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Abstract: The present study concerns the modeling of the thermal behavior of a porous longitudinal
fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities
surrounded by environments that are convective, conductive, and radiative. Porous fins are widely
used in various engineering and everyday life applications. The Darcy model was used to formulate
the governing non-linear singular differential equation for the heat transfer phenomenon in the
fin. The universal approximation power of multilayer perceptron artificial neural networks (ANN)
was applied to establish a model of approximate solutions for the singular non-linear boundary
value problem. The optimization strategy of a sports-inspired meta-heuristic paradigm, the Tiki-
Taka algorithm (TTA) with sequential quadratic programming (SQP), was utilized to determine the
thermal performance and the effective use of fins for diverse values of physical parameters , such as
parameter for the moist porous medium, dimensionless ambient temperature, radiation coefficient,
power index, in-homogeneity index, convection coefficient, and dimensionless temperature. The
results of the designed ANN-TTA-SQP algorithm were validated by comparison with state-of-the-art
techniques, including the whale optimization algorithm (WOA), cuckoo search algorithm (CSA), grey
wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and machine
learning algorithms. The percentage of absolute errors and the mean square error in the solutions of
the proposed technique were found to lie between 10−4 to 10−5 and 10−8 to 10−10, respectively. A
comprehensive study of graphs, statistics of the solutions, and errors demonstrated that the proposed
scheme’s results were accurate, stable, and reliable. It was concluded that the pace at which heat is
transferred from the surface of the fin to the surrounding environment increases in proportion to the
degree to which the wet porosity parameter is increased. At the same time, inverse behavior was
observed for increase in the power index. The results obtained may support the structural design of
thermally effective cooling methods for various electronic consumer devices.

Keywords: wet porous fin; functionally graded materials; thermal analysis; meta-heuristics; machine
learning techniques

1. Introduction

The problem of efficient cooling in electronic systems has attracted much attention for
many reasons. These include the trend toward downsizing in electronic packaging design
which requires a more compact volume with higher performance standards [1]. Improving
overall effectiveness frequently requires increasing both power and on-chip power density.
This is connected to an increase in heat that must be dissipated, so raising either of these
factors might be problematic. Consequently, the efficient removal of heat produced by
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modern electronic systems has emerged as a critical issue for the design processes used
by both electrical and mechanical engineers [2]. Fins are extended surfaces that have been
developed either to improve the heat transfer rate while maintaining a constant surface
temperature or to reduce the surface temperature while maintaining a constant heat transfer
rate. Fins can be found on radiators, heat exchangers, and other devices, and are a concept
studied in the field of heat transfer [3]. The amount of heat present can be used as a basis
for calculating the quantity of heat an item can transmit by conduction, convection, or
radiation. Increasing heat transmission may be accomplished in one of three ways: by
boosting the temperature difference between an object and its surroundings, expanding the
coefficient of the convective heat transfer coefficient, or enhancing the object/fin surface
area [4,5]. Pursuing either of the first two alternatives is not feasible or cost-effective in
some situations. Adding a fin causes an increase in surface area. Therefore, doing so
can occasionally be an economical solution to problems associated with the transfer of
heat [6,7].

Many practical applications in various industrial, electrical, and mechanical engineer-
ing domains, such as gas turbines, bike heads, aircraft engines, automobiles, and heat
sinks utilize fin structures to provide increased surface area and, as a result, to enhance the
efficiency of heat transfer. Kiwan and Nimr [8] modeled the performance of a permeable
fin, and considered the functioning of porous fins compared to solid fins. They found that
the thermodynamic efficiency of porous heat exchangers was much higher than that of
solid heat exchangers of identical weight [9]. Kiwan [10] presented a simplified model for
investigating how well a porous fin performs in an environment dominated by natural
convection under a variety of tip conditions. The author utilized Darcy’s model and energy
balance method to compile the flow and geometric characteristics into a dimensionless
number called SH , and studied this number’s influence on the heat transfer rate. Gawai
and Mathew [11] proposed a heat enhancement approach in which depressions on the
surface of aluminum and brass were used in place of projections to achieve the desired
effect. These caused a phenomenon known as “scrubbing of the fluid” which speeds up
the heat transfer process by reducing pressure loss. Shouman [12] conducted an exten-
sive study on the impact of internal heat production/generation, thermal conductivity
(temperature-dependent), and magnetic flux on the transfer of heat through a porous heat
exchanger with single phase fluid flow.

Heat transfer rates are improved by using porous extended surfaces which often
outperform traditional solid fins in many applications [13]. In the past, many investiga-
tions have been undertaken on porous fins. Kiwan introduced a numerical approximating
approach, the finite volume method (FVM), while Zeitoun [14] predicted the thermic per-
formance of a porous heat exchanger that was affixed to the inner layer of the annular gap
created between two concentric cylindrical enclosures. It was found that the porous fin
enhanced the rate of heat transmission in comparison to the traditional solid fin. Shar-
qawy [15] investigated the effectiveness of straight fins in various configurations when
simultaneously subjected to various processes of heat and mass transfer. Domairry [16]
utilized the homotopy analysis method (HAM) to simplify a non-linear governing mathe-
matical model pertaining to the temperature distribution in a straight fin.

Generally, singular non-linear differential equations are used to model the behavior of
porous heat exchangers in radiative-convective-conductive environments with internally
generated heat and heat conductance (temperature-dependent). The non-linear fin problem
has received considerable attention because of its industrial applications. As a result, a wide
variety of numerical and analytical approaches have been established to solve fin equations
for the approximate solutions [17]. Chiu [18] implemented the Adomian decomposition
technique (ADM) to make an approximation of the ideal/efficient geometrical shape
of a longitudinal fin subjected to convective surroundings or environments with heat
(thermal) conductance. Chang [19] provided an approximation of an analytical solution
for heat transfer models in multiple environments. Hatami [20] investigated the heat and
thermic distribution for a porous longitudinal radiative-convective heat exchanger of Si3N4
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material with four different shapes (exponential, convex, rectangular, and triangular) using
a statistical approach to calculate the optimal fitting of solutions with a least square method
(LSM). Later, Moitsheki [21] extended the perturbation method to simulate analytical
solutions for non-linear problems, describing the thermic distribution of heat in a one-
dimensional longitudinal radial heat exchanger for concave, rectangular, triangular and
convex parabolic profiles. In [22], the Adomian decomposition technique was utilised to
determine the optimal design parameters pertinent to a moving porous extended surface.
It was concluded that the extended surface of exponential designs was highly efficient. A
finite-difference method was adopted by Sobamowo [23] to study the total heat transfer,
fin efficiency, and internal heat generation of a fin with thermo-geometric properties. A
two-dimensional differential transform scheme was applied by P. L. Ndlovu [24] to study
transient heat transfer of different configurations (convex parabolic and concave parabolic)
of longitudinal extended surfaces. N. A. Khan [25,26] modeled approximate solutions using
computer-assisted, global and local optimization techniques for the governing non-linear
model of convective-conductive-radiative heat exchangers with conductance to heat. M.
Nabati [27] studied the effect of various physical parameters on porous fins by discretizing
the governing non-linear differential equation using the Sinc collocation method (SCM).
In [28], the partial Noether method (PNM) was employed to explore the impacts of the
electromagnetic flux, radiation coefficient, thermo-geometric parameter, and non-linear
conductance on the thermic behavior of a radiative-convective straight fin.

