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Abstract: We introduce the effective Gibbs state for the observables averaged with respect to fast free
dynamics. We prove that the information loss due to the restriction of our measurement capabilities to
such averaged observables is non-negative and discuss a thermodynamic role of it. We show that there
are a lot of similarities between this effective Hamiltonian and the mean force Hamiltonian, which
suggests a generalization of quantum thermodynamics including both cases. We also perturbatively
calculate the effective Hamiltonian and correspondent corrections to the thermodynamic quantities
and illustrate it with several examples.

Keywords: effective Hamiltonian; Gibbs state; quantum thermodynamics

1. Introduction

There are a lot of physical models which use averaging with respect to fast oscilla-
tions one way or another. For example, many derivations of master equations use secular
approximation directly ([1] Subsection 3.3.1), ([2] Section 5.2) or as result [3,4] of pertur-
bation theory with Bogolubov–van Hove scaling [5,6] (see also corrections beyond the
zeroth order in [7]). Moreover, there is a wide discussion of the applicability of the rotat-
ing wave approximation (RWA) and the systematic perturbative corrections to it in the
literature [8–17]. However, in this work, we consider such averaging not as an approx-
imation but as a restriction of our observation capabilities. In addition, we analyze the
thermodynamic equilibrium properties of a quantum system, assuming such restrictions.
Due to this averaging, the thermodynamic equilibrium properties can be defined by some
effective Gibbs state, which is averaged with respect to these fast oscillations, instead of the
exact Gibbs state. Similarly to strong coupling thermodynamics, this effective Gibbs state
can be defined by some effective temperature-dependent Hamiltonian, which is an analog
of the mean force Hamiltonian (see, e.g., ([18] Chapter 22), [19,20] for recent reviews).

In Section 2, we describe the setup of our problem and develop a systematic perturba-
tive calculation for the effective Hamiltonian. We show that the zeroth and the first term
of the expansion coincide with the RWA Hamiltonian and, in particular, are temperature
independent. In this point, it is similar to effective Hamiltonians also arising as corrections
to the RWA but in dynamical and non-equilibrium problems. The second-order term is
temperature-dependent. We show that both this term and its derivative with respect to the
inverse temperature are non-positive definite.

In Section 3, we show that this definiteness is closely related to the positivity of the
information loss due to the fact that we have access only to the averaged observables
discussed above rather than all possible observables. We show that information loss leads
to energy loss, which is hidden from our observation. We prove (without perturbation
theory) that these losses are always non-negative, but in the leading order, they are defined
by the second-order temperature-dependent term in the effective Hamiltonian expansion.
Additionally, we prove that exact non-equilibrium free energy is always larger than the
free energy observable in our setup. If one assumes that the effective Gibbs state is an
exact state, then this difference is also defined by the second-order term of the effective
Hamiltonian expansion. At the end of Section 3, we argue that the analogy between our
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effective Hamiltonian and the mean force Hamiltonian is because they are special cases of
the general setup, based on so-called conditional expectations.

To dwell on this analogy, in Section 4, we consider a compound system and the mean
force Hamiltonian of one of the subsystems for the effective Gibbs state discussed above.
We also give the systematic perturbative expansion for it.

In Section 5, we consider several simple examples to illustrate the results of the
previous sections. Namely, we consider two interacting two-level systems, two interacting
oscillators and a two-level system interacting with the oscillator. We calculate the effective
Hamiltonians for such systems and the information losses due to the restriction to the
averaged observables.

Both the effective Hamiltonian we define in this work and the explicit perturbative
expansion for it are novel, but such a Hamiltonian has much in common with the mean
force Hamiltonian (see the end of Section 3 for a more precise discussion). The main
difference consists of the choice of a projector. Thus, our results suggest the possibility
to generalize equilibrium quantum thermodynamics to effective equilibrium quantum
thermodynamics by different choices of the projector.

2. Effective Hamiltonian

We are interested in equilibrium properties of fast oscillating observables which are
in resonance with the free Hamiltonian. We assume that the equilibrium state has the
Gibbs form

ρβ =
e−βH

Z
(1)

with inverse temperature β > 0 and the Hamiltonian of the form

H = H0 + λHI , (2)

where H0 is a free Hamiltonian and HI is an interaction Hamiltonian, λ is a small parameter.
In addition, we consider the observables which are explicitly time-dependent with

very specific time dependence. Namely, they depend on time in the Schrödinger picture
as follows

X(t) = e−iH0tXeiH0t (3)

i.e., they depend on time in such a way that they become constant in the interaction
picture for the “free” Hamiltonian H0. A widely used example of such an observable is a
dipole operator interacting with the classical electromagnetic field in resonance with a free
Hamiltonian (see, e.g., [21] Section 15.3.1). In addition, we assume that one could actually
observe the long-time averages

〈X(t)〉av = lim
T→+∞

1
T

∫ T

0
〈X(t)〉dt, (4)

where 〈X(t)〉 ≡ Tr ρβX(t). By “long”, we mean long with respect to inverses of non-
zero Bohr frequencies, where Bohr frequencies are the eigenvalues of the superoperator
[H0, · ] (see, e.g., [4] p. 122). The observation of such long-time averages is usual for
spectroscopy setups ([22] Section 4). Moreover, we will further discuss the perturbation
theory in λ, assuming that this averaging is already performed, so this long timescale
remains “long” even being multiplied by any power of λ. Otherwise, one should introduce
the small parameter in the averaging procedure as well, which leads to more complicated
perturbation theory depending on how the small parameter in the averaging and in the
Hamiltonian are related to each other.

Average (4) can be represented as

〈X(t)〉av = Tr Xρ̃β, (5)
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where ρ̃β is some effective Gibbs state, which could be calculated as

ρ̃β = Pρβ, (6)

where

PX = lim
T→+∞

1
T

∫ T

0
eiH0tXe−iH0tdt, (7)

because

〈X(t)〉av = lim
T→+∞

1
T

∫ T

0
Tr e−iH0tXeiH0tρβdt

= lim
T→+∞

1
T

∫ T

0
Tr XeiH0tρβe−iH0tdt = Tr XPρβ. (8)

From the thermodynamical point of view, it is natural to represent this effective Gibbs
state in the Gibbs-like form

ρ̃β =
1
Z

e−βH̃ (9)

with some effective Hamiltonian H̃ similarly to the mean force Hamiltonian ([18], Chap-
ter 22). Let us remark that we have the same partition function for both exact and ef-
fective Hamiltonians due to the fact that P is a trace-preserving map (see Appendix A)
Tr e−βH̃ = TrPe−βH = Tr e−βH . Let us summarize several properties of the superoperator
P which will be used further (see Appendix A for the proof).

