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Abstract: Dengue fever is a tropical disease transmitted mainly by the female Aedes aegypti mosquito
that affects millions of people every year. As there is still no safe and effective vaccine, currently
the best way to prevent the disease is to control the proliferation of the transmitting mosquito.
Since the proliferation and life cycle of the mosquito depend on environmental variables such as
temperature and water availability, among others, statistical models are needed to understand the
existing relationships between environmental variables and the recorded number of dengue cases and
predict the number of cases for some future time interval. This prediction is of paramount importance
for the establishment of control policies. In general, dengue-fever datasets contain the number of
cases recorded periodically (in days, weeks, months or years). Since many dengue-fever datasets
tend to be of the overdispersed, long-tail type, some common models like the Poisson regression
model or negative binomial regression model are not adequate to model it. For this reason, in this
paper we propose modeling a dengue-fever dataset by using a Poisson-inverse-Gaussian regression
model. The main advantage of this model is that it adequately models overdispersed long-tailed
data because it has a wider skewness range than the negative binomial distribution. We illustrate the
application of this model in a real dataset and compare its performance to that of a negative binomial
regression model.

Keywords: dengue fever; poisson regression model; negative binomial regression model; Poisson
inverse Gaussian regression model; maximum likelihood estimation

1. Introduction

According to the world health organization (WHO), dengue fever is a mosquito-borne
viral infection that is common in warm, tropical climates. The female of the Aedes aegypti
mosquito is the main transmitter of the disease, which is caused by four serotypes of
a flavivirus, called DENV1, DENV2, DENV3 and DENV4, classified on biological and
immunological criteria. As there is still no safe and effective vaccine, the most effective
ways to prevent outbreaks of the disease are still to avoid mosquito bites and control the
mosquito population [1].

Since the proliferation of the mosquito that transmits dengue depends on temperature,
water availability, and some other climatic factors to complete its cycle life, it is of interest
to understand the relationships between climatic variables and the recorded number of
dengue cases. The Poisson regression (PR) model has been used repeatedly for such
applications. For example, Leslie [2] studies the climatic factors that affect the spread of
dengue in the city of Colombo, Sri Lanka from the period of 2010 to 2018, using as a primary
model a Poisson regression model. Sinaga and Sinulingga [3] model the number of dengue
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hemorrhagic fever cases in the city of Medan using a Poisson regression model. The authors
consider as explanatory variables population density, number of health workers, number of
health facilities, area height, and average waste production. Mukhaiyar et al. [4] propose
to predict the number of dengue fever cases in Bandung, West Java, Indonesia, in the period
2001–2016, by fitting a Poisson regression model using the temperature and cumulative
rainfall as explanatory variables. In these approaches, the observed values for a response
variable are taken as having been generated from a Poisson distribution. Using the theory
of generalized linear models [5], a log-linear relationship is constructed relating the average
value of the response variable to a set of p explanatory variables.

An essential assumption of the Poisson regression model is that the mean of the re-
sponse variable is equal to the variance, a property known as equidispersion. However,
dengue-fever data, in general, do not have this property. Therefore, the Poisson regres-
sion model is not suitable for modeling such data, because the standard errors may be
underestimated, leading to misleading inference from the regression.

For the scenario of overdispersed data, i.e., the variance of the response variable
being greater than its average, the usual statistical approach consists of considering a
negative binomial regression (NBR) model. Under this approach, it is assumed that the
response variable values are generated according to a negative binomial distribution. This
distribution is a mixture of a Poisson distribution and a Gamma distribution. Analogously
to the PR model, this approach also links the response variable’s average value to a set of p
explanatory variables by using a log-linear relationship. However, the NBR model is not
adequate to model long-tailed datasets, i.e., datasets in which there are some very large
integer values far away from the majority [6–8].

Therefore, we propose modeling a dengue-fever dataset by using the Poisson-inverse-
Gaussian regression (PIGR) model as a competitor to the NBR model. In this model,
response-variable values are assumed to be generated according to a Poisson-inverse-
Gaussian distribution. This distribution is a mixture of a Poisson distribution and an
inverse-Gaussian distribution. The main advantage of this distribution is that it may
properly model overdispersed long-tail data because it has a larger range of skewness than
a negative binomial distribution [9–12]. For this model, we also link the expected value of
the response variable to a set of p explanatory variables by using a log-linear relationship.

We illustrate the fitting of the NBR and PIGR models to a real data set D, referring to
the number of cases of dengue fever recorded in the city of Campo Grande, Mato Grosso
do Sul state, Brazil, in the period from January 2008 to December 2019. The dataset D
is an excel sheet composed of 144 lines and 6 columns. The first column contains the
recorded number of dengue-fever cases in each of the 144 months considered in the study.
Columns 2 to 6 contain the recorded values for the following explanatory variables: month,
the average temperature in the month, the average humidity in the month, the number of
rainy days in the month, and rainfall in the month.

