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Abstract: In this paper, we propose to leverage the Bayesian uncertainty information encoded in
parameter distributions to inform the learning procedure for Bayesian models. We derive a first
principle stochastic differential equation for the training dynamics of the mean and uncertainty
parameter in the variational distributions. On the basis of the derived Bayesian stochastic differential
equation, we apply the methodology of stochastic optimal control on the variational parameters to
obtain individually controlled learning rates. We show that the resulting optimizer, StochControlSGD,
is significantly more robust to large learning rates and can adaptively and individually control the
learning rates of the variational parameters. The evolution of the control suggests separate and
distinct dynamical behaviours in the training regimes for the mean and uncertainty parameters in
Bayesian neural networks.
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1. Introduction

Deep Bayesian neural networks (BNNs) aim to leverage the advantages of two
different methodologies. First, in recent years, deep representations have been incredibly
successful in fields as diverse as computer vision, speech recognition and natural language
processing [1–3]. Much of the success, however, revolves around prediction accuracy.
Second, Bayesian methodologies are required to obtain an estimate of model uncertainty, a
crucial feature that allows deep neural networks to tackle risk assessment to create informed
model decisions. The role of model uncertainty in the training procedure of BNNs, however,
remains unaddressed; the present investigation seeks to exploit the model uncertainty in
Bayesian neural networks for the development of new learning algorithms.

For the training of BNNs, the approximate posterior over the model parameters is
obtained via a maximization of the variational lower bound.

Such a posterior introduces a form of uncertainty in the parameters which is different
than that injected by random batches of data. In this investigation, we seek to exploit
both the data uncertainty (aleatoric) and the model uncertainty (epistemic) to solve a
control problem aimed at maximizing the evidence lower bound (ELBO), where the control
parameters gauge the dynamics of the gradient during descent.

The contributions of our work are threefold,

• We provide a derivation of the stochastic differential equation on a first principle basis
that governs the evolution of the parameters in variational distributions trained with
variational inference and we decompose the uncertainty of the gradients into their
aleatoric and epistemic components.

• We derive a stochastic optimal control optimization algorithm which incorporates
the uncertainty in the gradients to optimally control the learning rates for each
variational parameter.
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• The evolution of the control exhibits distinct dynamical behaviour and demonstrates
different fluctuation and dissipation regimes for the variational mean and
uncertainty parameters.

Section 1 offers an introduction to the topic. In Section 2, we provide an overview
over probabilistic models and Bayesian neural networks. Section 3 details the deriva-
tion of the stochastic differential equation governing the dynamics of the frequentist and
variational parameters. Subsequently, we derive a stochastic optimal control algorithm in
Section 4 on the basis of the dynamics of the variational parameters. Finally, Section 5
summarizes experiments undertaken and the performance of the stochastic optimal control
optimizer, as well as the distinct behaviour of the control parameters.

2. Variational Inference for Bayesian Neural Networks

For a training dataset D, the Bayesian formulation of a neural network places a
posterior distribution p(θ|D) and a prior p(θ) on each of its parameters θ. The quintessential
task in Bayesian inference is to compute the posterior p(θ|D) according to Bayes’ rule:

p(θ|D) = p(D|θ)p(θ)
p(D) . (1)

Given a likelihood function p(D|θ) and the parameter prior p(θ), we can make pre-
dictions by marginalizing out over the parameters. For the most common application of
supervised learning with label y and data x, D = {ym, xm}N

m=1, x ∈ X , y ∈ Y , this gives us

p(y|x) =
∫

p(y|x, θ)p(θ|D)dθ. (2)

where p(y|x, θ) is the likelihood function of the output y given the input x and the posterior
parameter distribution p(θ|D). For highly parameterized models, the inference of the
posterior distribution p(θ|D) requires the computation of a high dimensional integral
which is numerically intractable to compute for most complex models as they can easily
have millions of parameters.

There are two main approaches for inferring the posterior distribution p(θ|D) in
Bayesian neural networks: sampling from the posterior distribution in proportion to the
data likelihood and prior [4], and variational inference, which optimizes a bound on the
evidence and approximates the true posterior with a tractable distribution q(θ|φ) ≈ p(θ|D)
with the variational parameters φ, [5].

Our approach focuses on the variational inference formulation, which scales well to
large data regimes as the bound is amenable to gradient-based optimization schemes [6].
Variational inference infers the posterior distribution by optimizing the Kullback–Leibler diver-
gence between the true posterior p(θ|D) and a variational distribution q(θ|φ).
The important detail is that the variational distribution is assumed to be independent of the data
D, which makes the solution approximate yet tractable. The optimization problem is then

arg min
φ

KL[q(θ|φ)||p(θ|D)] = arg min
φ
−Eq(θ|φ)[log p(D|θ)] +KL[q(θ|φ)||p(θ)]. (3)

We are, thus, left to optimize the ELBO, which is derived in full in Appendix A, in
the form Eq(θ|φ)[log p(D|θ)]−KL[q(θ|φ)||p(θ)] as a surrogate loss function. The ELBO is
optimized numerically through gradient descent algorithms, which bring their own set
of challenges with respective to gradient step size, directional sensitivity and exploding
and vanishing gradients. We propose a stochastic optimal control algorithm for gradient
descent optimization which controls the learning rate for every variational parameter φ
based on the local surface of the Kullback–Leibler divergence.
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For the remainder of this paper, we assume that the variational distribution q(θ|φ)
for each parameter θ follows an independent normal or Laplace distribution with the
location of the distribution µ and the scale σ as the variational parameters φ = {µ, σ} of
the parameter θ. Since the scale parameter σ is constrained to be positive, we employ an
additional reparameterization σ = log(exp(ρ) + 1) which allows us to compute derivatives
for ρ during optimization while keeping σ strictly positive.