Some other numerical techniques applied to the solution of fin design problems include
the Akbari–Ganji method (AGM) [29], the Haar wavelet quasilinearization method [30],
the Legendre wavelet collocation method (LWCM) [31], the Hermite wavelet method
(HWM) [32], and the integral transform method (ITM) [33]. These techniques have been
applied to solve non-linear, steady, and unsteady problems. As well as their advantages,
they have some limitations. The major drawback of these approaches is that they can only
be applied to certain subsets of a relatively limited class of mathematical problems. Most of
these techniques are iterative and gradient-based procedures requiring prior information
about the problem. Prior information includes smoothness, continuity, differentiability,
gradient, choice of initial guess, and smallness of parameters. It is of note that such
techniques are gradient-based and require information about the problem beforehand. The
availability of several local optima, which leads to solutions where global optimality cannot
be easily ensured, is one of the fundamental limitations of such gradient-based approaches.
Global optimality is sought in gradient-based approaches by randomly scanning the design
space from various starting points. However, this causes the technique to become sluggish
and computationally inefficient for complex non-linear optimization problems. On the
other hand, metaheuristic (MH) optimization algorithms have been quite popular in recent
years due to their numerous benefits over traditional numerical schemes [34]. In general,
the impetus for the use of MH algorithms comes from a wide variety of chemical and
physical phenomena. These algorithms are designed to imitate a wide range of physical
and/or chemical events, such as movements, electrical charges, gravitational forces, hunting
strategies, and so on. Approaches based on MH can be used to solve problems that have
many objectives, a wide variety of solutions, and non-linear formulations. As a result,
they are used to develop high-quality approximations and solutions to an ever-increasing
variety of intricate problems that arise in the real world.

In this paper, numerical solutions for fully wetted longitudinal porous heat exchangers
with different thermal conductivities are calculated based on the simple concept of artificial
intelligence (AI), implemented through the application of neural networks and optimiza-
tion procedures of meta-heuristic techniques [35–39]. Recently, artificial intelligence-based
stochastic techniques have been successfully implemented for various problems in different
domains of reaction kinematics [40,41], marine engineering [42], wireless communica-
tion [43], and fluid dynamics [44–46]. These applications motivated the authors to design
a novel unsupervised technique using the computational approximation ability of layer
structure feed-forward ANNs, the global and local optimization of the Tiki-Taka algorithm
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(TTA), and sequential quadratic programming (SQP). The designed ANN-TTA-SQP al-
gorithm was applied to different problems relating to fully wetted longitudinal porous
heat exchangers of multiple conductance. The designed ANN-TTA-SQP algorithm was
consistently found to be correct compared to the results of the whale optimization algorithm
(WOA), the cuckoo search algorithm (CSA), the grey wolf optimization (GWO) algorithm,
the particle swarm optimization (PSO) algorithm, and machine learning algorithms. Apart
from the efficiency and accuracy of solutions obtained with neural network methodolo-
gies, other advantages of the proposed technique, in comparison to traditional numerical
methods and classical numerical methods, are as follows:

• The MH approach developed does not make use of gradients and does not call on
any previous knowledge (e.g., initial guess, initial approximation, continuity, differen-
tiability and small auxiliary parameters) of the problem. Unlike other deterministic
approaches,the ANN-TTA-SQP only requires initial parameter settings (e.g., max.
iterations, population size, etc.) and execution stopping criteria.

• A simple method is provided that enables the singularity and non-linearity of complex
systems, such as longitudinal porous heat exchangers, to be successfully dealt with.

• Stochastic approaches based on ANN, in contrast to deterministic solvers, are capable
of providing a continuous solution across the entirety of the integration domain.

The stability, efficiency and precision of the newly proposed scheme were assessed
through performance indicators, including the mean error in Nash–Sutcliffe efficiency
(ENSE), absolute deviations, root mean square error (RMSE), and Theil’s inequality coeffi-
cient (TIC).

2. Mathematical Formulation of Physical Problem

The physical problems associated with a longitudinal fin with natural convection
and radiation of length (L), width (w), and cross-sectional area (A) placed on a surface
maintained at a temperature Tb are represented in Figure 1. The entire matrix of the solid
fin is saturated (wetted), and single-phase fluid is assumed to fill the fin medium, which
is isotropic, saturated, and homogenous. The Darcy model was utilised to investigate the
process of movement of fluid via pores. The steady-state energy balance equation around
the small cross-sectional area (dx) of the fin is given
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Figure 1. A diagrammatic representation of the porous longitudinal fin model, illustrating natural
phenomena of radiation and convection.

q(x) + ṁcp(Ta − T)− q(x + dx) = whdx(φ− 1)(Ta − T)− εwσdx
(

T4
a − T4

)
+ hDwdxi f g(φ− 1)(ωa −ω), (1)

where, h represents the coefficient of transmission in heat, q is the heat transfer rate of base,
ε is the surface emissivity of fin, cp is specific heat, φ is the porosity parameter, ω is the
saturation level of humidity in the air, i f g is the heat that is released from water during
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evaporation, σ is the Stefan–Boltzmann constant, ωa represents the humidity ratio of the
surrounding air and ṁ is the mass flow rate of the fluid which is defined as [47]

