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Abstract: The segmentation of cerebral aneurysms is a challenging task because of their similar
imaging features to blood vessels and the great imbalance between the foreground and background.
However, the existing 2D segmentation methods do not make full use of 3D information and ignore
the influence of global features. In this study, we propose an automatic solution for the segmentation
of cerebral aneurysms. The proposed method relies on the 2D U-Net as the backbone and adds a
Transformer block to capture remote information. Additionally, through the new entropy selection
strategy, the network pays more attention to the indistinguishable blood vessels and aneurysms, so
as to reduce the influence of class imbalance. In order to introduce global features, three continuous
patches are taken as inputs, and a segmentation map corresponding to the central patch is generated.
In the inference phase, using the proposed recombination strategy, the segmentation map was
generated, and we verified the proposed method on the CADA dataset. We achieved a Dice coefficient
(DSC) of 0.944, an IOU score of 0.941, recall of 0.946, an F2 score of 0.942, a mAP of 0.896 and a
Hausdorff distance of 3.12 mm.

Keywords: segmentation; cerebral aneurysm; Transformer; 2D CNN; entropy

1. Introduction

Cerebral aneurysms occur in about 3% of the general population. With the devel-
opment of neuroimaging, an increasing number of cerebral aneurysms are incidentally
discovered [1]. A cerebral aneurysm is a pathological dilation of an intracranial blood vessel
whose walls may be abnormally weak and prone to rupture. The rupture of aneurysms
causes hemorrhage to the subarachnoid space surrounding the brain, and sometimes
in the brain parenchyma [2]. Aneurysm size, shape and location are important factors
of rupture [3]. Some traditional methods for cerebral aneurysms are based on statisti-
cal thresholding [4] and deformable models [5]. Linear convolution is applied to image
processing [6]. The use of geometrically deformable models within a level-set framework is
an automated segmentation technique for cerebral aneurysms, and these models’ ability
to handle topological changes and adapt to complex structural shapes makes them well
suited to automated segmentation of complex vascular structures [7]. These methods take
lots of time and effort. Therefore, we need accurate and rapid automatic algorithms for the
segmentation of aneurysms.

The development of artificial intelligence (AI)-based technologies in medicine is ad-
vancing rapidly, and AI has recently experienced an era of explosive growth across many
industries—the healthcare industry is no exception. Research in multiple medical special-
ties has used AI to mimic the diagnostic capabilities of doctors [8–11]. Recent advances in
deep learning [12] have made it possible to realize this idea. In this regard, convolutional
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neural networks (CNNs) [13] have been the most ground-breaking addition, which are
dominating the field of computer vision. CNNs have also revolutionized semantic seg-
mentation tasks. In medical image analysis, the novel CNN architecture is U-Net. Other
authors have also built derivatives of the U-Net architecture [14]. U-Net comprises an
encoder and a decoder. U-Net has shown impressive potential in segmenting medical
images, even with a lack of labeled training data, to the extent that it has become the de
facto standard in medical image segmentation [14]. Wasiq et al. proposed a coarse-to-fine
method for locating pupils and eye center estimation by combining machine learning and
image processing [15].

U-Net-based networks have become popular in medical image segmentation.
MA-Unet [16] extracts multiscale features and combines local features with their corre-
sponding global dependencies by attention mechanisms. Isensee et al. proposed nnU-Net,
a deep learning framework that can automatically adjust the necessary relevant param-
eters according to the characteristics of the dataset [17]. Milletari et al. proposed a 3D
variant of the U-Net architecture called V-Net, a fully convolutional neural network based
on volumetrics [18]. Despite the inspiring results achieved, several issues exist in the
developed approaches. For 2D networks, 2D inputs do not fully exploit the 3D image
information [19–21]. However, 3D convolutions do not focus on the different in-plane and
depth resolutions [21–23]. Therefore, in order to obtain the dependencies between channels,
balancing between 2D and 3D is the key to further improving network performance. To
solve this problem, H-DenseUNet [24] was proposed. It consists of a 2D DenseUNet for
extracting intra-slice features and a 3D counterpart for hierarchically aggregating volumet-
ric contexts for liver and tumor segmentation. Although it combines the advantages of 2D
and 3D, it is not suitable for aneurysm segmentation with class imbalance, and separate
modeling of intra-slice and inter-slice features will exacerbate class imbalance.