2.1. Stochastic Differential Equations for Frequentist Models

During optimization, the model parameters follow a dynamical process; in the fol-
lowing section, we show how it is possible to approximate this dynamic as an SDE; we
start with a frequentist version where no distribution is imposed on the parameters (as
in the BNN), and the stochasticity is injected by the dataset and samples from therein.
Given a probabilistic model p(ym|xm, θ) : X → Y with a set of scalar parameters θ ∈ R,
the input xm ∈ X and output ym ∈ Y , we compute the derivative of a scalar loss function
Lm : Y ×Y → R to obtain the derivative with respect to each parameter ∂θLm in the proba-
bilistic model for a single data point. Gradient descent requires us to calculate the derivative
of the loss over the entire training dataset D at each iteration ∂θL = 1/|D|∑|D|i=1 Li. This
gradient, has an associated variance:

σD = VD[∂θL] =
1
|D| ∑

i∈D
(∂Li − ∂θL)2. (4)

The computational cost of calculating gradients over entire training datasets is pro-
hibitively expensive, which has favoured the use of mini-batch sampled gradients. Now, a
mini-batch with M� |D| data points is sampled [7]. The assumption is that a mini-batch
is computationally tractable while providing a representative sample of the training dataset
to compute a sufficiently good gradient on. We denote Dm as a single data sample and DM
as the mini-batch sample. The sampling of the mini-batches introduces stochasticity into
the gradient estimation. The first and second moments, denoted as E[·] and V[·], for each
scalar parameter θ of the mini-batch gradients are:

∂θLM =
1
M

M

∑
m=1

∂θLm (5)

∂θL = EM∼p(D)[∂θLM] (6)

VM[∂θLM] =
1
M ∑

i∈D
(∂Li − ∂θL)2 (7)

VM[∂θLM] ∝
1
M

σD (8)

It is easy to see that we can decrease the variance in the gradient estimation by
increasing the size of the mini-batch M. The change in the parameters ∆θt = θt+1 − θt in
gradient based optimization consequentially follows a noisy estimate of the true gradient
∂θL which is distributed according to the first- and second-order moments in (4) and (5).
The central limit theorem implies that the derivatives are distributed along a Gaussian
distribution, ∂θLM ∼ N (∂θL, 1

M σD) [8]. Given the distribution of the gradients, the
evolution of the parameter through time with the learning rate η can be approximated by:

θt+1 = θt − η∂θLM (9)

∆θt = −η∂θL+ η

√
σD
M

ε ; ε ∼ N (0, 1) (10)



Entropy 2022, 24, 1097 4 of 20

This formulation of the parameter dynamics during training has strong similarities
with the Euler–Maruyama discretization of an Ito drift–diffusion process. Indeeed, for an
SDE with drift b(θt) and diffusion σ(θ):

dθt = b(θt)dt + σ(θt)dWt (11)

we have the associated Eurler–Maruyama discretization:

θt+1 = θt + b(θt)∆t
√

∆tσ(θ)ε. (12)

We proceed by setting η ≡ ∆t, b(θt) ≡ ∂θL and σ(θt) ≡
√

η/MσD to denote equiva-
lency, as further described in [8–10]. This modification allows the use of stochastic analysis
to Ito drift-diffusion processes. See [11] for a more thorough discussion on the relationship
of the learning rate and the diffusion of SGD). If we additionally consider the learning in
the infinitesimal limit of η → 0, we arrive at a formulation for the instantaneous change in
time which is given by

dθt = −∂θLdt +
√

η/MσDdWt (13)

which is a stochastic differential equation, where dWt is a Wiener process that originates
from the limit applied to

√
ηε [12]. We can, thus, conclude that the change in the parameters

θt, for an infinitesimal small learning rate η, follows a stochastic differential equation in the
form of an Ito drift–diffusion process over time in which the sampling of the mini-batches
contributes the diffusion [12].

2.2. Stochastic Differential Equations for Bayesian Models

In BNN models, each scalar parameter θ is modelled by a univariate distribution
θ ∼ q(θ|φ). The use of the distribution q(θ|φ) extends the loss L to the form of the ELBO
which is additive in the mini-batch samples m and has a closed form regularization term
(the Kullback–Leibler divergence between posterior p(θ|D) and prior p(θ)), the derivation
of which can be found in Appendix A. Not only do we choose data samples at random,
but, concurrently, we sample the parameter θ from the distribution q(θ|φ) following the
reparametrization trick. The parameter θ is thus a random variable itself. Consequentially,
the derivative ∂θLm for a single data sample m will exhibit randomness originating both
from the randomly sampled mini-batches and the stochasticity of the sampled parameters
from the variational distribution.

The uncertainty of the parameter derivative ∂θL can be decomposed into the aleatoric and
the epistemic uncertainty. The aleatoric uncertainty arises from the variance in the data and is
irreducible, whereas the epistemic uncertainty arises from the uncertainty of the parameter θ
and can be reduced to zero, since, in principle, the parameters can be sampled θ.

Employing the tractable univariate variational distribution q(θ|φ) to achieve a scalable
optimization, for a derivative ∂θLm which is dependent on the random parameter θ and
the randomly chosen data sample m, we can decompose the uncertainty of ∂θL into a sum
of the data uncertainty and the parameter uncertainty, which follows from the law of total
variance [13]:

V[∂θL] =Vp(DM)

[
Eq(θ|φ)[∂θLm|Dm]

]
︸ ︷︷ ︸

Aleatoric Uncertainty

+Ep(DM)

[
Vq(θ|φ)[∂θLm|Dm]

]
︸ ︷︷ ︸

Epistemic Uncertainty

. (14)

In effect, we draw samples twice in BNNs to obtain ‘per data sample per variational
sample’ derivatives: data samples for the mini-batch and parameter samples θ from the
variational distribution. Aleatoric uncertainty first computes the expectancy over the
‘variationally sampled’ derivatives per data sample Dm and subsequently computes vari-
ance over the mini-batch DM. Epistemic uncertainty first computes the variance over the
‘variationally sampled’ gradients and, finally, computes the expected derivative over the
mini-batch DM)
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It is important over which source of randomness the variance is computed in the uncer-
tainty decomposition. The first term, V[E[∂θLm|Dm]], represents the aleatoric uncertainty
and measures the data uncertainty. It measures how much the average gradient varies
over the dataset. The second term, E[V[∂θLm|Dm]], is called the epistemic uncertainty
and measures the uncertainty originating from the model parameter distribution. For the
epistemic uncertainty, the variance is computed over the source of parameter uncertainty
and averaged over the data samples. In BNNs this is explicitly modelled through the use of
distributions for every parameter θ. Frequentist models exhibit only aleatoric uncertainty, as
the variance over the deterministic gradients in the epistemic uncertainty evaluates to zero.