ṁ = ρ f v(x)wdx, (2)

where, rho f is the density of the fluid being measured, and the velocity of fluid along the
axial direction is v(x). Darcy’s law dictates that it should be given as

v(x) = −gKβ f (Ta − T)(ν f )
−1, (3)

here, β f , K and ν f , are the volumetric thermal expansion and the permeability and kinematic
viscosity of fluid, respectively. From Fourier’s law of conduction, the heat transfer rate can
be defined as

q = −k(x)tw
dT
dx

, (4)

where, k(x) is the thermal conductivity, and h is the convective heat transfer coefficient
which is given as

h = hb

[
T − Ta

Tb − Ta

]p
= hDCpLe

2
3 , (5)

where, p is a power index that measures the nature/strength of different fluid flows. In
the case of functionally graded material (FGM), thermal conductivity is affected by the
length of a fin. In this study, we focused on three different examples of the FGM, including
linear, quadratic, and exponential fluctuations in heat conductivity. For each case the heat
conductance is defined as

k(x) = k0(ax + 1), (6)

k(x) = k0(ax2 + 1), (7)

k(x) = k0eax. (8)

Substituting Equations (2)–(5) with Equations (6)–(8) results in the governing differential
equation models for linear, quadratic and exponential FGM as

d
dx

(
(1 + ax)

dT
dx

)
+

ρgβ f KCp

ν f k0t
(Ta − T)2 +

σε

k0t

(
T4

a − T4
)

− ha(φ− 1)(Ta − T)1+p

k0t(Tb − Ta)
p −

hDi f g(φ− 1)(ωa −ω)

k0t
= 0,

(9)

d
dx

((
1 + ax2

)dT
dx

)
+

ρgβ f KCp

ν f k0t
(Ta − T)2 +

σε

k0t

(
T4

a − T4
)

− ha(φ− 1)(Ta − T)1+p

k0t(Tb − Ta)
p −

hDi f g(φ− 1)(ωa −ω)

k0t
= 0,

(10)

d
dx

(
(eax)

dT
dx

)
+

ρgβ f KCp

ν f k0t
(Ta − T)2 +

σε

k0t

(
T4

a − T4
)

− ha(φ− 1)(Ta − T)1+p

k0t(Tb − Ta)
p −

hDi f g(φ− 1)(ωa −ω)

k0t
= 0.

(11)

The rate of heat transmission is practically negligible at the fin tip because the thickness
of the fin is less. As a result, the following boundary criteria must be satisfied for the
adiabatic tip fin:

at x = 0 T(0) = Tb,

at x = L
dT(L)

dx
= 0.

(12)
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The following dimensionless parameters are employed to reduce Equations (9)–(11) to
a dimensionless form.

θ =
T
Tb

, Nc =
ρgβ f KCpTbL2

ν f k0t
, θa =

Ta

Tb
, X =

x
L

, Nr =
εσL2T3

b
k0t

,

m0 =
hbL2(1− φ)

k0t
, m1 = −

hbi f gb2(φ− 1)L2

k0tCpLe2 , (ωa −ω) = b2(Ta − T).

(13)

Linear FGM:

d2θ

dX2 + Xβ
d2θ

dX2 + β
dθ

dX
+ Nr

(
θ4

a − θ4
)
+ Nc(θa − θ)2 − m2(θa − θ)1+p

(θa − 1)p = 0, (14)

Quadratic FGM:

d2θ

dX2 + αX2 d2θ

dX2 + 2αX
dθ

dX
+ Nr

(
θ4

a − θ4
)
+ Nc(θa − θ)2 − m2(θa − θ)1+p

(θa − 1)p = 0, (15)

Exponential FGM:

eβX d2θ

dX2 + βeβX dθ

dX
+ Nr

(
θ4

a − θ4
)
+ Nc(θa − θ)2 − m2(θa − θ)1+p

(θa − 1)p = 0, (16)

where, Nr, m2, Nc, θa, X, and θ, are the radiation coefficient, wet porous parameter for
a moist porous medium, convection coefficient, non-dimensional ambient temperature,
dimensionless length and temperature, respectively.

In dimensionless terms, the boundary conditions for Equations (14)–(16) are outlined
below:

θ = 1 at X = 0,

θ′ = 0 at X = 1.
(17)

3. Proposed Methodology

The framework for the proposed meta-heuristic technique is divided into two stages.
Initially, an unsupervised objective function for the models in Equations (14)–(16) of fully
wetted longitudinal porous heat exchangers for linear, quadratic and exponential cases is
constructed with ANN modeling. Then the objective function is minimized by training the
weights or neurons in the ANN architecture using sports inspired by the Tiki-Taka algorithm
for global exploration and sequential quadratic programming for local exploitation.

3.1. Neural Networks Based Differential Equation Models

In recent years, there has been a significant increase in the reporting of the appli-
cation of ANNs to the solution of differential equations that include both integer and
fractional derivatives. The mathematical model for the approximate numerical solution of
Equations (14)–(16) is formulated in the following form

θ̂ =
H

∑
i=1

ξ̃i f
(
ãiX + b̃i

)
, (18)

where, θ̂ is the neural network output (approximate solution) with input vector
X. ξ̃i =

[
ξ̃1, ξ̃2, ξ̃3, . . . , ξ̃H

]
, ã = [ã1, ã2, ã3, . . . , ãh] and b̃i =

[
b̃1, b̃2, b̃3, . . . , b̃H

]
represents the

corresponding vector of adjustable weight parameters, and m is the number of neurons. f
is the Log-sigmoid activation function and has the form 1

1+e−x .
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Now, the first and second derivative of the network output is given as

dθ̂

dX
=

H

∑
i=1

ξ̃i
d

dX
f
(
ãiX + b̃i

)
=

k

∑
i=1

ξ̃i ãi
e−(ãiX+b̃i)

1 + e−(ξ̃iX+b̃i)
2 , (19)

d2θ̂

dX2 =
H

∑
i=1

ξ̃i
d2

dX2 f
(
ãiX + b̃i

)
=

k

∑
i=1

ξ̃i ãi
2

 2e−2(ãiX+b̃i)(
1 + e−(ãiX+b̃i)

)3 −
e−(ãiX+b̃i)(

1 + e−(ãiX+b̃i)
)2

. (20)

A combination of Equations (18)–(20) is used to construct a fitness function of the
problem in Equations (14)–(16) using the error in an unsupervised manner (based on the
sum of mean-squared errors) which is defined as follows