To estimate the model parameters, we adopt the maximum-likelihood method. Since
the maximum-likelihood estimators do not have explicit mathematical solutions, we obtain
the estimates numerically by using the R software [13] and the command gamlss of the
Generalized Additive Model for Location, Scale and Shape (GAMLSS) package [14]. Accord-
ing to Stasinopoulos et al. [15], “the GAMLSS were introduced by Rigby and Stasinopoulos
(2001, 2005) [14,16] and Akantziliotou et al. (2002) [17] as a way of overcoming some of the
limitations associated with Generalized Linear Models (GLM) and Generalized Additive
Models (GAM)”. The two main advantages of a GAMLSS model are: (i) it assumes that the
response (dependent) variable may follow any parametric distribution and not just distri-
butions belonging to an exponential family, and (ii) all the parameters of the probability
distribution of the response variable can be modelled as functions of the available explana-
tory variables. More details on GAMLSS package may be found in its manual available on
the website http://www.gamlss.com/wp-content/uploads/2013/01/gamlss-manual.pdf
(accessed on 15 March 2022).

http://www.gamlss.com/wp-content/uploads/2013/01/gamlss-manual.pdf
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We also compare the performance of the NBR and PIGR models by using the Akaike
Information criterion [18,19], denoted by AIC, and the Bayesian Information criterion [20],
denoted by BIC, and the Root Mean Square Error (RMSE). We also fit both models by
considering a P-spline term for the month variable since it has cyclical values, and smooth
terms for continuous variables. For this, we use the pbc() and pb() functions inside the
gamlss function. Based on the AIC, BIC and RMSE values, the PIGR model was considered
the best model. We also present the quantile-quantile normal plot and worm plot for the
randomized quantile residuals [21] generated from the NBR and PIGR fitted models. Both
graphs also show PIGR performing better than NBR.

The three main advantages of the proposed modeling are: (i) present better perfor-
mance in relation to the usual approaches, which are based on the fitting of PR and NBR
models; (ii) the fitted model shows that every year a peak will occur, and that the only way
to avoid this peak is by the implementation of actions to combat the proliferation of the
transmitting mosquito; and (iii) the fitted model shows in which the months of the year
combat actions must be implemented.

The remainder of the paper is organized as follows. In Section 2, we describe the PR,
NBR and PIGR models and present the estimation procedure. Section 3 presents the main
results, including the comparison of the NBR and PIGR models and the residual analysis.
Section 4 presents the final remarks.

2. Statistical Modeling

Let y = (y1, . . . , yn) be a vector of data composed of the number of dengue-fever cases
recorded in a period of n months in a country, state, or city. Assume that recorded value yt
is a realization of the random variable Yt, for Yt ∈ Y = {0, 1, 2, 3, . . .}.

In addition, assume that measurements of p explanatory variables are available, de-
noted by X1, . . . , Xp, that can be associated with mosquito reproduction and dengue trans-
mission, and consequently also associated with the number of recorded cases of dengue.
Consider x to be an n× (p + 1) matrix in which the first column contains only values 1
and columns 2 to p + 1 are composed of the recorded measurements for variables X1 to Xp,
respectively. Denote the tth line of x by xt = (1, xt1, . . . , xtp), for t = 1, . . . , n.

2.1. Poisson Regression Model

Since random variable Yt is a discrete variable that counts the number of cases in a
time period of one month t, it is usual to assume that Yt follows a Poisson distribution with
parameter µt, i.e.,

Yt ∼ Poisson(µt),

where, µt = E(Yt) is the expected value of Yt, with µt > 0, t = 1, . . . , n. Its probability mass
function is given by

P(Yt = yt|µt) =
µ

yt
t e−µt

yt!
,

for yt ∈ Y and t = 1, . . . , n.
Using the theory of generalized linear models [5], we can link the expected value of Yt

to explanatory variables x through the following log-linear relationship:

η(µt) = log(µt) = βxt = β0 +
p

∑
j=1

β jxtj, (1)

where η(µt) is the linear predictor, β = (β0, β1, . . . , βp)′ is the vector of parameters of the
model and xt is the t-th line of the matrix x, for t = 1, . . . , n.

Given (y, x) the log-likelihood function for parameters β is given by

l(β|y, x) ∝
n

∑
t=1

ytβxt − exp{βxt}.
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In order to get the maximum-likelihood estimates for the parameters β, we first need
to determine the first-order partial derivatives of the log-likelihood function, which are
given by

∂l(β)

∂β j
=

n

∑
t=1

xtj

(
yt − exp

{
β0 +

p

∑
j=1

β jxtj

})
, (2)

for j = 0, . . . , p.
The maximum-likelihood estimates are the solutions of equations in (2) when they are

set to 0, ∂l(β)
∂β j

= 0, for j = 0, . . . , p. However, these equations do not have explicit analytic
solutions. Therefore, we apply numerical methods to solve these equations. We can obtain
the maximum-likelihood estimates β̂ of the parameters β using the R software [13] and the
function glm() [22].