For a univariate variational distribution θ ∼ q(θ|φ), we can now formulate the stochas-
tic differential equation (SDE) that governs the dynamics of the variational parameters
φ = {µ, σ}.

The first modification, with respect to the SDE of a frequentist model in Equation (10)
is that, for every parameter θ in the frequentist model, we have, in fact, two separate
variational parameters φ = {µ, σ} in the Bayesian model, corresponding to the mean and
scale of the variational distribution from which we sample θ. We, thus, have the two
differential equations for the variational parameters {µ, σ},

dµt = −E
[
∂µL

]
dt +V

[
∂µL

] 1
2 dWt (15)

dσt = −E[∂σL]dt +V[∂σL]
1
2 dW∗t . (16)

in which dσt has a separate Wiener process dW∗t due to the externalized noise in the
reparameterization, the details of which can be checked up upon in the Appendix C.
The second modification is the separation of uncertainty, given that we have the additional
source of uncertainty from the distribution q(θ|φ). We can, thus, employ the uncertainty
decomposition to obtain

dµt =−E
[
∂µL

]
dt +

(
V
[
E
[
∂µLm|Dm

]]
+E

[
V
[
∂µLm|Dm

]]) 1
2
dWt (17)

dσt =−E[∂σL]dt +
(
V[E[∂σLm|Dm]] +E[V[∂σLm|Dm]]

) 1
2
dW∗t (18)

We can now see that the only difference in the SDEs that govern the training dynamics
in frequentist and Bayesian models is the added epistemic uncertainty in the diffusion term
of the Bayesian stochastic differential equation.

Figure 1 exemplifies the different terms in the Bayesian stochastic differential equation
and how uncertainty in stochastic gradient descent for a variational distribution can be
decomposed for a toy example in one dimension. The details of the derivation of the
Bayesian stochastic differential equation can be followed up in Appendix C.



Entropy 2022, 24, 1097 6 of 20

Figure 1. The components of the stochastic differential equation for the variational parameters µt

and σt over time. The empirical drift and diffusion estimates shown in blue are unbiased estimates
of the true analytically derived drift and diffusion terms. The loss was L = 1

2 (θt − b)2 where b was
sampled randomly from b ∈ {−2,+2} to simulate aleatoric uncertainty. The aleatoric uncertainty
from the data in the gradients remains constant whereas the epistemic uncertainty from the parameter
distribution is reduced to zero.
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3. Stochastic Control for Learning Rates

Having derived and characterized the training dynamics of the variational parameters
x ≡ {µt, σt} on a first principle basis, we now construct our proposed stochastic optimal
control algorithm for BNNs. Our approximation methodology relies on the limit η → 0.
We first introduce a new control variable that respects the limit, namely the learning rate
adjustment to the training, an additional adaptive diagonal control matrix U, which leads
to a full SDE for the dynamics of training as:

ẋt = −U E[∇xL] dt + U
√

ηV[∇xL]
1
2 dWt (19)

which is an Ito drift-diffusion process, where both the drift and the diffusion are controlled
by the diagonal control matrix U and where the diffusion term is estimated from the
variance of the gradients. We essentially scale it on a per-parameter basis with the control
matrix U. We clip the individual control parameters Ui on the diagonal of U to the range
Ui ∈ [0, 1] bounding the step size to ηUi ∈ [0, η]. We posed our problem as follows: if we
have the gradients ∇xL, how do we choose the policy for adjusting the control parameter
U to minimize the loss at the end of the training? Essentially:

minuE[L(XT)] subject to (19) (20)

provided that X follows Equation (19). The general optimal control formalism requires
us to minimize the cost C for the optimal control parameter U, accumulated over time
t ∈ [t0, t1], and the final cost C(xt, U, t1), under the constraint of the dynamics ẋt.

3.1. Simplifiying the Loss

It is known that the loss surface L of deep neural network architectures is highly non-
linear, which makes global optimization nearly impossible. In a similar way to [14,15], we
therefore approximate the loss surface locally with a quadratic function of the form

g(xt) =
1
2
(xt − b)>A(xt − b). (21)

The quadratic approximation as seen in Figure 2 forfeits the global loss surface for a
local approximation in which the respective optimal quantities can be computed optimally
in the sense of the local approximation. This simplification is chosen such that a tractable
stochastic optimal control algorithm can be derived. Intuitively, given a local quadratic
approximation of the loss surface, the offset parameter b denotes the optimum of the
quadratic approximation g(xt), whereas the curvature A denotes how flat or steep the loss
surface is locally.

x

Figure 2. A one-dimensional illustration of how the optimal stochastic control u is determined from
the gradient and parameter information. The parameters φ and their gradient information ∂φL are
used to estimate the curvature A and offset b for the quadratic approximation g through which the
optimal control parameter u is determined. In our experiments with Bayesian neural networks, each
parameter θ has two variational parameters φ = {µ, σ}, such that A ∈ R2x2 and b ∈ R2.
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Consequently, we want to move the variational parameters {µt, ρt} in the observable
state vector xt as close as possible to this local optimum which coincides with the offset
parameter b.

The curvature A and the offset parameter b of the local quadratic approximation of
the loss surface can be conveniently calculated via ordinary least squares with the gradient
relation (see Appendix D for details)

∇φL ∼ ∇xg(xt) = A(xt − b). (22)

We maintain running averages of the gradients and the parameters to prevent abrupt
changes in the control. The quadratic approximation of the loss surface is maintained for
each parameter distribution in the BNN architectures.