1. P is completely positive.
2. P is a self-adjoint (with respect to trace scalar product Tr X†Y) projector

P2 = P = P∗. (10)

3. Let the spectral decomposition of H0 have the form H0 = ∑ε εΠε, where ε are (distinct)
eigenvalues of H0 and Πε are orthogonal projectors ΠεΠε′ = δεε′Πε, Πε = Π†

ε . Then,

PX = ∑
ε

ΠεXΠε (11)

for any matrix X.

For the case of one-dimensional projectors Πε, superoperator (11) is sometimes called
the dephasing operation [23]. In the general case, it is usually called pinching [24], p. 16. It
can also be understood as a special case of twirling [25] (with one-parameter group).

Effective Hamiltonian H̃ can be calculated by cumulant-type expansion. Namely, we
have the following proposition (see Appendix B for the proof).

Proposition 1. The perturbative expansion of H̃ has the form

H̃ = H0 − β−1 ∑
n=1

λn ∑
k0+···+km=n

(−1)m

m + 1
Mk0(β)Mk1(β) · · ·Mkm(β), (12)

where

Mk(β) = (−1)k
∫ β

0
dβ1 . . .

∫ βk−1

0
dβkPHI(β1) . . . HI(βk) (13)

and
HI(β) ≡ eβH0 HIe−βH0 . (14)

In particular, the first terms of the expansion have the form

H̃ = H0 − β−1λM1(β)− β−1λ2
(
M2(β)− 1

2
(M1(β))2

)
+ O(λ3). (15)
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To make this expansion more explicit, let us represent the interaction Hamiltonian in
the eigenbasis of the superoperator [H0, · ] in the same way as it is usually performed for
Markov master equation derivation ([1] Subsection 3.3.1)

HI = ∑
ω

Dω, (16)

where sum is taken over the Bohr frequencies and

[H0, Dω ] = −ωDω. (17)

Moreover, as HI is Hermitian, then D−ω = D†
ω. Hence, we have the following explicit

expressions forMk(β).

Proposition 2. If Equations (16) and (17) are held, then

Mk(β) = (−1)k ∑
ω1,...,ωk−1

gk(β; ω1, · · · , ωk−1)Dω1 · · ·Dωk−1 D−ω1−...−ωk−1 , (18)

where

gk(β; ω1, . . . , ωk−1) =
1

∏n−1
k=1 ∑k

j=1 ωj

(
β−

n−1

∑
k=1

1

∑k
j=1 ωj

)

−
n−1

∑
p=1

(−1)p(
∏

p
m=2 ∑

p
i=m ωi

)(
∑

p
r=1 ωr

)2(
∏n−1

k=p+1 ∑k
j=p+1 ωj

) e−β ∑
p
i=1 ωi . (19)

For zero denominators, it should be understood as a limit.

The proof can be found in Appendix C. The first terms of expansion (15) take the form
(see Appendix C)

H̃ = H0 + λD0 − λ2 ∑
ω 6=0

βω + e−βω − 1
βω2 DωD†

ω + O(λ3). (20)

Thus, the first two terms are temperature-independent and recover the Hamiltonian
in the rotating wave approximation (similarly to effective Hamiltonians for dynamical
evolution [26,27])

HRWA = H0 + λD0. (21)

On the other hand, the next term of expansion (20) is the first temperature-dependent
correction to the RWA Hamiltonian. This term is always non-positive definite

H̃(2) ≡ − ∑
ω 6=0

βω + e−βω − 1
βω2 DωD†

ω ≤ 0 (22)

due to the fact that it has the form

H̃(2) = − β

2 ∑
ω 6=0

f (βω)DωD†
ω, (23)

where 〈ψ|DωD†
ω |ψ〉 = ||D†

ω |ψ〉||2 ≥ 0 for arbitrary |ψ〉,

f (x) ≡ 2
x + e−x − 1

x2 (24)

is a positive function f (x) > 0 for all real x and β is assumed to be positive as we consider
the positive temperature (but if one considers a negative temperature, which is possible
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for finite-dimensional systems, then H̃(2) becomes non-negative). Moreover, H̃(2) is a
monotone function of temperature, because

∂

∂β
H̃(2) = −1

2 ∑
ω 6=0

f1(βω)DωD†
ω ≤ 0, (25)

where

f1(x) ≡ 2
1− e−x(1 + x)

x2 (26)

is also a positive function for all real x. In the next section, we will see that if one averages
this result with respect to the effective Gibbs state, then this result becomes closely related to
general thermodynamic properties which are valid in all the orders of perturbation theory.

Let us also remark that lim
x→+0

f (x) = 1, so for the low temperature limit, i.e., when

βω � 1 for all non-zero Bohr frequencies, Equation (23) takes the form

H̃(2) ≈ − β

2 ∑
ω 6=0

DωD†
ω, (27)

i.e., the second-order correction in λ is linear in β.
In the recent literature, there is also rising interest in the ultrastrong coupling limit.

Let us remark that H̃(2) is also the leading order difference between effective Hamiltonians
for steady states for the ultrastrong coupling limit conjectured in [28] and the one obtained
in [29], if one takes the interaction Hamiltonian as a free Hamiltonian in our notation and
vice versa. The perturbative corrections for such steady states are discussed in [30].

3. Effective Hamiltonian as Analog of Mean Force Hamiltonian

The free energy F can be defined by the partition function Z as

F = −β−1 ln Z, (28)

where, as it was mentioned before, Z could be defined by the same formula Z = Tr e−βH =

Tr e−βH̃ both by exact Hamiltonian H and by effective Hamiltonian H̃. If one calculates the
entropy and the internal energy by equilibrium thermodynamics formulae

S = β2 ∂F
∂β

, U =
∂(βF)

∂β
, (29)

then it also obviously does not matter if we use the exact or effective Hamiltonian. For
initial temperature-independent Hamiltonian, they also could be calculated as:

S = −Tr ρβ ln ρβ, U = Tr Hρβ. (30)

However, for the effective Hamiltonian, the similar formulae need additional correc-
tions due to its dependence on temperature. Namely,

S = S̃− ∆S, U = Ũ − ∆U, (31)

where S̃ and Ũ are defined by the formulae similar to Equation (30)

S̃ = −Tr ρ̃β ln ρ̃β, Ũ = Tr H̃ρ̃β (32)

In addition, the corrections have exactly the same form as for the mean force Hamiltonian
(see, e.g., [31], Equations (11) and (12))