Although the Poisson distribution is a natural choice for modeling the number of
dengue-fever cases recorded in a month, this distribution has the restriction that the
expected value is equal to the variance, E(Yt) = Var(Yt), for t = 1, . . . , n. Thus, before con-
sidering a Poisson regression model it is essential to check if recorded data present some
evidence for overdispersion or underdispersion.

Hinde and Demétrio [23] propose to check the evidence for overdispersion or under-
dispersion by using the index

IS =
S2

y − y
y

, (3)

where S2
y and y are the sampled variance and mean of the recorded values for Y, respectively.

The decision is based on the following interpretation: If IS = 0, the recorded data indicate
equidispersion, and the Poisson regression model can be used. On the other hand, if IS < 0,
the recorded data indicate underdispersion, and if IS > 0, the recorded data indicate
overdispersion. The Poisson regression model is not appropriate for nonzero IS.

Cameron and Trivedi [24] propose to check for evidence of overdispersion using a
hypothesis test. To do this, the authors assume that Var(Y) = µ + λµ2, and specify the
following statistical hypotheses H0 : λ = 0 versus H1 : λ > 0. The test statistic is calculated
according to the following four steps:

(i) Fitting a Poisson regression model;
(ii) Calculating the fitted values µ̂t, for t = 1, . . . , n;
(iii) Calculating the auxiliary values

Y∗t =
(yt − µ̂t)2 − yt

µ̂t
, for t = 1, . . . , n;

(iv) Fitting of an auxiliary linear model Y∗t = λµ̂t + εt, where εt is a random error, for
t = 1, . . . , n.

According to Cameron and Trivedi [24], the t-statistic for λ is asymptotically normal
under the null hypothesis of no overdispersion. The null hypothesis is rejected whenever
the p-value associated with the calculated statistic is smaller than a significance level α,
with 0 < α < 1. This overdispersion test may be performed in the R software using the
overdisp() function of the overdisp package [25]. For overdispersed data, an alternative
is to consider the negative binomial regression model.

2.2. Negative Binomial Regression Model

Assume Yt follows the negative binomial distribution with parameters µt and ν,

Yt ∼ NB(µt, ν),

for µt > 0, ν > 0, Yt ∈ Y and t = 1, . . . , n.
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According to [24], the negative binomial distribution that accomodates overdispersion
in the data has the following probability mass function:

P(Yt = yt|µt, ν) =
Γ
(
yt + ν−1)

Γ(ν−1)Γ(yt + 1)

(
ν−1

ν−1 + µt

)ν−1(
µt

ν−1 + µt

)yt

where Γ(·) is the gamma function. The expected value and variance of Yt are given by
E(Yt) = µt and Var(Yt) = µt + νµ2

t , respectively, for t = 1, . . . , n.
As it is in the PR model, the expected value for Yt in the NBR model is linked to

the explanatory variables X via a function of the form given in expression (1). The log-
likelihood function for the parameters (β, ν) is

l(β, ν|y, x) ∝
n

∑
t=1

At(ν)−
1
ν

log(1 + ν exp{βxt}) + ytβxt − yt log(1 + ν exp(βxt)) + yt log(ν),

where At(ν) = log
(

Γ
(

yt +
1
ν

))
− log

(
Γ
(

1
ν

))
, for t = 1, . . . , n.

The maximum-likelihood estimates are obtained by determining the first-order partial
derivatives of the log-likelihood function, then equating them to zero:

∂l(β, ν)

∂β j
=

n

∑
t=1

xt(j+1)

(
yt − exp{βxt}
1 + ν exp{βxt}

)
= 0;

∂l(β, ν)

∂ν
=

n

∑
t=1

[
∂At(ν)

∂ν
+

yt

ν
−
(

yt −
1
ν

)
exp{βxt}

1 + ν exp{βxt}
− 1

ν2 log(1 + ν exp{βxt})
]
= 0.

for j = 0, . . . , p.
These equations also do not have explicit solutions. Analogously to the case of the

Poisson regression model, we obtain the maximum-likelihood estimates
(

β̂, ν̂
)

of the
parameters (β, ν) using the R software, but for this case we use the gamlss() function from
the gamlss package [26] with the option family=NBI.