3.2. Our Control Problem

Taking inspiration from the local quadratic approximation g(xt), we wish to minimize
the distance of the observable state variables xt to the optimum b of the quadratic approxi-
mation g(x). We introduce an auxilliary variable L which allows us to simplify the classical
control problem that requires the solution for the Hamiltonian–Jacobi–Bellman equation
Appendix E.

It is known, by definition, that Mij = (xi − bi)(xj − bj) is a stochastic variable. We can
obtain a relationship between L and the approximation of the error g:

g(xt) =
1
2

M11 A11 + M12 A12 +
1
2

M22 A22 (23)

We make use of Ito’s lemma, detailed in Appendix B, to obtain the dynamics of the
error dM and define the diffusion matrix D = ηV[∇xtL] which gives us,

dM =
(
−∇x M U ∇xL+

η

2
Tr[DUT ∇2

x M U]
)

dt +∇x MTU
√

ηV[∇xL]dW

which is again an Ito drift-diffusion process, and for which we provide the relevant gradient
calculations in Appendix D. With the intention of separating the drift and evaluating the
matrix derivatives, the details of which are in the Appendix D, we obtain

f (M, U, t) = −(UAM + MAU) + η UDU (24)

The dynamics of the error f (M, U, t) denote the drift of the Ito drift-diffusion process
dM and represent the average dynamics of the error function over time, given the dynamics
dxt of the parameters xt = (µt, ρt)>. The task which we want to achieve is to minimize the
loss in (23) in such a way that we arrive at the optimum after the control period t ∈ [t0, t1].

C(M, U, t1) =
1
2

∫ t1

t0

Tr
[
AṀ

]
dt. (25)

where A is the curvature of the local approximation g(xt). The motivation of this formu-
lation is that M measures the distance of the state vector xt to the local optimum b in the
quadratic approximation scaled by the curvature A. Thus, minimizing the distance M at
each time step is equivalent to minimizing the entire cost C. The full derivation can be
found in Appendix E.

The optimization of the final cost C can be solved by minimizing the cost of Tr[AṀ],
which, in turn, minimizes C. Taking the derivative of 1

2 Tr[AṀ] with respect to the individ-
ual control parameters Uii and setting it to zero gives us

U′ = (A ◦ D)−1 Diag[AMA]

η
(26)
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where U′ = [U11, U22]
> is a vector with the corresponding control parameters, ◦ is the

Hadamard product and Diag[·] extracts the diagonal elements of a matrix For indefinite
matrices A, we project U′ onto the eigenvector corresponding to the positive eigenvalue
to ensure that the optimality condition is met [16]. The full derivation can be reviewed in
Appendix E.

We compute the control parameter U′ jointly for the variational parameters {µ, σ},
which results in the matrices A, D, M to be in R2×2. The inversion of the 2× 2 matrices
can be performed analytically, as detailed at the end of Appendix F. Comparing the oper-
ations required per parameter in ADAM (addition, subtraction, division etc.) and those
in StochControlSGD (mostly 2 × 2 matrix multiplications and analytical inversions), we
arrive at an approximately 2.5× increase in computations for StochControlSGD compared
to ADAM. It is important to note that ADAM has to be applied to both variational param-
eters independently, whereas StochControlSGD computes the control parameters jointly,
thus saving computation.

The StochControlSGD algorithm is detailed in its entirety in Algorithm 1.

Algorithm 1: StochControlSGD
Result: Optimal stochastic control parameter U

1 Variational parameters φ = {µ, ρ} ;
2 for Minibatch B do
3 Compute per sample gradients ∇φLm ;
4 Update running average for first order moments of ∇φLm and φ ;
5 Compute OLS parameters A,b, and D, M ;
6 Compute U from A, D and M ;
7 φ← φ− ηU∇φLB ;
8 end

4. Experiments

We evaluate the proposed stochastic optimal control SGD, which we abbreviate as
StochControlSGD, on the MNIST [17], FashionMNIST [18] and CIFAR10 [19] datasets.
In Table 1, we compare the final performance of StochControlSGD with the performance of
ADAM, controlled SGD (cSGD), SGD and SGD with cosine learning rate scheduling, as
proposed by [15].

Learning rate scheduling was chosen as the cosine annealing, where the initial learning
rate was chosen as 10−1 and was decreased to 10−5. The experimental setup is detailed in
Appendix G.

ADAM provides a strong baseline for the frequentist models when the learning rate
is chosen to be appropriately small. Following the notion of learning rate scheduling,
we initialized the learning of both cSGD and StochControlSGD as η = 0.5 and u0 = 1.0.
Both cSGD and StochControlSGD are able to adaptively and individually set their control
parameters over the course of optimization.

Additionally, we plot the convergence of the ADAM, cSGD and StochControlSGD in
Figure 3. The results are portrayed more concisely in Figure 4, for which five runs for each
learning rate and each optimizer are combined in a boxplot format.
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Table 1. Test accuracy on the MNIST, FMNIST and CIFAR10 datasets. We abbreviate StochControlSGD as scSGD, and the SGD with cosine learning rate scheduling
as LRSGD, for notational brevity. The best performing optimization algorithm per data set is denoted in bold.