Attention mechanisms have recently become popular in computer vision. Instead
of compressing the entire image or sequence into a static representation, attention allows
the model to focus on the most relevant features as needed. Transformers are the focus of
natural language processing. Although their impact has been limited in vision applications,
an increasing number of methods with attention mechanisms are being proposed. Due
to the limitations of convolutions, researchers tried to introduce Transformers in both the
encoder and decoder. Xu et al. used LeViT as the encoder and passed the multiscale
feature map to the decoder through skip connections, which achieved better performance
in medical image segmentation [25]. Transformer networks in computer vision can be
found in [26]. The Vision Transformer (ViT) [27] adapts Transformer models for computer
vision applications.

Deep learning methods with good performance have recently been proposed to seg-
ment cerebral aneurysms [28,29]. Due to the class imbalance of medical images, the U-Net
framework will cause false negative predictions. The lack of labeled medical images is
also a big challenge. Feng et al. proposed a patch-based fully CNN architecture in retinal
blood vessel segmentation tasks and used a patch selection based on entropy to ensure the
retinal blood vessels were contained in the patches [30]. The entropy of images indicates the
richness of information, where images with higher entropy will contain more foreground
class objects. This approach will alleviate class imbalance.

To sum up, both 2D networks and 3D networks have their limitations. Although
cascading two networks can achieve better results, it also increases the number of pa-
rameters and complexity of the network. In recent work, no novel network structure has
been proposed for cerebral aneurysm segmentation, and no method to overcome class
imbalance has been proposed for the characteristics of cerebral aneurysm data. Therefore,
we improved the network structure according to the characteristics of the data and relieved
the class imbalance of the data through the gradient entropy strategy.

This work was inspired by the successful application of Transformers in 3D CNNs in
the field of brain tumor segmentation [31]. Due to the class imbalance of the CADA dataset,
we introduce a patch-based architecture that relies on the 2D U-Net as the backbone and
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adds a Transformer block to capture remote information. We propose a patch selection
strategy based on entropy to make the training data more sufficient. Then, three continuous
patches are taken as inputs and a segmentation map corresponding to the central patch
is generated.

As illustrated above, in this paper, the main contributions to aneurysm segmentation
are as follows:

(1) In order to obtain more sufficient training data, we used a new patch selection strategy.
More training data with aneurysms will alleviate class imbalance.

(2) We used three channels as inputs, which represents an approach between 2D and 3D.
This approach can use 3D information and pay attention to the in-plane resolution.

(3) We improved the recombination strategy. This will make the boundary of the segmen-
tation target clearer.

The rest of this paper is organized as follows: Section 2 describes the proposed
methodology in detail. Section 3 shows the experimental results. Finally, we discuss and
conclude our paper in Sections 4 and 5.

2. Materials and Methods
2.1. Dataset and Preprocessing

The MICCAI 2020 CADA challenge provided 109 cases. Image data of patients with
cerebral aneurysms without vasospasm were collected for the purpose of assisting diag-
nosis and treatment [32]. The image data were acquired utilizing the digital subtraction
AXIOM Artis C-arm system. Post-processing was performed using LEONARDO InSpace
3D (Siemens, Forchheim, Germany). After implementation of the contrast agent, a re-
construction of a volume of interest was selected by a neurosurgeon. The reconstructed
images generally consist of 220 contiguous slices. The imaging parameters were as follows:
in-plane size of 256× 256; iso-voxel size of 0.5 mm. Patients were of different ages and
genders, making the samples diverse.