2.3. Poisson-Inverse-Gaussian Regression Model

As an alternative to the negative binomial model, consider that Yt follows the Poisson-
inverse Gaussian distribution with parameters µt and τ, i.e.,

Yt ∼ PIG(µt, τ),

for t = 1, . . . , n. This distribution is a mixture of a Poisson distribution and an inverse
Gaussian distribution. Let Yt|V follow a Poisson distribution with mean µtV, where V
follows an Inverse Gaussian distribution with mean equal to 1 and dispersion parameter
1/τ [8]. The marginal probability mass function for Yt is

P(Yt = yt|µt, τ) =
µ

yt
t

yt!

(
2

πτ

)0.5
exp{1/τ}(1 + 2τµt)

−St/2KSt(Ψt),

where St = yt − 1
2 , Ψt =

√
1+2τµt

τ and KSt(Ψt) is the modified Bessel function of second
kind [11], for t = 1, . . . , n.

Considering the link function given in Equation (1), the log-likelihood function for
parameters (β, τ) is given by

l(β, τ|y, x) ∝
n

∑
t=1

ytβxt −
log(τ)

2
+

1
τ
− S

2
log(1 + 2τ exp{βxt}) + log(KSt(Ψt)).
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Settting the first-order partial derivatives of the log-likelihood function equal to zero,
we obtain

∂l(β, τ|y, x)
∂β j

=
n

∑
t=1

[
xtj

(
yt −

τSt exp{βxt}
1 + 2τ exp{βxt}

)
+

∂ log(K(Ψt))

∂β j

]
= 0;

∂l(β, τ|y, x)
∂τ

= − n
τ2 −

n
2τ
−

n

∑
t=1

(
St exp{βxt}

1 + 2τ exp{βxt}
+

∂ log(K(Ψt))

∂τ

)
= 0,

for j = 0, . . . , p.
Since the maximum-log-likelihood equations are nonlinear, they cannot be solved ana-

lytically. Therefore, we obtain the maximum-likelihood estimates
(

β̂, τ̂
)

of the parameters
(β, τ) using the R software and the gamlss package’s gamlss() function, with the option
family = PIG.

Simulation Study for PIGR Model

Since the main focus of this article is to describe the performance of the PIGR model,
in this section we present a simulation study that illustrates the performance of this
model. For this purpose, we generated values Yt from a PIG distribution with param-
eters µt = exp(β0 + β1x1t + β2x1t) and τ = 1, for t = 1, . . . , n. The sample sizes considered
were n = {50, 100, 150, 200}. We set β0 = 1.5, β1 = 1.5 and β2 = −1 and generate values
for covariates X1 and X2 from the following normal distributions, X1t ∼ N (0, 1) and
X2t ∼ N (4, 1), for t = 1, . . . , n.

In order to verify the frequentist properties of the maximum-likelihood estimator
(MLE) θ̂ = (β̂0, β̂1, β̂2, τ̂) for the parameters of the PIGR model, we generate B = 1000 dif-
ferent artificial datasets for each sample size n and summarize the results in terms of the
average of estimates, bias, and mean square error (MSE). Table 1 shows these values for
each of the parameters. As one can note, as sample size increases, there is a reduction in
the bias and MSE values. These results show us empirically that there is no reason for
doubting that the ML estimator θ̂ satisfies the asymptotic properties of MLEs [27], i.e., θ̂ is
asymptotically consistent, unbiased, and is approximately a normal random variable.

Table 1. Average of estimates, bias and mean square error (MSE) values.

n = 50 n = 100

Parameter Average BIAS MSE Parameter Average BIAS MSE

β0 1.8198 0.3198 14.1991 β0 1.4642 −0.0357 0.2001
β1 −1.9400 −0.4400 7.9899 β1 −1.5418 −0.0418 0.2140
β2 −0.6580 −0.1580 1.3534 β2 −0.5136 −0.0136 0.0192
τ 1.2681 0.2681 0.4752 τ 1.1292 0.1292 0.2048

n = 150 n = 200

Parameter Average BIAS MSE Parameter Average BIAS MSE

β0 1.4623 −0.0376 0.0896 β0 1.4541 −0.0458 0.0579
β1 −1.5777 −0.0177 0.0978 β1 −1.4972 0.0027 0.0559
β2 −0.5036 −0.0036 0.0082 β2 −0.4982 0.0017 0.0055
τ 1.0774 0.0774 0.0843 τ 1.641 0.0641 0.0594

3. Application

In this section, we apply the PR, NBR and PIGR models to a real data set containing
the number of dengue-fever cases recorded in the city of Campo Grande, state of Mato
Grosso do Sul, Brazil, in the period from January 2008 (t = 1) to December 2019 (t = 144).

