
15 9.9990 × 10−1(9.83 × 10−6)= 9.9984× 10−1(2.52× 10−5)− 9.9990 × 10−1(9.07 × 10−6)= 8.2556× 10−1(2.54× 10−2)− 9.9991 × 10−1(1.00 × 10−5)

MW8

3 5.0730× 10−1(4.92× 10−2)− 5.1953× 10−1(1.50× 10−2)− 5.2886× 10−1(9.19× 10−3)− 5.3090 × 10−1(1.40 × 10−2)= 5.3278 × 10−1(1.18 × 10−2)
5 8.0433 × 10−1(2.12 × 10−2)= 7.8742× 10−1(5.44× 10−3)− 8.1027 × 10−1(2.94 × 10−3)+ 8.0856 × 10−1(4.10 × 10−3)= 8.1020 × 10−1(2.88 × 10−3)
10 9.5443 × 10−1(2.29 × 10−2)= 9.6348× 10−1(2.09× 10−3)− 9.6277× 10−1(1.94× 10−2)− 9.6889 × 10−1(1.33 × 10−3)+ 9.6775 × 10−1(6.76 × 10−4)
15 9.7484× 10−1(1.10× 10−2)− 9.4017× 10−1(4.48× 10−3)− 9.7489× 10−1(9.28× 10−3)− 9.8542× 10−1(1.19× 10−3)− 9.9014 × 10−1(2.21 × 10−4)

MW14

3 4.5894× 10−1(6.58× 10−3)− 4.6358× 10−1(2.95× 10−3)− 4.5976× 10−1(1.11× 10−2)− 4.3775× 10−1(3.53× 10−3)− 4.6539 × 10−1(2.91 × 10−3)
5 3.4702× 10−1(1.53× 10−2)− 3.9414 × 10−1(3.36 × 10−3)+ 3.6253× 10−1(1.99× 10−2)− 3.2687× 10−1(2.63× 10−3)− 3.8548 × 10−1(7.65 × 10−3)
10 2.0239× 10−1(4.52× 10−3)− 2.2912 × 10−1(4.66 × 10−3)+ 2.0483× 10−1(3.25× 10−3)− 1.5608× 10−1(2.01× 10−2)− 2.0902 × 10−1(5.06 × 10−3)
15 1.5134× 10−1(2.58× 10−3)− 1.5365× 10−1(3.57× 10−3)− 1.5918× 10−1(1.04× 10−2)− 7.7070× 10−2(1.17× 10−2)− 1.6459 × 10−1(3.82 × 10−3)

+/−/= 2/6/4 2/10/0 2/7/3 1/7/4

1 “+”, “−”, or “=” indicates that the corresponding algorithm is significantly better than, worse than, or comparable
to DP-NSGA-III. The best average value among these algorithms on each test problem is highlighted in bold.
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