Minimize = = =1 +=2, (21)

where, =1 and =2 correspond to the mean square error functions of the differential equation
and the boundary conditions, respectively. For linear, quadratic and exponential FGM, =1
is defined as

=1 =
1
N

N

∑
k=1

(
d2θ̂k
dX2 + Xβ

d2θ̂k
dX2 + β

dθ̂k
dX
− Nc

(
θ̂k − θa

)2 − Nr
(

θ̂4
k − θ4

a

)
−

m2
(
θ̂k − θa

)p+1

(1− θa)
p

)2

, (22)

=1 =
1
N

N

∑
k=1

(
d2θ̂k
dX2 + αX2 d2θ̂k

dX2 + 2αX
dθ̂k
dX
− Nc

(
θ̂k − θa

)2 − Nr
(

θ̂4
k − θ4

a

)
−

m2
(
θ̂k − θa

)p+1

(1− θa)
p

)2

, (23)

=1 =
1
N

N

∑
k=1

(
eβX d2θ̂k

dX2 + βeβX dθ̂k
dX
− Nr

(
θ̂4

k − θ4
a

)
− Nc

(
θ̂k − θa

)2 −
m2
(
θ̂k − θa

)p+1

(1− θa)
p

)2

, (24)

where, N = 1/h denotes the number of grid points from [0, 1] and h is a stepsize. The error
function for boundary conditions is defined as

=2 =
1
2

(θ̂(0)− 1
)2

+

(
dθ̂(1)

dX
− 0

)2
. (25)

It is evident from the above formulation and error term that the approximation θ̂(X)
approaches the original/exact solution θ(X) when the error terms =1 and =2 approach
to zero.

3.2. Optimization Procedure

The optimization of Equation (21) is based on a hybrid procedure of global and local
search optimization techniques, using the Tiki-Taka algorithm and sequential quadratic
programming. A brief overview of the algorithm is provided below.

3.2.1. Tiki-Taka Algorithm

Tiki-Taka is a style of play popularised by the Spanish national team and the football
club of Barcelona (BCF). It is distinguished by constant movement of the players, short
passes, and complete mastery of the ball at all times. Physical football, which emphasises
physical power, man-marking and sprinting ability of the competitor, is diametrically op-
posed to the Tiki-Taka style of play. Tiki-Taka is a kind of soccer that requires only a limited
number of competent players since emphasis is on rapid movements and precise placement
of players. These players are the most important for the team, and their performance
determines how quickly the game progresses.

The Tiki-Taka Algorithm (TTA) is a meta-heuristic approach that was developed by
M. Rashid [48] in 2020. It imitates the two primary features of the Tiki-Taka style, which
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are short rapid passing and player mobility. TTA was named after the Tiki-Taka style of
play. In a real game of football, the players line up in the shape of triangles and begin
tackling their opponents by passing the ball back and forth within the triangle as shown
in Figure 2. The players then work to improve their position by observing where the ball
and the other key players are located. The TTA models the performance of several crucial
players to increase a convergence of solutions. The search strategy of TTA is divided into
the following phases.

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Figure 2. Schematic of the passing of ball between the players using Tiki-Taka style.

Initialization: During this phase, a football team with n number of players is consid-
ered using their baseline positions in d bounded directions. The lower and upper limits
are assumed to be (LB) and (UB), respectively. Concurrently, 10% of the entire participants,
or at least three individuals, are recognised as being important players, and this identi-
fication is symbolised by nk. The matrices B and P, are used to hold information on the
position/location of the ball and the players, respectively. The starting/initial positions of
the players are determined by Equation (26).

pt+1
i = LB + rand()× (UB− LB). (26)

The starting position of the player, is denoted by P, which is ranked according to the
objective function. Initially, B is equivalent to P. At the end of each iteration, the placement
of the key/ crucial player nk will have been updated. Equations (27) and (28) highlight the
respective matrices.

B =


b1,1 b1,2 · · · b1,d
b2,1 b2,2 . . . b2,d

...
...

. . .
...

bn,1 bn,2 · · · bn,d

, (27)

P =


p1,1 p1,2 · · · p1,d
p2,1 p2,2 · · · p2,d

...
...

. . .
...

pn,1 pn,2 · · · pn,d

. (28)

Update ball position: The TT algorithm makes use of a Tiki-Taka playing style, which
places a strong emphasis on rapid passing. The ball moves from one player to the next
player who is physically closest to them. Of all the passes, 10–30 percent are deemed to be
failed passes. This percentage varies from 0.1 to 0.3, and is expressed using a parameter
of probability ℘. The updated position of the ball is expressed by Equation (29) and the
process is shown in Figure 3.
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bt+1
i =

 rand
(

bt
i − bt+1

i

)
+ bt

i , rp > ℘

bt
i + (c1 + rand)

(
bt+1

i − bt
i

)
, rp ≤ ℘

(29)

where, rp is a random integer with a constant distribution. The exploitation phase (success-
ful passes) of TTA is represented by rp > ℘ and the unsuccessful passes, i.e., the exploration
phase, is signified by rp ≤ ℘. The impact of the ball’s reflection magnitude in a failed pass
is represented by the coefficient c1, which can take values between 0.5 and 1.5. The ith, and
(i + 1)th positions of the ball are denoted by bt

i and bt+1
i , respectively.
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Figure 3. (a,b) Shows the updated positions of ball and the player during the optimization proves.

Update player position: In TTA, when updating the position of the current player, the
locations of both the ball and the crucial player in the action are taken into consideration, as
shown in Figure 2. To determine the new position of the ith player, Equation (30) is applied.

pt+1
i = pt

i + rand ∗c2 ∗
(
bt

i − pt
i
)
+ rand ∗c3 ∗

(
h̄− pt

i
)
, (30)

here, h̄ denotes the current position of the ith player with respect to the ball and the crucial
player. This is the global best position which is taken into account by the coefficients c2 and
c3, respectively. The values of c2 and c3 lie between 1.0 to 2.5 and 0.5 to 1.5.