∆S = −β2〈∂β H̃〉∼, ∆U = −β〈∂β H̃〉∼ = β−1∆S. (33)
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Here, 〈 · 〉∼ denotes the average with respect to the effective Gibbs state, i.e., 〈 · 〉∼ ≡
Tr( · ρ̃β). The derivation of these formulae is exactly the same as for analogous formulae
for the mean force Hamiltonian (see ([18], Chapter 22), [32]), because it is valid for an
arbitrary temperature-dependent Hamiltonian and is based only on the Feynman–Wilcox
formula [33–35]

d
dβ

e−βH̃ = −
∫ t

0
dse−(1−s)βH̃

(
d

dβ
(βH̃)

)
e−sβH̃ . (34)

Due to the fact thatP is a completely positive trace preserving and unital map (P I = I),
the entropy is monotone [36], p. 136 under its action, i.e., S̃ ≥ S. Thus, ∆S ≥ 0 and
∆U = β−1∆S ≥ 0. S̃ and Ũ could be interpreted as entropy and as energy which are
accessible to our observations. Our observable entropy is S̃, but due to our restricted
observational capabilities, we have the information loss quantified by ∆S. This information
loss comes with energy loss quantified by ∆U and is hidden from our observations.

For second-order expansion in λ, we have

∆S = −λ2β2〈∂β H̃(2)〉∼ + O(λ3) = −λ2β2〈∂β H̃(2)〉0 + O(λ3), (35)

where 〈 · 〉0 is the average with respect to the Gibbs state for the free Hamiltonian. Thus, the
non-negativity of ∆S in the second order of perturbation theory agrees with Equation (25).
Moreover, it could be calculated (see Appendix D) by the following formula

∆S = −λ2β〈H̃(2)〉0 + O(λ3) = ∑
ω>0

1− e−βω

βω
〈DωD†

ω〉0 + O(λ3), (36)

where sum is taken only over the positive Bohr frequencies.
The analogy with Equation (22.6) of ([18] Chapter 22) also suggests the following

definition of non-equilibrium free energy in a given state ρ

F̃ρ ≡ 〈H̃〉P + β−1〈lnPρ〉P = F + β−1S(Pρ||ρ̃β), (37)

where 〈 · 〉P ≡ Tr(Pρ · ) and S(ρ||σ) is relative entropy ([36], Chapter 7.1). The only
difference from Equation (22.6) of ([18] Chapter 22) consists of the fact that we use averaged
state Pρ instead of ρ, which is natural in our setup.

The exact free energy is defined as

Fρ ≡ 〈H〉+ β−1〈ln ρ〉 = F + β−1S(ρ||ρβ), (38)

where 〈 · 〉 ≡ Tr(ρ · ), which leads to

Fρ = F̃ρ + ∆Fρ, (39)

where similarly to Equation (33), ∆Fρ has a definite sign, namely

∆Fρ = β−1(S(ρ||ρβ)− S(Pρ||Pρβ)) ≥ 0 (40)

due to monotonicity of the relative entropy under the completely positive map P ([36],
Theorem 7.6). Similarly to S̃ and Ũ, F̃ρ can be interpreted as observable free energy and
∆Fρ as free energy hidden from our observations. As ∆Fρ ≥ 0, we are always further from
equilibrium than we think based on our restricted measurement possibilities. For example,
if our exact non-equilibrium state is ρ̃β, then it is impossible to distinguish it from ρβ. Thus,
its observable free energy coincides with the equilibrium one

F̃ρ̃β
= F + β−1S(ρ̃β||ρ̃β) = F, (41)
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but ∆Fρ̃β
is positive as in the general case. Namely, by Equations (37) and (38), we have

∆Fρ̃β
= 〈H〉∼ − 〈H̃〉∼. (42)

As 〈H〉∼ = Tr HPρ = Tr HPPρβ = TrP(H)Pρβ = Tr HRWAρβ = 〈HRWA〉∼, then

∆Fρ̃β
= 〈HRWA − H̃〉∼. (43)

This formula is useful for asymptotic expansion of ∆Fρ̃β
as the first two terms of the

expansion of H̃ cancel HRWA and the first non-trivial contribution is of order of λ2 as in
Equation (35). Namely, we have

∆Fρ̃β
= −λ2〈H(2)〉∼ + O(λ3) = −λ2〈H(2)〉0 + O(λ3). (44)

Moreover, it is possible to show (see Appendix D) that 〈∂β H(2)〉0 = β−1〈H(2)〉0, so

∆U = ∆Fρ̃β
+ O(λ3), ∆S = β∆Fρ̃β

+ O(λ3). (45)

The analogy with the mean force Hamiltonian can be made more explicit if one notes
that the mean force Hamiltonian is closely related to the projector P ′ = TrB( · ) ⊗ ρB
which is usually used for derivation of Markovian master equations and their perturbative
corrections ([1], Subsection 9.1.1).

P ′ e
−βH

Z
=

1
Z

TrB e−βH ⊗ 1
ZB

e−βHB =
1

Zmf
e−βHmf ⊗ 1

ZB
e−βHB , (46)

where Zmf = Z/ZB [19]. Thus, a stricter analog of our effective Hamiltonian should be
Hmf + HB with partition function Z. However, it seems that for operational meaning of the
mean force Hamiltonian, the information about HB is also important, which makes this
analog more natural. Nevertheless, importance of information about HB (not Hmf only) is
still discussible [37,38].

From the mathematical point of view, both of these projectors are so-called conditional
expectations [39–42]. They are correspondent to different choices of observable degrees
of freedom. This suggests that the mean force Hamiltonian theory could be generalized
to arbitrary conditional expectations, and for specific conditional expectation P , it is
performed in this work. Thus, it is possible to say that the effective Gibbs state with such
generalized projectors define different effective quantum equilibrium thermodynamics.

Let us also mention that similarly to mean force Hamiltonian theory, we assume
in our work that the whole system (containing both the system and the reservoir in the
mean force Hamiltonian case) is at the same temperature. However, there are possible
generalizations of such a setup when the system interacts with two (or more) reservoirs
at different temperatures [43]. In such a case, a natural analog of P ′ is a projector P ′′ =
TrB1,B2( · )⊗ ρB1,β1 ⊗ ρB2,β2 , where ρB1,β1 and ρB2,β2 are states of the heat baths with inverse
temperatures β1 and β2, respectively. The above equations assuming only one temperature,
e.g., Equations (28) and (29), are not applicable in this case, but Equations (30)–(32), which
are fundamental for our approach, still have their meaning. This suggests that it is possible
to generalize the framework presented here to include such a multitemperature case, but
it is not fully covered by the approach presented here as the scope of the current paper
was focused on the one-temperature case. Nevertheless, we think that it is one of the most
promising directions for future study.