The city of Campo Grande is located in the transition zone between a humid mesother-
mal climate without drought and a humid tropical climate, with a rainy season in the
summer and a dry season in the winter. The city has its climate controlled by three char-
acteristic air masses: the Atlantic Polar Mass, coming from the south, the Continental
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Equatorial Mass, coming from the north and the Continental Tropical Mass, which forms in
the lower Chaco region. The rainy season runs from October to March. The average total
annual precipitation is 1225 mm. The relative humidity of the air presents values close to
80% from December to February. From March onwards, relative humidity shows a gradual
decline, reaching its minimum value of approximately 60% in August. From August on-
wards, the relative humidity of the air rises again. The average maximum temperature is
around 25 ◦C in the period from October to March [28].

Due to the favorable climate for the proliferation of the dengue-transmitting mosquito,
especially, between October and March, the city has a large number of dengue cases
recorded every year. A dengue-control strategy implemented by the city government is
based on the availability of health agents in city neighborhoods to provide information on
dengue and how to eliminate the transmitter mosquito. Additionally, the city government
has a program for cleaning neighborhoods to eliminate possible breeding sites of the
dengue-transmitting mosquito.

Thus, in order to contribute to the dengue surveillance system in the city of Campo
Grande—MS, this article proposes the fitting of a statistical model to identify the climatic
variables that can influence the number of dengue cases. Once the variables are identified,
the fitted model allows projections to and simulation of different scenarios of evolution of
the number of cases of the disease. Therefore, it can help in decision-making regarding the
implementation of measures to combat and/or control the vector that transmits the disease.

Results

Consider y = (y1, . . . , yn) to be the number of dengue-fever cases recorded in the city
of Campo Grande, MS state, Brazil, in the period from January 2008 (t = 1) to December
2019 (t = 164). These measures are freely available on the website http://tabnet.datasus.
gov.br/cgi/tabcgi.exe?sinannet/cnv/denguebbr.def (accessed on 10 November 2020) and
also can be obtained by emailing the authors of the present article.

Let x be a matrix of dimension n× 5 composed of the recorded measures of the variables

X1 : Month of the year, coded from 1 to 12;

X2 : average temperature in the month;

X3 : average humidity in the month; (4)

X4 : number of rainy days in the month;

X5 : rainfall in the month.

The recorded measures for variables X2 to X5 are freely available at https://www.
cemtec.ms.gov.br (accessed on 8 December 2020). Denote this dataset by D = (y, x), which
is a matrix of dimension n× 6. The first column contains the recorded number of dengue-
fever cases in each of the 144 months considered in the study. Columns 2 to 6 contain the
recorded values of the explanatory variables X1 to X5.

Figure 1 shows the number of recorded dengue-fever cases from 2007 to 2019. The fig-
ure includes the number of cases recorded in 2007 just to show that every three years
the city of Campo Grande presents a larger outbreak of dengue-fever cases. However,
the recorded number of dengue-fever cases in 2007 was not considered to fit the models
because the website https://www.cemtec.ms.gov.br (accessed on 8 December 2020) does
not include values for the explanatory variables X2 to X5 in 2007.

Figure 2 shows the evolution of the number of dengue-fever cases by month. Due
mainly to the climate of the city, characterized by high heat and heavy rains from October
to March, this period contains most of the recorded dengue-fever cases in the city. This
fact shows the importance of having a model for projection for the number of dengue
cases from environmental variables, to support actions to combat the proliferation of the
mosquito and consequently the reduction of the number of cases.

http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/denguebbr.def
http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/denguebbr.def
https://www.cemtec.ms.gov.br
https://www.cemtec.ms.gov.br
https://www.cemtec.ms.gov.br
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Figure 1. Number of recorded dengue-fever cases by year from 2007 to 2019.
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Figure 2. Evolution of the number of dengue-fever cases by month in the period considered (January
2008 to December 2019).

Table 2 shows the descriptive statistics of the recorded y values in the period from
January of 2008 to December of 2019. The smallest recorded value was 2 cases in August
of 2008. The highest recorded value was 18,530 cases in January of 2013. On average,
1057 cases were recorded per month in the period considered.
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Table 2. Descriptive statistics of the recorded numbers of dengue-fever cases.

Minimum 1st Quartile Median Average 3rd Quartile Maximum Variance

2 45.5 124.5 1057 340.2 18,530 7,269,590

Table 3 shows the correlations for each pair of variables. As one can note, the highest
correlation is between variables X3 and X5. However, since it is not a strong correlation
(>0.75), we opt to maintain both variables for the fitting of the models.

Table 3. Correlations.