3.2.2. Sequential Quadratic Programming

Sequential quadratic programming (SQP) is an effective approach for the numerical
approximation of linear and non-linear multi-objective optimization problems (NLP) with
non-linear constraints. The fundamental concept of sequential quadratic programming
is to utilise a quasi-Newton updating method to generate an approximation of the com-
putationally intensive complete Hessian matrix. This causes a sub-problem of quadratic
programming to be generated at each iteration; this sub-problem is referred to as a QP sub-
problem, and the solution to this sub-problem can be utilised to define the search direction
and the next trial solution [49]. Backed by a solid theoretical and computational base, the
SQP algorithm has been extensively applied in both commercial and public domains to
find solutions for an exceptionally large number of significant practical problems, such as
the transient heat conduction problem [50], the non-linear predictive control model [51],
life-cycle optimization problems with non-linear state constraints [52], the water wave opti-
mization problem [53] and the design of heating systems in electric heating [54]. Figure 4
illustrates the suggested process for the ANN-TTA-SQP including its granularity.
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Figure 4. Graphical illustration of the working steps of hybrid technique of the Tiki-Taka algo-
rithm and local search processing of SQP for the training/optimization of neurons in feed-forward
architecture of ANN for the minimization of fitness functions in Equation (21).

4. Results and Discussion

The details of the implementation, validation and numerical (statistical) analysis of
the suggested (ANN-TTA-SQP) paradigm to explore the effects of different parameters
(e.g., wet porous parameter, non-dimensional ambient temperature, convection parameter,
in-homogeneity index, radiation, and power index) on the thermal distribution of a fin
with linear, quadratic and exponential thermal conductivities are discussed in this section.
A detailed comparison is presented between the results obtained using the suggested
technique (ANN-TTA-SQP) and those obtained using the particle swarm optimization
(PSO) algorithm [55,56], the grey wolf optimization (GWO) algorithm [57], the whale
optimization algorithm (WOA) [58], the cuckoo search algorithm (CSA) [59], and a data-
fitting-based machine learning strategy [60], as shown in Table 1. The accuracy of the results
is tested by the values of mean square error. The percentage absolute errors in the solutions
of thermal distribution of a porous heat exchanger with different (i.e., linear, quadratic and
exponential) heat conductance profiles are shown in Table 2. The values of the percentage
absolute errors for different scenarios range between 10−2 to 10−4 which validates the
efficiency of the solutions. The closed form of the approximate solutions for linear, quadratic
and exponential FGM fins for variations in θa with Nr = 5, Nc = 10, β = p = m2 = α = 1
are given in Appendix A.
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Table 1. Examination of the differences between the approximated results and mean square errors
obtained by the proposed algorithm with PSO, CSA, GWO, and FFNN-BLM algorithms for thermal
distribution of fully wetted longitudinal FGM fin with linear thermal conductivity for θa = 0.6,
Nr = 5, Nc = 10, β = p = m2 = α = 1.

Approximate Solution Mean Square Errors

X PSO CSA WOA GWO FFNN-BLM ANN-TTA-
SQP PSO CSA WOA GWO FFNN-BLM ANN-TTA-SQP

0 0.999711 1.000306 0.999667 0.999504 0.999945 1.000001 2.275× 10−8 5.081× 10−8 8.432× 10−9 3.743× 10−8 1.407× 10−9 2.148× 10−11

0.1 0.887736 0.888135 0.887723 0.887571 0.887901 0.887954 8.253× 10−7 1.414× 10−7 2.609× 10−7 1.404× 10−6 1.223× 10−7 2.037× 10−10

0.2 0.817149 0.817429 0.817140 0.817001 0.817260 0.817297 4.688× 10−6 9.814× 10−7 6.690× 10−7 7.370× 10−6 8.965× 10−7 1.702× 10−9

0.3 0.770009 0.770241 0.770031 0.769846 0.770111 0.770156 2.351× 10−6 8.038× 10−7 4.663× 10−7 3.568× 10−6 7.725× 10−7 4.539× 10−9

0.4 0.737502 0.737702 0.737539 0.737317 0.737594 0.737637 1.765× 10−6 1.834× 10−7 1.238× 10−7 2.665× 10−6 2.078× 10−7 7.022× 10−10

0.5 0.714736 0.714904 0.714770 0.714520 0.714809 0.714842 6.404× 10−7 2.978× 10−7 2.256× 10−7 1.286× 10−6 3.261× 10−7 1.051× 10−9

0.6 0.698784 0.698937 0.698823 0.698519 0.698847 0.698884 2.715× 10−6 4.156× 10−7 3.335× 10−7 4.165× 10−6 5.494× 10−7 2.095× 10−11

0.7 0.687842 0.688008 0.687907 0.687509 0.687915 0.687972 2.980× 10−7 3.983× 10−10 1.082× 10−10 9.148× 10−8 2.936× 10−9 2.581× 10−10

0.8 0.680782 0.680978 0.680884 0.680373 0.680877 0.680957 1.521× 10−6 5.003× 10−7 4.015× 10−7 4.100× 10−6 5.490× 10−7 4.603× 10−11

0.9 0.676882 0.677108 0.677015 0.676395 0.676995 0.677087 2.711× 10−6 4.119× 10−7 3.176× 10−7 4.277× 10−6 5.757× 10−7 6.330× 10−12

1 0.675655 0.675904 0.675807 0.675080 0.675777 0.675874 1.872× 10−6 6.511× 10−7 6.444× 10−7 6.155× 10−6 6.027× 10−7 1.375× 10−10

Table 2. Thepercentages of absolute errors in the solutions that were calculated by the ANN-TTA-SQP
method for different values of θa with Nr = 5, Nc = 10, β = p = m2 = α = 1.

Linear FGM Quadratic FGM Exponential FGM

X 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.00 0.00005 0.00028 0.00046 0.00077 0.00018 0.00057 0.00013 0.00019 0.00077 0.00021 0.00040 0.00035
0.10 0.00006 0.00118 0.00143 0.00450 0.00186 0.00219 0.00116 0.00064 0.00035 0.00042 0.00056 0.00317
0.20 0.00093 0.00531 0.00413 0.00999 0.00538 0.00309 0.00361 0.00110 0.00020 0.00200 0.00176 0.00963
0.30 0.00242 0.00696 0.00674 0.00665 0.00858 0.00528 0.00315 0.00167 0.00169 0.00436 0.00437 0.00989
0.40 0.00531 0.00040 0.00265 0.00336 0.00184 0.00312 0.00179 0.00118 0.00057 0.00351 0.00475 0.00268
0.50 0.00460 0.00257 0.00324 0.00206 0.00475 0.00372 0.00220 0.00149 0.00320 0.00235 0.00353 0.00651
0.60 0.00243 0.00220 0.00046 0.00516 0.00208 0.00098 0.00277 0.00072 0.00085 0.00272 0.00333 0.00497
0.70 0.00680 0.00163 0.00161 0.00362 0.00192 0.00347 0.00005 0.00017 0.00320 0.00320 0.00484 0.00193
0.80 0.00265 0.00210 0.00068 0.00343 0.00431 0.00159 0.00258 0.00118 0.00302 0.00112 0.00091 0.00535
0.90 0.01247 0.00690 0.00025 0.00864 0.00267 0.00162 0.00190 0.00288 0.00119 0.00409 0.00593 0.00196
1.00 0.00668 0.00535 0.00117 0.00651 0.00460 0.00030 0.00227 0.00382 0.00353 0.00231 0.00432 0.00367