4. Mean Force Hamiltonian for Effective Gibbs State

Let us now consider a compound system, consisting of two subsystems A and B. Let
us consider subsystem B as “reservoir”. Let us assume that H0 = HA ⊗ I + I ⊗ HB. Then,
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it is possible to define a mean for the Hamiltonian H̃mf for the effective Gibbs state by the
following formula

ρ̃mf ≡ TrB Pρβ =
1

Z̃mf
e−βH̃mf , (47)

where Z̃mf = Z̃/ZB, ZB ≡ TrB e−βHB . Then, similarly to Proposition 1, it is possible to
obtain the perturbative expansion in λ for H̃mf (see Appendix E).

Proposition 3. The perturbative expansion of H̃mf in λ has the form

H̃mf = HA − β−1
∞

∑
n=1

λn ∑
k0+···+km=n

(−1)m

m + 1
〈Mk0(β)〉B〈Mk1(β)〉B · · · 〈Mkm(β)〉B, (48)

where 〈 · 〉B ≡ TrB( · Z−1
B e−βHB).

Here,Mk(β) can also be calculated by Proposition 2. The first terms of the expansion
for H̃mf have the form

H̃mf = HA + λ〈D0〉B − λ2 β

2

(
∑

ω 6=0
f (βω)〈DωD†

ω〉B + 〈D2
0〉B − 〈D0〉2B

)
+ O(λ3). (49)

This formula can be made even more explicit if one considers the decomposition of
Dω into sum of eigenoperators of [HA, · ] and [HB, · ], i.e., similarly to Equation (17)
introducing Aω and Bω such that

[HA, Aω1 ] = −ω1 Aω1 , [HB, Bω2 ] = −ω2Bω2 , (50)

where ω1 and ω2 run over all possible Bohr frequencies of the Hamiltonians HA and HB,
respectively. Then, expansion (49) takes the form (see Appendix F)

H̃mf = HS + λ〈B0〉B A0 − λ2 β

2

(
∑

ω1 6=0

(
∑
ω

f (βω)〈Bω1+ωB†
ω1+ω〉B

)
A†

ω1
Aω1

+
(
∑
ω

f (βω)〈BωB†
ω〉B − 〈B0〉2B

)
A2

0

)
+ O(λ3), (51)

where it is assumed that f (0) = 1.

5. Examples

In this section, we consider several examples, and the notations are chosen in such
a way as to emphasize the similarity between them. We use these examples to illustrate
our formulae, but let us remark that, at least for the first and second model, it is possible to
calculate the effective Hamiltonian exactly without perturbation theory; however, it is not
the aim of our work. For all these examples, we consider two cases: the off-resonance and
the resonance one. In this section, only the results are presented, all the calculations are
given separately in Appendix G.

5.1. Two Interacting Two-Level Systems

Let us consider the two interacting two-level systems [44,45] a and b

H = ωaσ+
a σ−a + ωbσ+

b σ−b + λ(σ−a + σ+
a )(g∗σ−b + gσ+

b ), (52)

where ωa > 0, ωb > 0 and σ±i are usual ladder operators for two-level systems i = a, b.
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(1) Off-resonance case ωa 6= ωb.

H̃off−res =ωana + ωbnb − λ2 β

2
|g|2( f (β(ωa −ωb))(1− na)nb

+ f (β(ωa + ωb))(1− na)(1− nb) + f (β(ωb −ωa))na(1− nb)

+ f (β(−ωa −ωb))nanb) + O(λ3), (53)

where ni ≡ σ+
i σ−i are number operators for i = a, b. In the leading order, the information

loss has the form

∆Soff−res = λ2β|g|2
ωa tanh βωa

2 −ωb tanh βωb
2

ω2
a −ω2

b
+ O(λ3). (54)

(2) Resonance case ωb = ωa + λδω.

H̃res =ωana + ωbnb + λ(gσ−a σ+
b + g∗σ+

a σ−b )

− λ2 β

2
|g|2( f (2βωa)(1− na)(1− nb) + f (−2βωa)nanb) + O(λ3). (55)

In the leading order, the information loss has the form

∆Sres = λ2β|g|2
tanh ωa β

2
2ωa

+ O(λ3). (56)

Let us remark that it does not coincide with the off-resonance case with ωb → ωa. Namely,
we have

∆Soff−res|ωb→ωa = ∆Sres + λ2

(
β|g|

2 cosh βωa
2

)2

+ O(λ3). (57)

Thus, off-resonance averaging leads to larger information loss even in the “resonance” limit
than resonance averaging.

5.2. Two Interacting Harmonic Oscillators

Let us consider the two interacting harmonic oscillators

H = ωaa†a + ωbb†b + λ(a + a†)(g∗b + gb†), (58)

where ωa > 0, ωb > 0 and a, a† and b, b† are oscillator (bosonic) ladder operators. Averaging
with respect to fast oscillations needed for so-called quasi-stationary states was recently
discussed in [46].

(1) Off-resonance case ωa 6= ωb.

H̃off−res =ωana + ωbnb − λ2 β

2
|g|2( f (β(ωa + ωb))(1 + na)nb

+ f (β(ωa + ωb))(1 + na)(1 + nb) + f (β(ωb −ωa))na(1 + nb)

+ f (β(−ωa −ωb))nanb) + O(λ3), (59)

where na ≡ a†a, nb ≡ b†b. In the leading order, the information loss has the form

∆Soff−res = λ2β|g|2
ωa coth βωb

2 −ωb coth βωa
2

ω2
a −ω2

b
+ O(λ3). (60)
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(2) Resonance case ωb = ωa + λδω.

H̃res =ωana + ωbnb + λ(gab† + g∗a†b)

− λ2 β

2
|g|2( f (2βωa)(1 + na)(1 + nb) + f (−2βωa)nanb) + O(λ3). (61)

In the leading order, the information loss has the form

∆Sres = λ2β|g|2
coth ωa β

2
2ωa

+ O(λ3). (62)

Interestingly, this quantity asymptotically coincides with Equation (56) for ωaβ � 1
(see Figure 1). Similarly to Equation (57), we have

∆Soff−res|ωb→ωa = ∆Sres + λ2

(
β|g|

2 sinh βωa
2

)2

+ O(λ3). (63)

0 1 2 3 4 5
a

0.1

0.2

0.3

0.4

0.5

0.6

Sres

2 TLS

2 Oscillators

TLS +Oscillator

Figure 1. The information loss for resonance case and β|g| = 1 for two two-level systems (solid line),
two oscillators (dashed line) and two-level system interaction with oscillator (dotted line).