2.1.1. Slice Selection Strategy

In cerebral aneurysm images, approximately 98% of the pixels belong to the back-
ground, with the remaining 2% of pixels belonging to the foreground class. We selected the
slices using the range entropy strategy proposed in [33]. For a given sample X ∈ RD×H×W ,
its spatial resolution is H ×W, and its depth dimension is D (# of slices), normalizing the
images using the following formula:

Xnorm
i =

Xi −min(Xi)

max(Xi)−min(Xi)
∗ 255, i = [1, 2, . . . , D] (1)

where min(Xi) and max(Xi) denote the minimum and maximum values of the i-th slice in
X. For every ten continuous slices, seven slices with the highest RH (range entropy) values
were selected as the final slices annotated as XS ∈ R7× D

10×H×W . The calculation formula is
as follows:

H(S) = −
255

∑
i=0

pi log2 pi (2)

RH(S) = H(S) + w ∗ R(S) (3)

R(S) =
1
b
(∑ maxb(S)−∑ minb(S)) (4)

where H(S) is the entropy of each slice, and pi is the probability of the pixel value i that
exists in S; R(S) is a generalized range of the slice S, and w depicts the weight of the range
R(S); maxb(S) denotes the top b maximum gray values in the slice S, and minb(S) denotes
the last b minimum gray values in the slice S, where b denotes the number of selected
pixels [33].
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2.1.2. Sliding Window Strategy

In the cerebral aneurysm datasets, the number of available annotated images is not
large enough for a good training model. Thus, for cerebral aneurysm segmentation, we
used the patch method with the sliding window strategy.

From Figure 1a, under the same stride size, the proportion of patches containing
aneurysms is large when the patch size is 96× 96 pixel2. Although the proportions of
108× 108 pixel2 and 128× 128 pixel2 are larger, they will contain more noise due to the
larger size. Additionally, in the segmentation of cerebral blood vessels [33], a patch size of
96× 96 pixel2 was chosen, so we chose 96× 96 pixel2 as the patch size.
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Figure 1. The choice of patch size and stride size. (a) The proportion of patches containing aneurysms
with different patch sizes when the stride size is 32. (b) The proportion of patches containing
aneurysms with different stride sizes when the patch size is 96× 96 pixel2. (c) The Dice at different
stride sizes.

The original resolution of the CADA dataset is 256× 256 pixel2. From Figure 1b,c,
although smaller strides produce more patches containing aneurysms, their performances
are worse. This may be because the selected patches contain duplicate positive samples,
resulting in information redundancy. When the stride is 32, the Dice is the best, and 32
is the largest common factor of 96 and 160. Considering the accuracy and computational
complexity, we chose 32 as the moving stride of the sliding window. That is, a 96× 96 pixel2

sliding window starts from the upper left corner of the slice with a moving stride of
32 pixels. Each step of moving the sliding window yields a corresponding patch. For a
whole 256× 256 pixel2 slice, we could acquire 36 patches.

2.1.3. Patch Selection by Gradient Entropy Sampling

The generated patch is denoted as P ∈ RHp×Wp . Owing to the similarity between blood
vessels and aneurysms, selecting patches only through information entropy will include a
lot of noise. Since aneurysms have higher gradients than vessels, we combined information
entropy with a gradient strategy for patch selection called GH, which is proposed as the
gradient entropy strategy. The calculation formula is as follows:

GH(P) = H(P) + γ ∗ Gy(P) (5)

Gy(P) =
1
c ∑ maxc(P(i, j)− P(i, j− 1)) (6)

[i = 1, 2, 3, . . . , Hp, j = 2, 3, . . . , Wp + 1], where GH(P) denotes the gradient entropy value
of each patch, P(i,j) is the pixel value of the index (i,j) in P, Gy(P) represents the gradient in
the y-direction and maxc(·) denotes the top c maximum Gy in the patch P. Patches with a
higher GH are selected in the training set.