The influence that the surrounding (ambient) temperature has on the thermal distribu-
tion of the FGM heat exchanger with different thermal conductivities is shown in Figure 5.
Of note is that the thermal profile continues to decline throughout the axial length of the
fin; in addition, a lower thermal profile is observed for lower ambient temperatures. The
air temperature surrounding the porous heat exchanger’s surface affects the rate at which
heat is transferred away from the fin. The thermal difference between the surroundings
and the fin becomes less pronounced as the temperature of the surrounding area increases.
According to the rule of cooling established by Newton, there will be a consequent reduc-
tion in the cooling effect of the fin. It is clear, based on what can be seen in the figure, that
the heat transmission rate is greater in FGM fins with exponential thermal conductivity
than in those with linear or quadratic thermal conductance.
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Figure 5. The effect of (θa) surrounding temperature on the heat dispersion profile of the fully wetted
longitudinal porous fin with Nr = 5, Nc = 10, β = p = m2 = α = 1 .

Figure 6 is plotted to investigate how convection parameter variations affect the
fin’s temperature profile. Convection around the FGM fin involves a transfer (loss) of
heat/energy to the surroundings. It was observed that when the convective parameter was
amplified, i.e., from 1 to 50, there was a rapid decrease in the temperature of the FGM fin.
The temperature of the fin dropped as a direct result of an improvement in the convective
state, which caused rapid heat transfer from the fin to the surroundings. Because of this,
it can be deduced that lower values of the convective parameter are preferable for the
thermal properties of the fin in terms of its efficiency. The significance of the radiation
parameter on the temperature field of the fully wetted longitudinal fin is seen in Figure 7.
The temperature of the heat exchanger’s tip dropped rapidly because heat was lost through
the process of radiative heat transfer. In addition, when the values of Nr rose from 1 to
10, the temperature decreased exponentially at a particular axial point. This resulted in a
faster cooling of the heat exchanger. Figure 8 shows the effect of the value of the parameter
for moist porous media on the thermic profile of the FGM heat exchanger. It is evident
that the wet environment surrounding the fin contributes to the absorption of additional
heat originating from the top of the fin, which decreases the fin’s temperature profile. As a
result, when the wet porous parameter is improved, there is a higher level of heat exchange
on the surface of the fin, and the temperature profile is observed to be less severe.
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Figure 6. Graphical illustration of influence of convection parameter on thermal profile of the linear,
quadratic and exponential FGM fin with Nr = 5, θa = 0.2, β = p = m2 = α = 1.
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Figure 7. Demonstration of influence of radiation parameter on temperature distribution of FGM fin
with Nc = 10, θa = 0.2, β = p = m2 = α = 1.
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Figure 8. Significance of (m2), parameter for a moist porous medium on the heat dispersion profile
of linear, quadratic and exponential FGM fins with Nr = 5, Nc = 10, β = p = α = 1, θa = 0.2.

The relative importance of the convective heat transfer coefficient is indicated by the
sign p and is referred to as the exponent. Depending on the value of the power index, a
different fluid flow regime will occur. The influence of the power index on the temperature
performance of a fully wetted FGM fin is illustrated in Figure 9. A closer examination of
the data demonstrates that an increase in the value of p leads to a rise in temperature all
the way down the axial length. This results in a lower rate of heat transfer. As a result, a
smaller value for p will result in a greater cooling impact. Figure 10 illustrates the impact of
variations in α and β (inhomogeneity index) on the dimensionless thermal profile, as well as
the rate of heat transfer from the fin. It is clear that a higher value for the non-homogeneous
index results in a faster rate of heat transfer. The non-linear condition is also improved by
increasing the in-homogeneity index. The quadratic FGM exhibits the lowest temperature
out of the three different examples of thermal conductivity, while the exponential FGM fin
exhibits the greatest temperature.
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Figure 9. Illustration of variations in power index on temperature distribution of fully wetted
longitudinal fin for different thermal conductivities with Nr = 5, Nc = 10, β = m2 = α = 1, θa = 0.2.
(a) p = 0, (b) p = 1, (c) p = 2.
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Figure 10. Impact of variations in α and β (inhomogeneity index) on thermal profiles of fully wetted
longitudinal fin for different thermal conductivities with Nr = 5, Nc = 10, m2 = 1, θa = 0.2. (a) p = 0,
(b) p = 1, (c) p = 2.

5. Statistical Analysis

In this section, the results of comparative studies are presented using statistical re-
sults from several iterations to determine the accuracy, stability, and convergence of the
proposed paradigm. To calculate the solutions for the thermal profile of the fin given in
Equations (14)–(16), a developed soft computing paradigm was executed for a hundred
individual tests/runs. The errors in the solutions for different variants in ambient tempera-
ture with Nr = 5, Nc = 10, β = p = m2 = α = 1 were calculated based on performance
functions, such as Theil’s inequality coefficient (TIC), root mean square error (RMSE),
mean absolute deviations (MAD), and error in the Nash–Sutcliffe efficiency (ENSE). The
mathematical representation of the various performance indicators is as follows:

TIC =

√
1
N ∑N

k=1
(
θ̂(Xi)− θ(Xi)

)2√
1
N ∑N

k=1
(
θ̂(Xi)

)2
+
√

1
N ∑N

k=1(θ(Xi))
2

, (31)

RMSE =

√√√√ 1
N

N

∑
k=1

(
θ̂(Xi)− θ(Xi)

)2
, (32)

MAD =
1
N

N

∑
k=1

(∣∣θ̂(Xi)− θ(Xi)
∣∣), (33)

ENSE = |1− NSE|, (34)
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where, NSE is the Nash—Sutcliffe efficiency and is defined as

NSE = 1−

 ∑N
k=1
(
θ̂(Xi)− θ(Xi)

)2

∑N
k=1

(
θ(Xi)− 1

N ∑N
k=1(θ(Xi))

)2

, (35)

where, θ̂ and θ are the approximate and reference solutions, respectively, and N denotes
the number of grid points.