5.3. Two-Level System Interacting with Harmonic Oscillator

Let us consider a two-level system interacting with a harmonic oscillator

H = ωaσ+σ− + ωbb†b + λ(σ+ + σ−)(g∗b + gb†), (64)

where ωa > 0, ωb > 0 and σ+, σ− and b, b† are two-level and bosonic ladder operators,
respectively.

(1) Off-resonance case ωa 6= ωb.

H̃off−res =ωana + ωbnb − λ2 β

2
|g|2( f (β(ωa + ωb))(1− na)nb

+ f (β(ωa + ωb))(1− na)(1 + nb) + f (β(ωb −ωa))na(1 + nb)

+ f (β(−ωa −ωb))nanb) + O(λ3), (65)

where na ≡ σ+σ−, nb ≡ b†b. In the leading order, the information loss has the form

∆Soff−res = λ2β|g|2
ωa tanh βωa

2 coth βωb
2 −ωb

ω2
a −ω2

b
+ O(λ3). (66)
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(2) Resonance case ωb = ωa + λδω.

H̃res =ωana + ωbnb + λ(gσ−b† + g∗σ+b)

− λ2 β

2
|g|2( f (2βωa)(1− na)(1 + nb) + f (−2βωa)nanb) + O(λ3). (67)

In the leading order, the information loss has the form

∆Sres = λ2 β|g|2
2ωa

+ O(λ3). (68)

This also asymptotically coincides with Equation (56) for ωaβ� 1 (see Figure 1). Similarly
to Equation (57), we have

∆Soff−res|ωb→ωa = ∆Sres + λ2 β|g|2
2 sinh βωa

+ O(λ3). (69)

6. Conclusions

We have developed a systematic perturbative calculation of the effective Hamiltonian
which defines the effective Gibbs state for the averaged observables. We have shown
that the first two terms of the perturbative expansion of such an effective Hamiltonian
coincide with the RWA Hamiltonian, and the second-order term of the expansion is the first
non-trivial temperature-dependent term. It defines the leading order of the information
loss due to the restricted observation capabilities in this setup and the leading order of
the energy, which is not observable in our setup due to the same reason. We have shown
the analogy between our setup and the mean force Hamiltonian. To deepen this analogy,
we have also obtained the perturbative expansion for the mean force Hamiltonian for the
effective Gibbs state. At the end, we have considered several examples, which illustrate the
preceding material.

We think that the analogy between the mean force Hamiltonian and our effective
Hamiltonians suggests the possibility to generalize our approach to form effective equilib-
rium quantum thermodynamics.

As it was already mentioned at the end of Section 3, a multitemperature generalization
similar to [43] of the framework discussed in this work is a possible direction for further
study. In particular, such a study could be important due to modern interest in such a
multitemperature setup from the separability viewpoint [47].
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Appendix A. Properties of Averaging Projector

Trace preservation of P follows from

TrPX = lim
T→+∞

1
T

∫ T

0
Tr eiH0tXe−iH0tdt = lim

T→+∞

1
T

∫ T

0
dt Tr X = Tr X, (A1)

Then, let us prove Property 3 first. For H0 = ∑ε εΠε, we have

PX = lim
T→+∞

1
T

∫ T

0
dteiH0tXe−iH0t = lim

T→+∞

1
T

∫ T

0
dt ∑

ε,ε′
ei(ε−ε′)tΠεXΠε′ = ∑

ε

ΠεXΠε (A2)

because

lim
T→+∞

1
T

∫ T

0
dtei(ε−ε′)t = δεε′ . (A3)

As Πε = Π†
ε , then they define Kraus representation [36], p. 110 of P , which proves

Property 1. Calculating

P2X = ∑
ε,ε′

Πε′ΠεXΠεΠε′ = ∑
ε,ε′

δεε′ΠεXΠε = ∑
ε

ΠεXΠε = PX (A4)

and

Tr X†PY = Tr X† ∑
ε

ΠεYΠε

= ∑
ε

Tr ΠεX†ΠεY = Tr ∑
ε

(ΠεXΠε)
†Y = Tr(PX)†Y (A5)

we obtain Property 2.

Appendix B. Perturbative Expansion for Effective Hamiltonian

Proof of Proposition 1. Let us define V(β) ≡ eβH0 e−βH , then it satisfies

d
dβ

V(β) = −λHI(β)V(β), V(0) = I, (A6)

where HI(β) is defined by Equation (14). Namely,

d
dβ

(eβH0 e−βH) = −eβH0 He−βH + eβH0 H0e−βH

= −eβH0(H − H0)e−βH0(eβH0 e−βH) = −λHI(β)(eβH0 e−βH). (A7)

Then, representing V(β) by the Dyson series and applying the projector P , one has

PV(β) = I +
∞

∑
k=1

λkMk(β) (A8)

withMk(β) defined by Equation (13). By the Richter formula ([48], Equation (11.1)), one
has

logPV(β) =
∫ 1

0
(PV(β)− I)(t(PV(β)− I) + I)−1dt (A9)

Then, we have

(t(PV(β)− I) + I)−1 =
∞

∑
n=0

λn ∑
k1+···+km=n

(−1)mtmMk1(β) · · ·Mkm(β) (A10)
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and

(PV(β)− I)(t(PV(β)− I) + I)−1

= ∑
n=1

λn ∑
k0+···+km=n

(−1)mtmMk0(β)Mk1(β) · · ·Mkm(β) (A11)

By substituting it in Equation (A9) and taking the integral, we have

logPV(β) =
∞

∑
n=1

λn ∑
k0+···+km=n

(−1)m

m + 1
Mk0(β)Mk1(β) · · ·Mkm(β). (A12)

Taking into account

PV(β) = PeβH0 e−βH = lim
T→+∞

1
T

∫ T

0
eiH0teβH0 e−βHe−iH0tdt = eβH0Pe−βH (A13)

we have Pe−βH = e−βH0PV(β). Let us remark that H0 commutes with any operator PX

[H0,PX] = ∑
ε

(εΠεXΠε −ΠεXΠεε) = 0, (A14)

where Equation (11) was used. Thus, we have

Pe−βH = e−βH0 elogPV(β) = e−β(H0−β−1 logPV(β)) (A15)

and H̃ = H0− β−1 logPV(β), which along with Equation (A12) leads to Equation (12).

Appendix C. Eigenprojector Expansion

Lemma A1. The following formula holds∫ β

0
dβ1 . . .

∫ βn−1

0
dβne−∑n

j=1 β jωj

=
1

∏n
k=1 ∑k

j=1 ωj
+

n

∑
p=1

(−1)p e−β ∑
p
i=1 ωi(

∏
p
m=1 ∑

p
i=m ωi

)(
∏n

k=p+1 ∑k
j=p+1 ωj

) . (A16)

Proof. Let us denote

hn(β; ω1, . . . , ωn) =
∫ β

0
dβ1 . . .