MNIST FMNIST CIFAR10
SGD ADAM cSGD scSGD LRSGD SGD ADAM cSGD scSGD LRSGD SGD ADAM cSGD scSGD LRSGD

NN 0.959 0.987 0.961 / 0.985 0.818 0.890 0.851 / 0.878 0.461 0.512 0.432 / 0.499
CNN 0.989 0.993 0.981 / 0.990 0.904 0.918 0.912 / 0.907 0.853 0.865 0.857 / 0.855
BNN (Normal) 0.956 0.963 0.970 0.971 0.069 0.865 0.870 0.876 0.900 0.900 0.441 0.442 0.451 0.471 0.462
CBNN (Normal) 0.982 0.988 0.982 0.990 0.989 0.869 0.914 0.903 0.921 0.915 0.615 0.854 0.836 0.853 0.801
BNN (Laplace) 0.976 0.978 0.974 0.977 0.975 0.890 0.875 0.903 0.901 0.9 0.501 0.452 0.461 0.479 0.500
CBNN (Laplace) 0.989 0.987 0.985 0.991 0.989 0.899 0.916 0.907 0.918 0.912 0.627 0.857 0.829 0.857 0.853
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Figure 3. Comparison of StochControlSGD with SGD, controlled SGD and ADAM. StochcontrolSGD
offers very robust performance over varying learning rates.

Figure 4. Combined performance of the optimizers over different learning rates. StochControlSGD
provides reliable performance over a wide range of learning rates without the necessity of hyperpa-
rameter tuning.

In contrast to cSGD and StochControlSGD, ADAM does not have the ability to modify
the a priori chosen learning rate η. Coupled with the first- and second-order moments
from which the surrogate gradient is computed, ADAM is sensitive to the large learning
rate with significantly worsening performance for learning rates at η = 0.5 and η = 0.1.
The larger learning rates do not pose a problem for the optimal control optimizers cSGD
and StochControlSGD, as they can adaptively and individually control their learning
rates. We consider only optimizers which rely on the gradient information to accelerate
the gradient descent and forego learning rate scheduling algorithms which incorporate
performance information, such as learning rate schedulers which decrease the learning rate
if a performance plateau is detected.

Among the optimal control optimizers, StochControlSGD provides tighter bounds
on the lower and upper performance while offering a higher performance. Especially
on the CIFAR10 dataset in Figure 3, StochControlSGD improves upon cSGD with better
absolute performance and less variation between the largest learning rate of η = 0.5 and
the smallest learning rate η = 0.01. Furthermore, it can be seen that the performance of
StochControlSGD and cSGD improve with larger learning rates. As can be seen in Figure 3,
the performance of the largest learning rate of η = 0.5 is, in fact, its best performance,
whereas it is the worst performance for ADAM.

The direct comparison of ADAM with StochControlSGD connects to recent work
carried out by [20] on the fundamental optimization of deep Bayesian models with gradient
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optimization algorithms developed for frequentist models. The methodology of BNNs
is limited in the amount of relevant information in the uncertainty with respect to the
learning optimization due to its reliance on normal priors. Modern frequentist deep neural
networks rely on custom layer architectures, such as BatchNorm [21], with additional data
augmentation schemes, which have no clear Bayesian interpretation, raising additional
questions on the applicability of porting frequentist ideas, such as layer designs, in deep
neural networks, to their Bayesian formulations.

Behaviour of Control Parameter

The evolution of the control parameter U allows insight into the descent and fluc-
tuation behaviour of the variational parameters µt and ρt with respect to the ELBO.
More specifically, it allows us to shed some light onto the dynamics between the data
log likelihood and the KL divergence.

The data loglikelihood aims at minimizing the uncertainty parameter ρt of each
variational distribution as much as possible. The gradients of KL divergence, in turn, prior-
itize an uncertainty parameter which corresponds to the prior which we chose as N (0, I).
The relative weighting of the data log likelihood and KL divergence with respect to the
number of samples in the ELBO heavily favours the gradients of the data log likelihood
during the descent phase for large datasets. As the gradients of the KL divergence are inde-
pendent of the data by definition, the importance of their gradients increases proportionally
to the diminishing gradients of the converging data log likelihood.

The uncertainty parameters were initialized to ρ0 = −6.9 in all our experiments
which allows the BNN to increase the uncertainty of select parameters if the KL divergence
dominates the gradients of the specific parameter in question. The intuition is that deep
neural networks, in fact, only use few weights [22], and, thus, the uncertainty parameters
can be maximized by the KL divergence for parameters for which the gradients of the KL
divergence are stronger than the gradients originating from the data log likelihood.

We can observe this behaviour in Figure 5, where the median control parameters of µt de-
crease quickly alongside the control parameters for the uncertainty parameter ρt. However, as
the data loglikelihood converges, the median control parameter of the uncertainty pa-
rameter is increased as the relative importance of the gradients originating from the data
loglikelihood decreases and the gradients from the KL divergence dominate.

Figure 5. The median control parameter over time plotted with the Training ELBO which is used to
compute the gradients for a BNN which was trained on Fashion MNIST.

This indicates two different dynamical regimes in the optimization of the uncertainty
parameter of the variational distribution. The mean control parameter remains small during
the descent and fluctuation dynamics whereas the uncertainty control is, in fact, increased
by the stochastic control optimization algorithm in the fluctuation phase.

5. Related Work

The authors of [15] derived an optimal control algorithm for frequentist models which
incorporated the variance into the learning rate scheduling. In [23], it was argued that
instead of decreasing the learning in the dissipation phase of the optimization, the batch
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size should be increased to reduce the uncertainty in the gradients. The authors of [24]
and [25] examined adaptive learning rate schemes for changing loss surfaces. The idea of a
priori cyclical scaling in the learning rates was pioneered in [26].

The use of the reparameterization of the Gaussian variational distribution in deep
Bayesian neural networks to arrive at a scalable optimization algorithm based on variational
inference was proposed in [27]. The authors of [28] examined the behaviour of DropOut [29]
as an approximate Bayesian inference. The authors of [30] demonstrated that the dropout
rate could be learned as an approximate uncertainty parameter.

6. Conclusions

We have examined the potential for incorporating Bayesian uncertainty information
directly into a learning algorithm. For this, we derived the SDEs for variational parameters
on a first principle basis. With both aleatoric and epistemic uncertainty present in the
optimization process, we decomposed the diffusion parameter of the SDE into its data and
parameter uncertainties.