Table 3 demonstrates the statistics of the error functions calculated during the multiple
executions. The mean objective values for each case lie around 10−6 to 10−5 with standard
deviations of 10−11 to 10−10. The minimum values of MAD, TIC, RMSE and ENSE lie
between 10−7 to 10−6, 10−8 to 10−7, 10−7 to 10−5, and 10−10 to 10−8, respectively. Further,
the convergence and stability of the results is demonstrated by the results of objective value
during 100 runs, as shown in Figure 11. The average distance between the approximated
solution and reference solution is shown through Figure 12. The median values for linear,
quadratic and exponential FGM lie around 10−5 to 10−4 which confirms the correctness of
the estimated solutions. The results of TIC and ENSE are plotted in Figures 13 and 14. The
values of the performance indicators are close to zero reflecting the accuracy, stability and
reliability of the modeled surrogate solutions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Graphicalillustration of the behaviour of objective function during minimization using
the proposed hybrid algorithm for approximate solutions of fully wetted longitudinal fin with
(a–c) linear (d–f) quadratic and (g–i) exponential thermal conductivities. Here, red, green and black
lines represents the minimum, median and mean values of each case.
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nal porous fin.

Table 3. Statistical analysis of the performance indicators (i.e., fitness value, MAD, TIC, ENSE) for
different cases obtained during multiple executions of the designed approach.

Objective Value MAD TIC RMSE ENSE
FGM

θa Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

0.2 3.15593× 10−8 5.23053× 10−5 3.48355× 10−6 9.05907× 10−5 2.23690× 10−6 3.84823× 10−5 5.69178× 10−6 9.78890× 10−5 4.52603× 10−9 8.41693× 10−6

0.4 1.73192× 10−8 2.63399× 10−5 7.26234× 10−7 8.60390× 10−5 4.51628× 10−7 3.19952× 10−5 1.31699× 10−6 9.32698× 10−5 3.16279× 10−10 1.52964× 10−5

0.6 8.69232× 10−9 4.39994× 10−6 1.10382× 10−6 5.75917× 10−5 4.36155× 10−7 1.94033× 10−5 1.43176× 10−6 6.36855× 10−5 1.35244× 10−9 9.66485× 10−6Linear

0.8 3.48950× 10−8 1.52920× 10−5 3.46206× 10−6 6.72115× 10−5 1.13085× 10−6 2.11378× 10−5 4.22472× 10−6 7.89558× 10−5 4.36061× 10−8 4.49682× 10−5

0.2 5.72905× 10−9 1.77032× 10−5 3.31079× 10−6 3.96153× 10−5 1.64992× 10−6 1.81133× 10−5 4.12421× 10−6 4.52704× 10−5 3.80597× 10−9 1.76396× 10−6

0.4 8.44298× 10−9 4.85792× 10−6 7.60630× 10−7 4.73085× 10−5 3.37606× 10−7 1.93106× 10−5 9.72378× 10−7 5.56096× 10−5 3.22981× 10−10 4.01069× 10−6

0.6 5.54459× 10−9 2.70528× 10−6 1.10470× 10−6 4.14064× 10−5 4.27882× 10−7 1.48472× 10−5 1.39391× 10−6 4.83595× 10−5 1.26696× 10−9 7.29760× 10−6Quadratic

0.8 3.34359× 10−9 1.10636× 10−5 1.64112× 10−6 4.71864× 10−5 5.47044× 10−7 1.53394× 10−5 2.03774× 10−6 5.71307× 10−5 9.30882× 10−9 2.82836× 10−5

0.2 4.92075× 10−9 5.62125× 10−5 7.47090× 10−6 5.71984× 10−5 3.94914× 10−6 2.47741× 10−5 1.00903× 10−5 6.32870× 10−5 2.14259× 10−8 3.41590× 10−6

0.4 8.20482× 10−9 2.82506× 10−6 1.66266× 10−6 3.57714× 10−5 8.53873× 10−7 1.37292× 10−5 2.49717× 10−6 4.01484× 10−5 1.70630× 10−9 2.04150× 10−6

0.6 1.47040× 10−8 2.24315× 10−6 8.75080× 10−7 3.81599× 10−5 3.23961× 10−7 1.29419× 10−5 1.06533× 10−6 4.25542× 10−5 8.73426× 10−10 4.80864× 10−6
Exponential

0.8 3.24693× 10−8 1.69856× 10−5 1.74177× 10−6 4.71163× 10−5 5.11451× 10−7 1.52643× 10−5 1.91190× 10−6 5.70505× 10−5 1.12716× 10−8 3.52692× 10−5
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Figure 14. Analysis on ENSE values.

6. Conclusions

The thermal behaviour of a porous longitudinal heat exchanger under completely
wetted circumstances with linear, quadratic, and exponential thermal conductivities in the
presence of convection, conduction, and radiative environments was investigated. Some
implications of the results of the numerical experiments undertaken are discussed below.

• A novel unsupervised framework for an intelligent method was designed to construct
surrogate solutions for the governing non-linear mathematical model of a fully wetted
longitudinal FGM fin. The ANN-TTA-SQP algorithm was implemented to investigate
the significance of variations in the dimensionless ambient temperature, parameter
for a moist porous medium, convection parameter, in-homogeneity index, radiation
parameter, and power index on the temperature distribution of the FGM fin with
multiple fluctuations in thermal conductance.

• The approximate solutions obtained were validated by comparing the statistics with
state-of-the-art-techniques, including the particle swarm optimization (PSO) algorithm,
the cuckoo search algorithm (CSA), the whale optimization algorithm (WOA), the grey
wolf optimization (GWO) algorithm and the machine learning algorithm. Minimum
values of the mean square errors were observed in the solutions of the proposed
technique.

• The thermal distribution in the fin fell when the values of the convective coefficient,
radiation coefficient, and parameter for a moist porous medium increased. Increase
in the ambient temperature, power index and inhomogeneity parameters caused an
increase in the dispersion of the temperature over the heat exchanger.

• Extensive, graphical and statistical analyses were conducted on different error func-
tions, as shown in Figures 11 and 14 and Table 3. The results of these error functions
were close to zero, highlighting the approximate solutions’ accuracy and stability.