Variables X1 X2 X3 X4 X5

X1 1.00 0.09 −0.11 0.17 −0.39
X2 0.09 1.00 0.33 0.09 0.20
X3 −0.11 0.33 1.00 −0.14 0.59
X4 0.17 0.09 −0.14 1.00 −0.19
X5 −0.39 0.20 0.59 −0.19 1.00

In addition, we also verify if there is multicollinearity among explanatory variables by
means of variance inflation factor (VIF) values for the PR and NBR models [29]. At this
point, we remind the reader that multicollinearity occurs when two or more explanatory
variables are highly correlated with one another in a regression model. That is, one
explanatory variable can be predicted from another expanatory variable. A VIF value equal
to 1 means that the predictor is not correlated with other variables. The higher the value,
the greater the correlation of the variable with other variables. In general, values smaller
than 5 indicate weak correlation, values between 5 and 10 indicate moderate correlation,
and values equal to or greater than 10 indicate high correlation.

In order to calculate the VIF values, we first fit the PR and NBR models using the R
software and the glm function. We then obtain the VIF values by applying the vif function
of the car package. Listing 1 shows the R code used. The VIF values are presented in
Table 4. As one can see, all values are less than five, which indicates weak multicollinearity.
Therefore, all five explanatory variables are used to fit the models.

1 # #### Package car
2 l i b r a r y ( car )
3 # #### Dataset
4 D <− data . frame ( X1 , X2 , X3 , X4 , X5 , Y)
5 # #### VIF f o r PR model
6 PR . model <− glm (YD ~ 1 + X1 + X2 + X3 + X4 + X5 , data=D, family=poisson )
7 v i f (PR . model )
8 # #### VIF from the NBR model
9 NBR. model <− glm . nb (YD ~ 1 + X1 + X2 + X3 + X4 + X5 , data=D)

10 v i f (NBR. model )

Listing 1. R code.

Table 4. VIF values.

Model X1 X2 X3 X4 X5

PR 1.4549 1.1254 2.2633 1.5898 2.5500
NBR 1.1998 1.5677 3.2224 2.5796 4.4537

Using the sample average and sample variance presented in Table 2, the overdispersion
index given in Expression (3) is IS = 7269590−1057

1057 = 6876.614. That is, the recorded values
are overdispersed. Additionally, we also apply the overdisperion test of Cameron and
Trivedi [24] (CT test), using the overdisp() function of the R software. Figure 3 shows
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the output of the test in the R software. As one can note, the null hypothesis is rejected
for the usual significance levels α = {0.10, 0.05, 0.01}, meaning that there is evidence
for overdispersion.

Figure 3. Outputs of the CT test for overdispersion using the overdisp() function.

Both results described above indicate that the PR model is not appropriate for this
dataset. Due to this, hereafter we fit the NBR and PIGR models to the dataset and compare
these two models according to the AIC and BIC model-selection criteria. The best model is
the one that has the smallest AIC and BIC values.

We fit NBR and PIGR models using the gamlss() function of the gamlss package
of the R software. Since the month variable has cyclical values, we fit both models by
considering a cyclical P-spline term for this variable. For this, we use the pbc() function
inside the gamlss function. In addition, we fit both models by considering smooth terms
for continuous variables X2, X3 and X5. For this case, we use the pb() function. We call the
models fitted with pb() function of NBR-S and PIGR-S, respectively. Listing 2 shows the R
code used for fitting the models.

1 # #### Dataset
2 D <− data . frame ( X1 , X2 , X3 , X4 , X5 , Y)
3

4 # #### F i t of the NBR model
5 NBR <− gamlss (Y ~ pbc ( X1 ) + X2 + X3 + X4 + X5 , data=D, family=NBI )
6 summary (NBR. model )
7 AIC (NBR. model )
8 BIC (NBR. model )
9

10 NBR. S <− gamlss (Y ~ pbc ( X1 ) + pb ( X2 ) + pb ( X3 ) + X4 + pb ( X5 ) , data=D, family=
NBI )

11 summary (NBR. modelS )
12 AIC (NBR. modelS )
13 BIC (NBR. modelS )
14

15 # #### F i t of the PIGR model
16 PIGR <− gamlss (Y ~ pbc ( X1 ) + X2 + X3 + X4 + X5 , data=D, family=PIG )
17 summary ( PIGR . model )
18 AIC ( PIGR . model )
19 BIC ( PIGR . model )
20

21 PIGR . S <− gamlss (Y ~ pbc ( X1 ) + pb ( X2 ) + pb ( X3 ) + X4 + pb ( X5 ) , data=D, family=
PIG )

22 summary ( PIGR . model . S )
23 AIC ( PIGR . model . S )
24 BIC ( PIGR . model . S )

Listing 2. R code.

To significance level α = 0.10, none of the variables was significant for the NBR model
(p-value > α). For NBR-S and PIGR models, variables X4 and X5 were not significant
(p-values > α). For the PIGR-S model, β0 and the variables X4 and X5 were not significant
(p-values > α). Due to this, we discard the NBR model and refit NBR-S, PIGR, and PIGR-S
models without the non-significant variables.