Having identified the underlying dynamics of the variational parameters during opti-
mization, we proceeded to formulate a stochastic optimal control algorithm for Bayesian
models which was able to incorporate the Bayesian uncertainty information into an adaptive
and selective learning rate schedule. An analysis of the control parameters indicated sepa-
rate dynamical behaviours during optimization of the mean and uncertainty parameters.
This can be investigated further to examine the dynamics of the ELBO as a loss function for
other probabilistic models.
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Appendix A. Evidence Lower Bound

In variational inference for Bayesian neural networks, we want to minimize the
Kullback–Leibler divergence between the true posterior distribution p(θ|D) and the vari-
ational distribution q(θ|φ), which is easy to work with and from which we can sample easily:

arg min
φ

KL[q(θ|φ)||p(θ|D)] (A1)

=arg min
φ

Eq(θ|φ)

[
log

q(θ|φ)
p(θ|D)

]
≥ 0. (A2)

The posterior distribution p(θ|D) conditioned on the dataD can be rewritten according
to the Bayes theorem as

p(θ|D) = p(D|θ)p(θ)
p(D) (A3)
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with which we can rewrite the Kullback–Leibler divergence as

Eq(θ|D)

[
log

q(θ|φ)
p(θ|D)

]
(A4)

= Eq(θ|D)

[
log

q(θ|φ)
p(D|θ)p(θ)

+ log p(D)
]

(A5)

= Eq(θ|D)

[
log

q(θ|φ)
p(θ)

− log p(D|θ) + log p(D)
]

(A6)

= KL[q(θ|φ)||p(θ)]−Eq(θ|D)[log p(D|θ)] + log p(D). (A7)

Since the Kullback–Leibler divergence is greater or equal to zero at all times, we have

0 ≤KL[q(θ|φ)||p(θ)]−Eq(θ|D)[log p(D|θ)] + log p(D) (A8)

− log p(D) ≤KL[q(θ|φ)||p(θ)]−Eq(θ|D)[log p(D|θ)] (A9)

log p(D) ≥Eq(θ|D)[log p(D|θ)]−KL[q(θ|φ)||p(θ)]. (A10)

Appendix B. Ito’s Lemma

Let Xt be an Ito drift-diffusion process that satisfies the SDE

dXt = µtdt + σtdWt (A11)

where Wt is a Wiener process. For a scalar function f (Xt, t), which is twice differentiable
in Xt and once differentiable in time t, we can apply the Taylor expansion up to the
second-order to obtain

d f (Xt, t) = ∂t f (Xt, t) + ∂X f (Xt, t)dXt +
1
2

∂2
X f (Xt, t)dX2

t . (A12)

We can then substitute the Ito drift-diffusion process dXt into the Taylor expansion. In

the limit of dt → 0, the terms dt2 and dtdWt tend to zero faster than dW2
t =
√

dt
2

due to
their higher exponent. Multiplying out the terms and setting the relevant infinitessimal
terms to zero, we obtain

d f (Xt, t) =∂t f (Xt, t)dt + ∂X f (Xt, t)dXt +
1
2

∂2
X f (Xt, t)dX2

t (A13)

=∂t f (Xt, t)dt + ∂X f (Xt, t)(µtdt + σtdWt) +
1
2

∂2
X f (Xt, t)(µtdt + σtdWt)

2 (A14)

=∂t f (Xt, t)dt + ∂X f (Xt, t)(µtdt + σtdWt) (A15)

+
1
2

∂2
X f (Xt, t)

(
µtdt2 + 2µtσtdtdWt︸ ︷︷ ︸

=0

+σ2
t dW2

t︸︷︷︸
=dt

)
(A16)

=∂t f (Xt, t)dt + ∂X f (Xt, t)(µtdt + σtdWt) +
1
2

∂2
X f (Xt, t)σ2

t dt (A17)

=
(
∂t f (Xt, t) + µt∂X f (Xt, t) +

1
2

∂2
X f (Xt, t)σ2

t
)
dt + σt∂X f (Xt, t)dWt (A18)

which is again an Ito drift-diffusion process, albeit with more complex drift and diffusion terms.

Appendix C. Bayesian Stochastic Differential Equation of a Variational Distribution

To validate the derivation of the SDE that governs the dynamics of the variational
parameters, we evaluate the proposed SDE on a simplified example before moving on to
more general Bayesian models, such as deep Bayesian neural networks.

In this intuitive example, we model a parameter θ as a distribution θ ∼ N (µt, σt(ρt))
and reparameterize the uncertainty parameter σt ∈ R+ with an unbounded surrogate
parameter ρt ∈ R [27,31–33]. The subscript t indicates the parameters at time t during the
optimization process. By making use of the reparameterization trick, we obtain a sampling
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scheme which is differentiable with respect to the parameters φt = {µt, ρt}. For a normal
distribution this takes the form

θt = µt + εσt(ρt) = µt + ε log(1 + exp(ρt)) (A19)

with ε ∼ N (0, 1) being the externalized stochasticity.
The reparameterization allows us to compute the derivatives for any differentiable

loss function L with respect to the variational parameters φt. In our simplified case, we
proceed with the quadratic loss function

L =
1
2

θ2
t =

1
2
(
µt + ε log(1 + exp(ρt))

)2 (A20)

for which we can compute the gradients

∂µL = µt + ε σt(ρt) (A21)

∂ρL = µt ε σ(ρt) + ε2 σt(ρt) σ(ρt) (A22)

where σ(·) is the sigmoid function and σt(·) is the reparameterization of the uncertainty
parameter ρt.