The results demonstrate the broad applicability, ease of implementation and the ability
of the meta-heuristic ANN-TTA-SQP technique to generate optimal solutions for complex
engineering problems using an unsupervised approach. The suggested method is highly
efficient, but there is a possibility that an increase in the number of layers of ANN might
result in an increase in complexity, which would then lead to an increase in the computing
cost of the approach. In future, the authors intend to extend the applicability of the
proposed algorithm to solve fractional differential equations with ease of implementation.
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Appendix A

The surrogate models of the approximate solution by the proposed algorithm with
θa = 0.2, Nr = 5, Nc = 10, β = p = m2 = α = 1 for linear, quadratic and exponential FGM
fins are given as

θ̂(X) =
5.2319706774108

1 + e−(−9.0174471099191X−4.8037378206144)

+
1.1517807658600

1 + e−(10.0153389443112X+2.3861946260666)

+
5.2603503863984

1 + e−(−9.2669382027649X−4.7381310318575)

+
4.9472485524332

1 + e−(−3.3514170802408X−2.7355200886260)

+
5.2411516708522

1 + e−(−9.1013926815623X−4.7827875635947)

+
5.2575529681820

1 + e−(−9.2429522929616X−4.7448830188287)

+
−4.9400034747211

1 + e−(0.3161064753771X−1.6336501804583)

+
2.8456511470294

1 + e−(1.1325396664316X−3.2194699842445)

+
5.2595364334957

1 + e−(−9.2591891766676X−4.7403287007454)

+
4.9249246883600

1 + e−(−2.9605398120784X−3.7004144336356)
,

(A1)
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θ̂(X) =
2.5996762736234

1 + e−(0.6936840655374X−3.1464328348186)

+
5.3991032099844

1 + e−(−8.3099946252118X−4.2978574812081)

+
5.4010296760841

1 + e−(−8.4814850547403X−4.2650425389429)

+
5.0190472445167

1 + e−(−3.1038750037864X−2.2568089389813)

+
5.3971472989380

1 + e−(−8.4347989650427X−4.2771012013520)

+
5.4014731341605

1 + e−(−8.4485006001798X−4.2732908438367)

+
5.3995559736441

1 + e−(−8.3903641086452X−4.2859730790917)

+
3.7570901765922

1 + e−(−1.0117997765190X−3.1266718049610)

+
−5.8729759935637

1 + e−(−8.7265158368824X−3.1333538172663)

+
0.1358079459200

1 + e−(5.5948285789310X+9.4505713834768)
,

(A2)

θ̂(X) =
5.7228769847148

1 + e−(−10.1221284100217X−4.5629538618760)

+
5.7378619596568

1 + e−(−10.1747587611975X−4.6041959521860)

+
2.1067512245631

1 + e−(0.4551219479018X−1.9857691604640)

+
3.0341535540965

1 + e−(−4.4354251482154X−2.2908431223331)

+
5.6788013314162

1 + e−(−9.9959724260956X−4.4740986532182)

+
2.0918110785249

1 + e−(−1.8563249944392X−1.4950589293630)

+
−4.1409229506270

1 + e−(−2.3757549644885X−5.7435450648245)

+
5.6604709547874

1 + e−(−9.9538057373586X−4.4497497830332)

+
−6.0559476407904

1 + e−(−10.3200444077758X−3.3416669289871)

+
5.7261448894420

1 + e−(−10.1332450221331X−4.5715300276205)
.

(A3)
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The approximate series solutions by the proposed algorithm with θa = 0.6,
Nr = 5, Nc = 10, β = p = m2 = α = 1 for linear, quadratic and exponential FGM
fins are given as

θ̂(X) =
5.09123125514838

1 + e−(−8.00125135475102X−5.12998804376921)

+
5.14828586545177

1 + e−(−8.61027220800411X−5.01627048086581)

+
1.46123045178600

1 + e−(−3.73819763382428X−2.18468465809794)

+
4.42747789978089

1 + e−(1.47555025377336X−6.09122375819261)

+
0.11991446542044

1 + e−(−1.63963559160162X−0.29203495502782)

+
4.76283287895868

1 + e−(−2.22248850584292X−3.74137659108675)

+
5.16222820286248

1 + e−(−8.73758353998793X−4.98748458228049)

+
−0.07660777695160

1 + e−(−1.67572027828014X−4.96562956333075)

+
0.60127726611450

1 + e−(9.05660017421765X+2.42347804932216)

+
5.09050622423362

1 + e−(−8.00597374664803X−5.12927397595689)
,

(A4)

θ̂(X) =
5.22517422834494

1 + e−(−6.41984648160911X−4.08466173002864)

+
0.68639691202245

1 + e−(−0.71148216272193X−2.60921275409783)

+
5.22915535992465

1 + e−(−6.28304439566354X−3.90235510204152)

+
0.30332376328545

1 + e−(9.30524484225620X+2.11782068420427)

+
0.64127193088308

1 + e−(−2.88158875072922X−2.49313633012203)

+
3.60184887504373

1 + e−(−2.88844246070518X−2.67004217667965)

+
0.24968104523336

1 + e−(6.08237719164033X+1.02914086954798)

+
1.91262436735248

1 + e−(0.76203916763577X−4.47638700854838)

+
−0.67314751219772

1 + e−(−0.58859233819928X−4.22824615678859)

+
0.81078830289970

1 + e−(0.88729465140621X−4.02774045490415)
,

(A5)
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θ̂(X) =
4.58988239718294

1 + e−(−16.86864928901090X−9.05074733552389)

+
5.12197250974732

1 + e−(0.56894202922679X−4.32699843562991)

+
1.86683908487147

1 + e−(−3.60402918942503X−2.56293252562351)

+
3.93853954080051

1 + e−(−6.78951822598455X−4.35454589205731)

+
4.03548111999605

1 + e−(−8.01134104175979X−4.4740986532182)

+
4.73680318573584

1 + e−(−16.99433487552000X−8.59731123953630)

+
4.99138372074869

1 + e−(−16.40650186119620X−7.51064988945246)

+
5.30103774259913

1 + e−(−1.92605242359835X−3.37557526725779)

+
4.90515480883950

1 + e−(−16.69462438316830X−7.90735969198721)

+
0.53322333341375

1 + e−(21.26556313830660X+6.70274449755335)
.

(A6)
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