Table 5 shows model-comparison criteria for the three fitted models. The smallest
values are highlighted in boldface. Since the AIC and BIC values for the PIGR and PIGR-S
models are very similar and the RMSE values are equal, we opt to maintain the PIGR as
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the best model because the smooth terms have not led to a significant improvement in
the model.

Table 5. Model-comparison criteria.

Model AIC BIC RMSE

NBR-S 2044 2059 2885
PIGR 2001 2016 2560

PIGR-S 1999 2011 2560

With the models fitted, it is important to perform a residuals analysis in order to
identify the discrepancies between the models and the data, and to assess the overall model
goodness-of-fit. In a normal linear regression scenario, the Pearson and deviance residuals
are usually considered. However, these residuals are not suitable for problems in which
the response variable is discrete because they are not normally distributed, and according
to Feng et al. [30], “have nearly parallel curves according to the distinct discrete response
values, imposing great challenges for visual inspection”. To circumvent this issue, Dunn
and Smyth [21] propose the use of randomized quantile residuals (RQR). According to the
authors, this kind of residuals is particularly ideal for visualizing the goodness-of-fit of
count regression models.

In order to calculate the RQR, we first need to obtain the cumulative distribution func-
tion, F(yt|µ̂t, τ̂) of the model considered, for t = 1, . . . , n. For the continuous case, F(·) val-
ues are uniformily distributed on interval (0, 1), and the RQR is defined as
rt = Φ−1(F(yt|µ̂t, τ̂)), where Φ(·) is the cumulative distribution function of the stan-
dard normal distribution. However, since the cumulative distribution function F(·) for
the models considered (NBR and PIGR) is not strictaly continuous, but a step function,
a randomization is introduced to produce continuous normal residuals. Thus, in order to
get the RQR, Dunn and Smyth [21] propose the following strategy. For t = 1, . . . , n:

• Determine a point at = lim
y↑yt

F(yt|µ̂t, τ̂), i.e., at is the value of F(·) when approaching yt

from the left;
• Determine bt = F(yt|µ̂t, τ̂), i.e., the value of F(·) at the point yt;
• Generate a value ut from a uniform distribution on interval (at, bt];
• Calculate the RQR r̂t = Φ−1(ut).

We obtained the RQR values for NBR and PIGR models using the residuals function
of the R software.

Figure 4 shows the normal quantile-quantile plot (q-q plot) for the randomized quantile
residuals of the NBR-S and PIGR fitted models. The q-q plot is a scatterplot created
by plotting the empirical quantiles of the residuals against the theoretical quantiles of
the normal distribution. If residuals are normally distributed then they should form an
approximately straight line. Figure 5 shows the worm plot. This graph was proposed by van
Buuren and Fredriks [31] to identify regions (intervals) of the explanatory variable within
which the model does not fit the data adequately [15]. In this graph, the upwardsline of the
q-q plot is rotated to the horizontal in order to remove the trend and the Y axis contains
the difference between its location in the theoretical and empirical distributions. If the
residuals follow a normal distribution then the Y values are near the horizontal line and
consequently inside the confidence band. The R function wp() provides the worm plot for
a gamlss fitted model. As one can note, both figures indicate the PIGR model performs
better than the NBR model. In addition, the graphs of the residuals from the PIGR model
indicate that there is no reason to worry about the inadequacy of the fit. Table 6 shows the
estimates for the parameters of the PIGR model.

Figure 6 shows estimated relationships between the response variable and explanatory
variables. As expected, the relationship with X1 (month) presents a cyclical behavior,
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and the relationship with X2 and X3 is linear. These graphs were constructed using the
term.plot function of the R software.

Table 6. Estimates for parameters of PIGR model.

Parameter Estimate Str. Dev. p-Value

β0 −3.3276 1.5920 0.0384
β2 0.313 8 0.0596 <0.0001
β3 0.0321 0.0119 0.0080
τ 2.0484 0.2649 <0.0001

0

2

4

−2 −1 0 1 2

theoretical

sa
m

pl
e

(a)

−2

−1

0

1

2

3

−2 −1 0 1 2

theoretical

sa
m

pl
e

(b)

Figure 4. Normal quantile-quantile plot for the residuals. (a) NBR model. (b) PIGR model.
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Figure 5. Worm plot. (a) NBR model. (b) PIGR model.
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Figure 6. Estimated relationship between response variables and explanatory variables. (a) Relation-
ship with X1. (b) Relationship with X2. (c) Relationship with X3.