Applying the sliding window strategy, patch selection by information entropy sam-
pling showed that the proportion of patches containing aneurysms was 12%., i.e., 12%
of the selected patches included aneurysms. Additionally, through patch selection by
gradient entropy sampling, the proportion was increased to 16%. The patches selected by
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the gradient entropy sampling strategy are shown in Figure 2. This shows that most of the
selected patches were aneurysms or blood vessels.
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2.2. Network Architecture

We chose the structure of U-Net as the backbone. Figure 3 presents the architecture of
our network that consists of a CNN encoder block, a Transformer block and a decoder block
with a shortcut connection at each resolution level. The encoder obtains high-dimensional
features, and the decoder utilizes these encoded features to recover the segmentation target.
The spatial attention is utilized to strengthen the region of interest on the feature maps
while suppressing the potential background or irrelevant parts. Hence, we propose a
Transformer block that shares space and learns the relation between these feature map
embeddings using self-attention modules. The network uses the image information in three
continuous patches to predict the segmentation for the center patch, and adjacent slices
provide rich spatial information.
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Figure 3. The overall network. Three consecutive patches are used as inputs. The left part of the
network is the encoder based on ResNet34, and each green block corresponds to the layer of ResNet34.
The middle part of the network is the Transformer block. The right part of the network is the decoder,
and each blue block corresponds to the upsampling block.

2.2.1. Network Encoder

The encoder blocks are composed of ResNet34 and the Transformer block. ResNet34 is
mainly composed of a Bottleneck. In order to prevent overfitting, we added a dropout block
to the original Bottleneck (see Figure 4). ResNet34 is a type of neural network that captures
more deeper features by using skip connections to “skip” a number of convolutional layers
in every Bottleneck in the network. The structure of the ResNet34 encoder block is shown
in Figure 5.
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There are 4 layers in the ResNet34 encoder block, and the numbers of Bottlenecks in
each layer are 3, 4, 6 and 3. The final output of ResNet34 can be written as F ∈ RC×H′×W ′ .

Next, we present a Transformer block comprising L repeated Transformer layers
to achieve a global context using an attention mechanism. For a given F, it is flattened
into a vector of size Rd×N , by a linear projection operation Wp, resulting in f ∈ Rd×N ,
d = 512, N = 3× 3. c0 = f + PE ∈ Rd×N constitutes the input of the Transformer block,
and PE is the learnable position embedding.

Each Transformer layer has a Multi-Head Attention (MHA) block and a feed-forward
neural network (FFN), and the output of each layer can be calculated by the following formula:

c′i = MHA(LN(ci−1)) + ci−1 (7)

ci = FFN(LN(c′i)) + c′i (8)

where LN(∗) denotes the layer normalization, and ci is the output of the ith (i ∈ [1, 2, . . . , L])
Transformer layer.

2.2.2. Network Decoder

To fit the input dimension of the 2D CNN decoder, f is then reshaped to f ′ ∈ Rd×H′′×W ′′

by a feature mapping module. The decoding process corresponds to the encoding process,
which combines local and global features until the original resolution is restored and pays
more attention to the local context to obtain edge and semantic information. Additionally,
through cascaded upsampling operations and convolution blocks, the final segmentation map
S ∈ RHp×Wp is generated.

2.3. Prediction

After the training phase, the trained model can only segment 96× 96 images. In the
prediction phase (see Figure 6), the input samples were segmented into 96× 96 patches
using the sliding window strategy. Then, the trained model generated segmentations of
patches. The segmentation maps were recombined to obtain the final segmentation map.
The stride was 32, and adjacent patches had overlapping pixels. For each pixel, the average
strategy [33] is where the aneurysm probability of each pixel is obtained by averaging
possibilities over all the predicted patches covering the pixel. This solution will lose a lot of
detail and is time-consuming. We propose a new recombination strategy.