∫ βn−1

0
dβne−∑n

j=1 β jωj , (A17)

then, by direct computation, we have
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hn+1(β; ω1, . . . , ωn+1) =
∫ β

0
dβ1e−ω1β1 hn(β; ω2, . . . , ωn+1) =

1

∏n
k=1 ∑k

j=1 ωj+1

∫ β

0
e−ω1β1 dβ1

+
n

∑
p=1

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi+1

)(
∏n

k=p+1 ∑k
j=p+1 ωj+1

) ∫ β

0
e−ω1β1 e−β1 ∑

p
i=1 ωi+1 dβ1

=
1

∏n+1
k=2 ∑k

j=2 ωj

1− e−ω1β1

ω1
+

n

∑
p=1

(−1)p 1(
∏

p+1
m=2 ∑

p+1
i=m ωi

)(
∏n+1

k=p+2 ∑k
j=p+2 ωj

) 1− e−β ∑
p+1
i=1 ωi

∑
p+1
i=1 ωi

=
1

∏n+1
k=2 ∑k

j=2 ωj

1− e−ω1β1

ω1
−

n+1

∑
p=2

(−1)p 1(
∏

p
m=2 ∑

p
i=m ωi

)(
∏n+1

k=p+1 ∑k
j=p+1 ωj

) 1− e−β ∑
p
i=1 ωi

∑
p
i=1 ωi

=
1

∏n+1
k=2 ∑k

j=2 ωj

1
ω1
−

n+1

∑
p=2

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n+1

k=p+1 ∑k
j=p+1 ωj

)
− 1

∏n+1
k=2 ∑k

j=2 ωj

e−βω1

ω1
+

n+1

∑
p=2

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n+1

k=p+1 ∑k
j=p+1 ωj

) e−β ∑
p
i=1 ωi

= −
n+1

∑
p=1

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n+1

k=p+1 ∑k
j=p+1 ωj

)
+

n+1

∑
p=1

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n+1

k=p+1 ∑k
j=p+1 ωj

) e−β ∑
p
i=1 ωi . (A18)

Using
hn(0; ω1, . . . , ωn) = 0 (A19)

we have

n

∑
p=1

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n

k=p+1 ∑k
j=p+1 ωj

) = − 1

∏n
k=1 ∑k

j=1 ωj
, (A20)

then

n+1

∑
p=1

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n+1

k=p+1 ∑k
j=p+1 ωj

)
=

n

∑
p=1

(−1)p 1(
∏

p
m=1 ∑

p
i=m ωi

)(
∏n

k=p+1 ∑k
j=p+1 ωj

) 1

∑n+1
j=n+1 ωj

+ (−1)n+1 1(
∏n+1

m=1 ∑n+1
i=m ωi

)
= − 1

∏n
k=1 ∑k

j=1 ωj

1
ωn+1

+ (−1)n+1 1
∏n

m=1(∑
n
i=m ωi + ωn+1)

1
ωn+1

=
1

∏n+1
k=1 ∑k

j=1 ωj
. (A21)

Substituting it in Equation (A18), we obtain Equation (A16).
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Lemma A2. The following formula holds

∫ β

0
dβ1 . . .

∫ βn−1

0
dβne−∑n−1

j=1 β jωj+βn ∑n−1
j=1 ωj =

1

∏n−1
k=1 ∑k

j=1 ωj

(
β−

n−1

∑
k=1

1

∑k
j=1 ωj

)

−
n−1

∑
p=1

(−1)p(
∏

p
m=2 ∑

p
i=m ωi

)(
∑

p
r=1 ωr

)2(
∏n−1

k=p+1 ∑k
j=p+1 ωj

) e−β ∑
p
i=1 ωi . (A22)

Proof. From Lemma A1, we have

hn(β; ω1, . . . , ωn) =
1

∑n
j=1 ωj ∏n−1

k=1 ∑k
j=1 ωj

+
n−1

∑
p=1

(−1)p e−β ∑
p
i=1 ωi(

∏
p
m=1 ∑

p
i=m ωi

)(
∏n

k=p+1 ∑k
j=p+1 ωj

) + (−1)n e−β ∑n
i=1 ωi

∑n
i=1 ωi(∏n

m=2 ∑n
i=m ωi)

. (A23)

Taking the limit
n

∑
i=1

ωi → 0 (A24)

we obtain Equation (A22).

Proof of Proposition 2. Using expansion (16) and (17), we have

HI(β) = eβH0 HIe−βH0 = ∑
ω

e−βωDω. (A25)

Then
PHI(β1) · · ·HI(βk) = ∑

ω1,...,ωk

e−β1ω1−...−βkωkP(Dω1 . . . Dωk ). (A26)

Let us calculate

P(Dω1 . . . Dωk ) = lim
T→+∞

1
T

∫ T

0
dteiH0tDω1 . . . Dωk e−iH0t

= lim
T→+∞

1
T

∫ T

0
dt eiH0tDω1 e−iH0t . . . eiH0tDωk e−iH0t

= lim
T→+∞

1
T

∫ T

0
dt ei(ω1+···+ωk)tDω1 · · ·Dωk

= Dω1 · · ·Dωk−1 D−ω1−...−ωk−1 δω1+·+ωk ,0. (A27)

Substituting it in Equation (A26), we have

PHI(β1) · · ·HI(βk)

= ∑
ω1,...,ωk−1

e−(β1−βk)ω1−...−(βk−1−βk)ωk−1 Dω1 · · ·Dωk−1 D−ω1−...−ωk−1 . (A28)

Then, by Equation (13) and Lemma A2, we have Equation (18).