Figure 7 shows the number of registered dengue cases (symbol •) and a confidence
band of 95% generated from the fitted PIGR model. In order to construct the confidence
band we use a parametric bootstrap. That is, from estimated value µ̂t and τ̂, we generate
L = 1000 values from a PIG distribution using the rPIG function of the R software. Then
we set the lower and upper limits as being the percentiles 2.5% and 97.5% of the generated
values. As one can note, the fitted model indicates that every year a peak will occur. How
high or low the recorded number of dengue cases will be in relation to the expected peak
(given by the fitted model) is controlled by action taken to combat the proliferation of the
mosquito. If such action is effective, there is no occurence of a peak, as in years 2008, 2009,
2011, 2012, 2014 and 2017. Otherwise, the peak may be higher than expected, i.e., there may
be a larger outbreak, as in the years 2010, 2013, 2016 and 2019. That is, human behavior
has a great influence on the number of cases that will be recorded. However, since this
behavior is very difficult to quantify and is not present in the proposed model, this also has
an influence on the predictive performance of the fitted model.

For example, in the next year after the years with peaks of cases (2007, 2010, 2013
and 2016), there was a significant reduction of recorded cases due to the implementation
of actions to combat the proliferation of the disease vector and awareness campaigns
reminding the population what happened the previous year. However, with the expected
reduction in the number of recorded dengue cases obtained, the combat actions and
awareness campaigns were not maintained, leading to an increase in the number of cases
in the following two years. This has been occurring cyclically over the last 13 years.
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Thus, although the proposed model does not present a satisfactory predictive perfor-
mance, especially due to our inability to quantify and insert into the model the actions taken
to combat the transmitting mosquito, it has at least three advantages: (i) better performance
in comparison to the usual approaches, which are based on the fitting of PR and NBR
models; (ii) the fitted model shows that a peak will occur every year and that the only way
to avoid this peak is via the implementation of actions to combat the proliferation of the
transmitting mosquito; and (iii) the fitted model shows which are the months of the year in
which combat actions must be implemented.

0
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15000

0 50 100 150
T

Y

Figure 7. Recorded values and confidence band (95%) generated from fitted model.

4. Final Remarks

Dengue is a disease that affects millions of people every year, especially in tropical
nations, causing a great impact on public health systems. Due to this, there is an interest
in the development of statistical models that can forecast the number of dengue-fever
cases and also identify which environmental variables may be related to the number of
recorded cases.

In this article, we present statistical modeling for an overdispersed, long-tailed dengue-
fever dataset. The proposed modeling is based on the assumption that the recorded number
of dengue-fever cases in a month is generated according to a Poisson-inverse-Gaussian
distribution. According to Zhu and Joe [7], this distribution may be used for modeling
overdispersed, long-tailed datasets and presents a larger range of skewness than negative
binomial distribution.

We model the expected number of dengue-fever cases as being linked to a set of
explanatory variables through a log-linear function. This approach is called a Poisson-
inverse-Gaussian regression (PIGR) model. In order to estimate the parameters of interest,
we adopt the maximum-likelihood method. Since the estimators do not have known
analytic solutions, we obtain estimates numerically by using the gamlss() function of the
gamlss package of the R software.
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We compare the proposed modeling to the usual approach based on the use of a
negative-binomial regression (NBR) model. The two models were compared by using
the AIC, BIC and RMSE criteria. Additionally, we compare the two models in terms of
randomized quantile residuals. Three model-selection criteria indicate the PIGR model as
better than the NBR model for this application. The randomized quantile residuals also
indicate that PIGR performs better than NBR. That is, it has a quantile-quantile normal plot
with residuals near the line y = x, and a worm plot with residuals near the horizontal line.

The fitted PIGR model indicates that variables X1 (month), X2 (temperature) and X3
(humidity) are related to the recorded number of dengue-fever cases. Variables X2 and X3
are positively related to the number of dengue cases. That is, an increase of the temperature
and/or the humidity in the air is expected to lead to an increase in the recorded number of
dengue cases. This makes intuitive sense because these two variables are directly related
to favorable conditions for the development of the mosquito that transmits dengue fever.
According to Silva et al. [32] “the female mosquito, infected and subjected to temperatures
of approximately 32 ◦C, has 2.64 times more chance of completing the incubation period
than those subjected to mild temperatures".

As a final result, the fitted model expects a peak in cases every year (see Figure 7).
Based on this result, we conjecture the only way to avoid the peak is through an intervention
by humans which avoids the proliferation of the transmiting mosquito. All analyses were
performed using the R software and source code can be obtained by emailing the authors.

To end the paper we highlight the following three points: (i) Although the proposed
modeling has presented better performance than usual approaches, it shares the basic
assumptions of the Poisson and negative binomial regression models, which are: log-
linearity in model parameters and independence of individual observations; (ii) as pointed
out before, the main advantage is to be able to model overdispersed long-tail datasets;
(iii) However, since dengue fever data are recorded longitudinally, they may present
some kind of temporal correlation. Thus, the development of a modeling approach that
incorporates correlation among recorded values for the answer variable can be viewed
as future work. An approach we are currently studying is the development of a PIGR
mixed-effect model.
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