For each image, each row of the sliding window produced six overlapping patches,
and a total of 36 patches were generated. There were C2

4 + 1 = 7 cases for recombining
each row. Similarly, each column also had 7 cases. There was a total of 6× 74 + 73 = 14, 749
recombination situations. Due to the robustness of the model, we randomly selected only
49 of these cases, and then 49 segmentation maps were obtained. We averaged these
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49 maps to obtain the SAver ∈ RH×W ; the SAver ∈ RH×W had obvious clipped parts. We
added the self-attention of each patch to the segmentation result Scandidate ∈ R36×H×W to
ensure the integrity of the segmented aneurysms by replacing the corresponding position
of SAver with each patch segmentation map. If SAver contained aneurysms and the number
of aneurysms contained in Scandidate was more than the threshold η, and if SAver did not
contain an aneurysm, but the number of aneurysms contained in Scandidate was more than
the threshold 36 − η, then we selected the one with the largest aneurysm size among
the 36 results as the final segmentation result. Otherwise, we considered the image to be
without an aneurysm.
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3. Experiment
3.1. Data Augmentation

Most selected patches contained aneurysms or vessels. For data augmentation, the
following data augmentation techniques were applied: (1) random cropping; (2) horizontal
flipping; (3) 45◦ rotation. We only used data augmentation on the training data. After
applying patch selection, each sample X ∈ RD×H×W was cut into 200 inputs consisting of
three consecutive patches. In terms of the specific process of random clipping, for every
three consecutive slices, we chose an identical random position to crop, generating three
consecutive patches, with a total of D//3 inputs. Then, we applied horizontal flipping and
45◦ rotation on patches generated by random clipping. To sum up, after data augmentation,
D additional inputs were generated.

3.2. Evaluation Metrics

The metrics of evaluation were the Dice score, recall, Hausdorff distance (95%), F2
score, mean average precision (mAP) and Intersection over Union (IOU) score.

Dice similarity coefficient: The Dice similarity coefficient (Dice) [34] is a metric used for
assessing the quality of segmentation. It measures the similarity between the predicted
label and ground truth.

Dice = 2|Pre∩G|
|Pre|+|G| , where Pre is the predicted segmentation map, and G is the ground truth.

Hausdorff distance: A high Hausdorff distance value implies that the two contours
do not closely match. It is a symmetric measure of distance between two contours and is
defined as [35]

H(Pre, G) = max(h(Pre, G), h(G, Pre)), h(Pre, G) = maxpi∈Premingi∈G‖pi − gi‖

Recall: Recall is the ability to segment the region of interest in the segmentation
experiment. It indicates the proportion of all true positives that are correctly predicted.

recall = TP
TP+FN , where TP means true positive predictions, and FN means false

negative predictions.
F2 score: F2 = 5· precision·recall

4·precision+recall , where precision = TP
TP+FP .

mAP: The mAP is the average precision of all categories detected, that is, the average
precision of segmenting the foreground and background.

IOU: IOU = Pre∩G
Pre∪G , the closer the IOU is to 1, the better the segmentation result.
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3.3. Implementation Details

We used a random split (70% training, 10% validation and 20% test) at the patient level
and conducted a five-fold cross-validation evaluation. All experiments were implemented
in Pytorch.

In the data preprocessing stage, the parameters should be determined. w in Equation (3),
b in Equation (4), γ in Equation (5) and c in Equation (6) were set to 0.05, 10, 0.1 and 20,
respectively. Because the patch size is 96× 96 pixel2 and the stride of the sliding window
is 32, a patch can be composed of 1/3 of three adjacent patches. η in Section 2.3 was set to
36 − 3 = 33. The dropout regularization with p = 0.2 was used.

We used Resnet34 pretrained on ImageNet as the CNN encoder block. We set the
training of our model on Pytorch with an initial learning rate of 1× 10−4. If the Dice score
on the validation dataset did not improve for 15 epochs, the learning rate was reduced to
half of the original rate. It was optimized by Adam with a batch size of 32. The training
iterated 50 epochs on a single NVIDIA GeForce RTX 3090 GPU with 24 GB memory. The
softmax Dice loss was employed to train the network.