Several first operatorsMk(β) are

M1(β) = −βD0, (A29)

M2(β) = ∑
ω

βω + e−βω − 1
ω2 DωD−ω = ∑

ω 6=0

βω + e−βω − 1
ω2 DωD†

ω +
β

2
D2

0, (A30)

M3(β) = − ∑
ω1,ω2

(
β− 1

ω1
− 1

ω1+ω2

ω1(ω1 + ω2)
+

e−βω1

ω2
1ω2
− e−β(ω1+ω2)

ω2(ω1 + ω2)
2

)
Dω1 Dω2 D−ω1−ω2 . (A31)
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This leads to

M2(β)− 1
2
(M1(β))2 = ∑

ω 6=0

βω + e−βω − 1
ω2 DωD†

ω. (A32)

Substituting this expression andM1(β) in Equation (15) leads to Equation (20).
Similarly, higher-order cumulants could be calculated, e.g.,

M3(β)− 1
2
M2(β)M1(β)− 1

2
M1(β)M2(β) +

1
3
(M1(β))3

= ∑
ω1,ω2

(
β− 1

ω1
− 1

ω1+ω2

ω1(ω1 + ω2)
+

e−βω1

ω2
1ω2
− e−β(ω1+ω2)

ω2(ω1 + ω2)
2

)
Dω1 Dω2 D−ω1−ω2

+ β
1
2 ∑

ω

βω + e−βω − 1
ω2 DωD−ωD0 + β

1
2 ∑

ω

βω + e−βω − 1
ω2 D0DωD−ω −

1
3

β3D3
0. (A33)

Appendix D. Average of Second Correction with Respect to Gibbs State for
Free Hamiltonian

Let us express 〈D†
ωDω〉0 in terms of 〈DωD†

ω〉0 as

〈D†
ωDω〉0 = Tr D†

ωDωZ−1e−βH0 = Z−1 Tr D†
ωe−βH0 eβH0 Dωe−βH0

= Z−1 Tr D†
ωe−βH0 e−βωDω = e−βω Tr DωD†

ωZ−1e−βH0 = e−βω〈DωD†
ω〉0. (A34)

Taking into account Equation (23), we have

−〈H̃(2)〉0 =
β

2 ∑
ω 6=0

f (βω)〈DωD†
ω〉0 =

β

2 ∑
ω>0

( f (βω)〈DωD†
ω〉0 + f (−βω)〈D†

ωDω〉0)

= β ∑
ω>0

1
2
( f (βω) + e−βω f (−βω))〈DωD†

ω = ∑
ω>0

1− e−βω

ω
〈DωD†

ω〉0. (A35)

Similarly, taking into account Equation (25), we have

−〈∂β H̃(2)〉0 =
β

2 ∑
ω 6=0

f1(βω)〈DωD†
ω〉0 = ∑

ω>0

1
2
( f1(βω) + e−βω f1(−βω))〈DωD†

ω〉0

= ∑
ω>0

1− e−βω

βω
〈DωD†

ω〉0 =
1
β
〈H̃(2)〉0. (A36)

Appendix E. Perturbative Expansion of Mean Force Hamiltonian for Effective
Gibbs State

Proof of Proposition 3. Taking into account Equation (A13), we have

TrB Pe−βH = TrB e−βH0PV(β)

= e−βHS TrB e−βHBPV(β) = e−βHS TrB PV(β)e−βHB . (A37)

Due to Equation (A14), it can also be written as

TrB Pe−βH = TrB PV(β)e−βH0 = (TrB PV(β)e−βHB)e−βHS , (A38)

so
[TrB PV(β)e−βHB , e−βHS ] = 0. (A39)
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By Equation (A8), we have

TrB PV(β)e−βHB = TrB e−βHB

(
∞

∑
k=0

λkPMk(β)

)

= ZB

(
1 +

∞

∑
k=1

λk TrB Z−1
B e−βHBMk(β)

)
= ZB

∞

∑
k=1

λk〈Mk(β)〉B. (A40)

Taking into account Equation (A37), we have

Z−1
B e−βH̃mf = Z−1

B TrB Pe−βH = e−βHS
∞

∑
k=1

λk〈Mk(β)〉B. (A41)

Then, the proof follows the proof of Proposition 1 (see Appendix B), replacingMk(β) with
〈Mk(β)〉B and H0 with HS.

Similarly to Equation (15), the first several terms are

H̃mf = HS − λβ−1〈M1(β)〉B − β−1λ2
(
〈M2(β)〉B −

1
2
(〈M1(β)〉B)2

)
+ O(λ3) (A42)

or using Proposition 2, similarly to Equation (20), we have Equation (49).

Appendix F. Calculation of Mean Force Hamiltonian

Due to Equation (50), we have

Dω = ∑
ω1

Aω−ω1 ⊗ Bω1 = ∑
ω1

A†
ω1−ω ⊗ Bω1 = ∑

ω1

A†
ω1
⊗ Bω1+ω, (A43)

then
DωD†

ω = ∑
ω1,ω2

A†
ω1

Aω2 ⊗ Bω1+ωB†
ω2+ω. (A44)

The second equation of Equation (50) also leads to eβHB Bωe−βHB = eβ[HB , · ]Bω = e−βωBω,
then Bωe−βHB = e−βωe−βHB Bω. Applying trace to both sides of this equation, we have
(1− e−βω)TrB Bωe−βHB = 0. Thus, we have

〈Bω〉B = 〈B0〉Bδω,0,

〈Bω1 B†
ω2
〉B = 〈Bω1 B†

ω1
〉Bδω1,ω2 . (A45)

Then, Equations (A43) and (A44) take the form

〈D0〉B = ∑
ω1

A−ω1〈Bω1〉B = A0〈B0〉B (A46)

and

〈DωD†
ω〉B = ∑

ω1,ω2

A†
ω1

Aω2〈Bω1+ωB†
ω2+ω〉B = ∑

ω1

A†
ω1

Aω1〈Bω1+ωB†
ω1+ω〉B

= ∑
ω1 6=0

A†
ω1

Aω1〈Bω1+ωB†
ω1+ω〉B + A2

0〈BωB†
ω〉B. (A47)
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Hence, after substituting these formulae into Equation (49), we have

H̃mf = HS + λ〈B0〉B A0 − λ2 β

2

(
( ∑

ω 6=0,ω1 6=0
f (βω)〈Bω1+ωB†

ω1+ω〉B + 〈Bω1 B†
ω1
〉B)A†

ω1
Aω1

+ A2
0( ∑

ω 6=0
f (βω)〈BωB†

ω〉B + 〈B2
0〉 − 〈B0〉2B)

)
+ O(λ3). (A48)

Assuming by continuity f (0) = 1, this equation reduces to Equation (51).

Appendix G. Calculations for the Examples

We provide fewer details for the second and third examples because they are fully
analogous to the first one.