The first- and second-order moments of the gradients are

E
[
∂µL

]
= µt (A23)

E
[
∂ρL

]
= σt(ρt) σ(ρt) (A24)

and, with the fact that, by definition, E
[
ε2] = 1,

V
[
E
[
∂µL

]]
= σt(ρt)

2 (A25)

V
[
E
[
∂ρL

]]
= V[µt ε σ(ρt)] +V

[
ε2 σt(ρt) σ(ρt)

]
(A26)

= µ2
t σ(ρ)2 +V

[
ε2
]

σt(ρt)
2 σ(ρt)

2 (A27)

As the loss function L does not include any data uncertainty, the aleatoric uncertainty
is reduced to zero. We can now expand the loss function L to include aleatoric uncertainty
from the data. For this, we sample from two functions Lm which are the original cost
function L shifted by ±b, the purpose of which is to simulate data uncertainty that occurs
in gradient optimization with mini-batches:

L1 =
1
2
(θt − b)2 − 1 (A28)

=
1
2
(µt + ε log(1 + eρt))2 − b)2 − 1 (A29)

L2 =
1
2
(θt + b)2 − 1 (A30)

=
1
2
(µt + ε log(1 + eρt))2 + b)2 − 1. (A31)

Furthermore, we shift each loss function Lm by −1, such that the local optima of the
loss function are lower than the optimum that balances both loss functions. By computing
the gradients from randomly sampled L1 and L2 during training, we include a simplified
version of mini-batch sampling from a dataset with two samples. Both L1 and L2 provide
local minima at ±b, while the global optimum still lies in the middle between them at 0.

We can now estimate the aleatoric variance E
[
V
[
∇φLm|Lm

]]
in the gradient with

E
[
V
[
∂µLm|Lm

]]
=

1
2

2

∑
i=1

(
∂µLm(µ, ρt)− ∂µL(µ, ρ)

)2 (A32)

=b2 (A33)
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E
[
V
[
∂ρLm|Lm

]]
=

1
2

2

∑
i=1

(
∂ρLm(µ, ρ)− ∂ρL(µ, ρ)

)2 (A34)

=b2ε2σ(ρt)
2 (A35)

We can, thus, define the Ito drift-diffusion process for the variational parameters with
the decomposed diffusion as

dµt =−E
[
∂µLm

]
dt +

(
V
[
E
[
∂µLm|Lm

]]
+E

[
V
[
∂µLm|Lm

]]) 1
2 dWt (A36)

dρt =−E
[
∂ρLm

]
dt +

(
V
[
E
[
∂ρLm|Lm

]]
+E

[
V
[
∂ρLm|Lm

]]) 1
2 dWt (A37)

For this simplifying example, we choose to derive a decoupled set of SDEs. In both cases
the chain rule passes the gradients through the sampled parameter θt. As it turns out, and
as we make use of them in the subsequently derived stochastic optimal control optimziation
algorithm, both ∂µL and ∂ρL share the gradient ∂θLwhen applying the chain rule,

∂µL =∂θL∂µθt (A38)

∂ρL =∂θL∂σθt∂ρσ (A39)

Appendix D. Gradient Derivations

We employ the Einstein summation to derive the relevant gradients. We use the lower
index for the horizontal indices and the upper index for the vertical indices of a matrix.

f (z) = z>Az = zi Ai
jz

j (A40)

∇ f (z) = Az = Ai
jz

j (A41)

M = zzT = zizj (A42)

∇M =

[
∂Mi

j

∂zl

]
= zjδil + ziδjl (A43)

∇M U ∇ f =
(

zjδil + ziδjl

)
Ul

m Am
n zn (A44)

= zjδilUl
m Am

n zn + ziδjlUl
m Am

n zn (A45)

= zjUi
m Am

n zn + ziU j
m Am

n zn (A46)

= Ui
m Am

n znzj + zizn An
mUm

i (A47)

= UAM + MAU (A48)

∂2Mij

∂zl∂zm
= δilδmj + δimδjl (A49)

Tr
[

DU∇2MU
]
= Tr

[
Dq

pUp
m

(
δilδmj + δimδjl

)
Ul

k

]
(A50)

= Tr
[

Dq
pUp

mδmjδilUlk + Dq
pUp

mδimδjlUl
k

]
(A51)

= Tr
[

Dq
pUp

j Ui
k + Dq

pUp
i U j

k

]
(A52)

= Tr
[

Dq
pUp

j Ui
k

]
+ Tr

[
Dq

pUp
i U j

k

]
(A53)

= Dq
pUp

j Ui
q + Dq

pUp
i U j

q (A54)

= Ui
qDq

pUp
j + U j

qDq
pUp

i (A55)

= UDU + (UDU)T (A56)

= 2UDU (A57)

Appendix E. Stochastic Control

We have the dynamics given as
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Ṁ = −(UAM + MAU) + ηUDU (A58)

We want to minimize the final cost

C(M, U, t1) =
1
2

Tr[AM]. (A59)

Alternatively, we can directly minimize the dynamics Ṁ over time, such that

min
U

C = min
U

1
2

∫ t1

t0

Tr
[
AṀ

]
dt (A60)

which requires us to minimize Tr
[
AṀ

]
at every step. Both A and M should be positive

semi-definite to guarantee a bound from below.
Optimizing 1

2 Tr
[
AṀ

]
gives us

1
2

Tr
[
AṀ

]
=− 1

2
Tr[AUAM + AMAU] +

η

2
Tr[AUDU] (A61)

=− 1
2
(Tr[AUAM] + Tr[AMAU]) +

η

2
Tr[AUDU] (A62)

=− 1
2
(Tr[AMAU] + Tr[AMAU]) +

η

2
Tr[AUDU] (A63)

=− Tr[AMAU] +
η

2
Tr[AUDU] (A64)

The control matrix U is diagonal. The trace is defined as Tr[AB] = Ai
jB

j
i and the noise

matrix is symmetric by definition, so Dj
i = Di

j. In index notation, we can arbitrarily shuffle
the individual terms in a product to obtain generalizable formulations in terms of matrices
and vectors. This gives us the index notation of

−Tr[AMAU] +
η

2
Tr[AUDU] =−∑

i
(AMA)i

i Ui
i +

η

2 ∑
i,j

Ai
jU

j
j D

j
i U

i
i (A65)

=−∑
i
(AMA)i

i Ui
i +

η

2 ∑
i,j

Ui
i Ai

jD
i
j︸ ︷︷ ︸

Qi
j

U j
j (A66)

=−∑
i
(AMA)i

i Ui
i +

η

2 ∑
i,j

Ui
i Q

i
jU

j
j (A67)

Taking the derivative with respect to the control parameters Ui
i , and setting it to zero, yields

0 = −(AMA)i
i + η ∑

j
Qi

jU
j
j (A68)

0 = −Diag[AMA] + η Q U′ (A69)

U′ = Q−1 Diag[AMA]

η
(A70)

= (A ◦ D)−1 Diag[AMA]

η
(A71)

where Diag[A] is a vector of the diagonal elements of the matrix A and U′ = [U1, U2]
> is a

vector of the individual control parameters U1 and U2.