Appendix G.1. Two Two-Level Systems

(1) For the off-resonance case, we have

H0 = ωaσ+
a σ−a + ωbσ+

b σ−b , HI = (σ−a + σ+
a )(g∗σ−b + gσ+

b ). (A49)

As [ωiσ
+
i σ−i , σ±i ] = −(∓ωi)σ

±
i for i = a, b, then

Dωa−ωb = D†
ωb−ωa = gσ−a σ+

b , Dωa+ωb = D†
−(ωa+ωb)

= g∗σ−a σ−b . (A50)

As ni = σ+
i σ−i = 1− σ−i σ+

i for i = a, b, then

Dωa−ωb D†
ωa−ωb

= |g|2σ−a σ+
a σ+

b σ−b = |g|2(1− na)nb, (A51)

D†
ωa−ωb

Dωa−ωb = |g|
2σ+

a σ−a σ−b σ+
b = |g|2na(1− nb), (A52)

Dωa+ωb D†
ωa+ωb

= |g|2σ−a σ+
a σ−b σ+

b = |g|2(1− na)(1− nb), (A53)

D−ωa−ωb D†
−ωa−ωb

= |g|2σ+
a σ−a σ+

b σ−b = |g|2nanb. (A54)

Substituting it in Equation (20), we obtain Equation (53).
As

〈ni〉0 ≡
Tr nie−βωini

Tr e−βωini
=

1
eβωi + 1

(A55)

for i = a, b, then by Equation (A35), we have

−〈H(2)〉0 = |g|2
(

1− e−β(ωa−ωb)

ωa −ωb
(1− 〈na〉0)〈nb〉0 +

1− e−β(ωa+ωb)

ωa + ωb
(1− 〈na〉0)(1− 〈nb〉0)

)
= |g|2

ωa tanh βωa
2 −ωb tanh βωb

2
ω2

a −ω2
b

. (A56)

Thus, by Equation (36), we obtain Equation (54).
(2) For the resonance case, we have

H0 = ωa(σ
+
a σ−a + σ+

b σ−b ), HI = (σ−a + σ+
a )(g∗σ−b + gσ+

b ) + δωσ+
b σ−b . (A57)

Now, the terms analogous to Dωa−ωb and Dωb−ωa contribute to D0

D0 = D†
0 = (gσ−a σ+

b + g∗σ+
a σ−b ) + δωσ+

b σ−b , Dωa+ωb = D†
−(ωa+ωb)

= g∗σ−a σ−b . (A58)

Substituting it in Equation (20), we obtain Equation (55).
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As
〈ni〉0 =

1
eβωa + 1

, (A59)

we have

− 〈H(2)〉0 = |g|2 1− e−2βωa

2ωa
(1− 〈na〉0)(1− 〈nb〉0) = |g|2

tanh ωa β
2

2ωa
. (A60)

Thus, by Equation (36), we obtain Equation (56).

Appendix G.2. Two Oscillators

(1) For the off-resonance case, we have

H0 = ωaa†a + ωbb†b, HI = (a + a†)(g∗b + gb†), (A61)

Dωa−ωb = D†
ωb−ωa = gab†, Dωa+ωb = D†

−(ωa+ωb)
= g∗ab (A62)

and

Dωa−ωb D†
ωa−ωb

= |g|2aa†b†b = |g|2(na + 1)nb, (A63)

Dωa+ωb D†
ωa+ωb

= |g|2aa†bb† = |g|2(na + 1)(nb + 1), (A64)

Dωb−ωa D†
ωb−ωa = |g|

2a†abb† = |g|2na(nb + 1), (A65)

D−(ωa+ωb)
D†
−(ωa+ωb)

= |g|2a†ab†b = |g|2nanb. (A66)

Substituting it in Equation (20), we obtain Equation (59).
As

〈ni〉0 =
1

eβωi − 1
(A67)

for i = a, b, then by Equation (A35), we have

−〈H(2)〉0 = |g|2
(

1− e−β(ωa−ωb)

ωa −ωb
(1 + 〈na〉0)〈nb〉0 +

1− e−β(ωa+ωb)

ωa + ωb
(1 + 〈na〉0)(1 + 〈nb〉0)

)
= |g|2

ωa coth βωb
2 −ωb coth βωa

2
ω2

a −ω2
b

. (A68)

By Equation (36), we obtain Equation (60).
(2) For resonance case (52), we have

H0 = ωa(a†a + b†b), HI = (a + a†)(g∗b + gb†) + δωb†b, (A69)

D0 = D†
0 = (gab† + g∗a†b) + δωb†b, Dωa+ωb = D†

−(ωa+ωb)
= g∗ab. (A70)

Substituting it in Equation (20), we obtain Equation (61).
As

〈ni〉0 =
1

eβωa − 1
, (A71)

we have

− 〈H(2)〉0 = |g|2 1− e−2βωa

2ωa
(1 + 〈na〉0)(1 + 〈nb〉0) = |g|2

coth ωa β
2

2ωa
. (A72)

Thus, by Equation (36), we obtain Equation (62).
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Appendix G.3. Two-Level System and Oscillator

(1) For the off-resonance case, we have

H0 = ωaσ+σ− + ωbb†b, HI = (a + a†)(g∗b + gb†), (A73)

Dωa−ωb = D†
ωb−ωa = gσ−b†, Dωa+ωb = D†

−(ωa+ωb)
= g∗σ−b (A74)

and

Dωa−ωb D†
ωa−ωb

= |g|2σ−σ+b†b = |g|2(1− na)nb, (A75)

Dωa+ωb D†
ωa+ωb

= |g|2σ−σ+bb† = |g|2(1− na)(nb + 1), (A76)

Dωb−ωa D†
ωb−ωa = |g|

2σ+σ−bb† = |g|2na(nb + 1), (A77)

D−(ωa+ωb)
D†
−(ωa+ωb)

= |g|2σ+σ−b†b = |g|2nanb. (A78)

As
〈na〉0 =

1
eβωa + 1

, 〈nb〉0 =
1

eβωb − 1
(A79)

for i = a, b, then by Equation (A35), we have

−〈H(2)〉0 = |g|2
(

1− e−β(ωa−ωb)

ωa −ωb
(1− 〈na〉0)〈nb〉0 +

1− e−β(ωa+ωb)

ωa + ωb
(1− 〈na〉0)(1 + 〈nb〉0)

)
= |g|2

ωa tanh βωa
2 coth βωb

2 −ωb

ω2
a −ω2

b
. (A80)

By Equation (36), we obtain Equation (66).
(2) For resonance case (52), we have

H0 = ωa(σ+σ− + b†b), HI = (σ− + σ+)(g∗b + gb†) + δωb†b, (A81)

D0 = D†
0 = (gσ−b† + g∗σ+b) + δωb†b, Dωa+ωb = D†

−(ωa+ωb)
= g∗σ−b. (A82)

As
〈na〉0 =

1
eβωa + 1

, 〈nb〉0 =
1

eβωa − 1
, (A83)

we have

− 〈H(2)〉0 = |g|2 1− e−2βωa

2ωa
(1− 〈na〉0)(1 + 〈nb〉0) =

|g|2
2ωa

. (A84)

Thus, by Equation (36), we obtain Equation (68).
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