Appendix F. Estimation of Local Quadratic Approximation

We compute the offset b and the curvature A via the following relations:
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∂b

[
1
2
E
[
(∂φL− A(x + b))2

]]
=∂b

[
1
2
E
[
(∂φL− Ax + Ab))2

]]
(A72)

=E
[

AT(∂φL− Ax + Ab)
]

(A73)

=ATE
[
∂φL

]
− AT AE[x] + AT Ab !

= 0 (A74)

⇓ (A75)

AT Ab =AT AE[x]− ATE
[
∂φL

]
(A76)

b =E[x]− (AT A)−1 ATE
[
∂φL

]
(A77)

b =E[x]− A−1 AT−1
ATE

[
∂φL

]
(A78)

b =E[x]− A−1E
[
∂φL

]
(A79)

∂A

[
1
2
E
[
(∂φL− A(x + b))2

]]
= −E

[
∂φL(x + b)T − A(x + b)(x + b)T

]
!
= 0. (A80)

Writing out the products, taking the expectations where necessary, and following
through with the long and tedious algebra, we finally arrive at

∂A

[
1
2
E
[
(∂φL− A(x− b))2

]]
(A81)

= −E
[(

∂φL− A(x− b)
)(

x− b
)T
]

(A82)

= −E
[
∂φL(x− b)T − A(x− b)(x− b)T

]
(A83)

= −E
[
∂φLxT − ∂φL(E[x]− A−1E

[
∂φL

]
)T − A(xxT − bxT − xbT + bbT)

]
(A84)

= −E
[
∂φLxT − ∂φLE[x]T + ∂φLE

[
∂φL

]T A−1

− A
(

xxT −
(
E[x]− A−1E

[
∂φL

])
xT − x

(
E[x]− A−1E

[
∂φL

])T

+
(
E[x]− A−1E

[
∂φL

])(
E[x]− A−1E

[
∂φL

])T)]
(A85)

= −
[
E
[
∂φLxT

]
−E

[
∂φL

]
E[x]T +E

[
∂φL

]
E
[
∂φL

]T A−1

− A
(
E
[

xxT
]
−E[x]E[x]T +(((

((((
(

A−1E
[
∂φL

]
E[x]T −���

��E[x]E[x]T

+((((
((((E[x]E

[
∂φL

]T A−1 +���
��E[x]E[x]T −((((

((((E[x]E
[
∂φL

]T A−1

−((((
((((A−1E

[
∂φL

]
E[x]T + A−1E

[
∂φL

]
E
[
∂φL

]T A−1
)]

(A86)

= −
[
E
[
∂φLxT

]
−E

[
∂φL

]
E[x]T +E

[
∂φL

]
E
[
∂φL

]T A−1

− A
(
E
[

xxT
]
−E[x]E[x]T + A−1E

[
∂φL

]
E
[
∂φL

]T A−1
)]

(A87)

= −
[
E
[
∂φLxT

]
−E

[
∂φL

]
E[x]T +((((

((((
(

E
[
∂φL

]
E
[
∂φL

]T A−1

− A
(
E
[

xxT
]
−E[x]E[x]T

)
−((((

((((
(

E
[
∂φL

]
E
[
∂φL

]T A−1

]
(A88)

= −
(
E
[
∂φLxT

]
−E

[
∂φL

]
E[x]T

)
+ A

(
E
[

xxT
]
−E[x]E[x]T

)
(A89)

!
= 0 (A90)

⇓ (A91)

A =
(
E
[
∂φLxT

]
−E

[
∂φL

]
E[x]T

) (
E
[

xxT
]
−E[x]E[x]T

)−1
(A92)
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As we deal with matrices in R2×2 per set of variational parameters φ = {µ, σ}, the
matrix inversions can be performed cheaply and analytically with the identity

A−1 =

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(A93)

which requires only two multiplications, one subtraction and a repositioning of values with
two negations.

Appendix G. Experimental Setup

In all the experiments, we trained a convolutional Bayesian neural network (CBNN)
with four blocks of 2D convolution, 2D BatchNorm and 2D MaxPooling, followed by
two linear layers. The convolutional filters were in the sequence 96, 128, 256 and 128
and the subsequent layers had 200 and 10 neurons, respectively. This corresponds to the
experimental setup of [15]. As a baseline, we optimized a Bayesian feed-forward neural
network (BNN) with four layers and 200 neurons in each layer. As a frequentist baseline,
we trained the same architectures but without any regularization compared to the KL
divergence in the ELBO for Bayesian neural networks. We used a consistent batch size
of 64 due to the memory constraints of computing per sample gradients and used leaky
ReLU with a negative slope of 0.01 in all architectures. The convolutional and linear layer
parameters were parameterized with normal distributions and the ELBO was used as the
objective function.

Experimentally and theoretically, it has been found that large learning rates in the
early phase of optimization help to provide a large approximate improvement before
decreasing the learning rate to finetune the model parameters [34,35]. For our experiments,
we initialized the control parameter with a value of one, which corresponds to adaptive
learning rate scheduling [26]. Similarly to the learning rate, learning rate scheduling
requires an a priori decision on how the scheduling should be conducted. Our optimizer
StochControlSGD adaptively determines the optimal learning rate via the principle of
stochastic optimal control independently for each parameter .
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