To demonstrate the advantages of our work, we compared it with other methods (3D
U-Net, DeepLabV3+, DeepLabV3, Linknet, FPN, UNet++). (1) The 3D U-Net took a learning
rate of 1× 10−4, and it was optimized by Adam and trained with an NVIDIA GeForce RTX
3090 for 500 epochs from scratch using a batch size of 4. (2) DeepLabV3+ was pretrained on
ImageNet, and then it was trained on our dataset with an initial learning rate of 1× 10−4.
It was optimized by Adam with a batch size of 16. (3) DeepLabV3 implemented the same
setup as DeepLabV3+. (4) Linknet was pretrained on ImageNet. Its initial learning rate was
1× 10−5, it was optimized by Adam and the weight decay was 1× 10−4. It was trained with
an NVIDIA GeForce RTX 3090 for 50 epochs using a batch size of 16. (5) FPN implemented
the same setup as Linknet. (6) UNet++ implemented the same setup as Linknet.

3.4. Segmentation Result and Comparisons

We conducted a five-fold cross-validation evaluation on the training set, and our
method achieved an average Dice score of 0.944, an IOU score of 0.941, recall of 0.946, an F2
score of 0.942, a mAP of 0.896 and a Hausdorff distance of 3.12mm, which are comparable or
higher results than those of previous state-of-the-art (SOTA) methods presented in Table 1.
Compared with the 3D U-Net, our method showed superiority in four metrics, with a
significant improvement.

Table 1. Comparison of SOTA methods.

Model Dice IOU Recall Hausdorff_95 mAP F2 Score

3D U-Net 0.631 0.521 0.690 19.1 0.857 0.653
Linknet 0.867 0.856 0.952 19.85 0.893 0.859

DeepLabV3 0.916 0.912 0.936 10.22 0.632 0.897
FPN 0.929 0.925 0.925 8.40 0.838 0.936

DeepLabV3+ 0.937 0.934 0.939 6.36 0.835 0.936
UNet++ 0.939 0.935 0.945 10.28 0.874 0.937

Proposed 0.944 0.941 0.946 3.12 0.896 0.942

Figure 7 shows example slices from test images in the dataset and the segmentations
predicted by the proposed method. We observed that the proposed method could accurately
segment fine or large cerebral aneurysms.

Figure 8 shows that the predicted segmentations of DeepLabV3+ mostly contained holes
for larger aneurysms, while for smaller aneurysms, it was prone to false negative predictions.
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3.5. Ablation Study

We designed different ablation studies to evaluate the contribution of the gradient entropy
sampling strategy and the three-channel input, based on the patch and recombination strategies.

In the data preprocessing, the gradient entropy sampling strategy was implemented to
generate a sufficient number of training patches from the limited images. We compared the
traditional entropy sampling strategy with our strategy, and the result is shown in Table 2.
The visual result is shown in Figure 9. The last row shows the segmentation of our method,
where the segmentation is almost the same as the ground truth. As shown in Figure 9, our
gradient entropy sampling strategy can better distinguish vessels and aneurysms. It is
easy for information entropy sampling selection to produce false positives, and it has poor
segmentation performance concerning smaller aneurysms.
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Table 2. Ablation study on the gradient entropy sampling strategy.

Model Dice IOU Recall Hausdorff_95

Information
entropy 0.928 0.925 0.945 4.42

Proposed 0.944 0.941 0.946 3.12

As shown in Table 2, our model implementing the proposed gradient entropy sampling
strategy achieved a better segmentation performance than the traditional entropy sampling
strategy. This demonstrates that the quality of the training dataset can also improve the
performance of segmentation, and that the gradient entropy sampling strategy provided
more patches that contained aneurysms.

Table 3 shows that our recombination strategy achieved a better performance than
the average strategy. Our recombination strategy combines the global attention and self-
attention of patches, which not only ensures the overall performance of segmentation but
also ensures the integrity of the foreground.

Table 3. Ablation study on the recombination strategy.

Model Dice IOU Recall Hausdorff_95

Ours w/o post 0.942 0.938 0.942 4.00
Proposed 0.944 0.941 0.946 3.12

A characteristic of cerebral aneurysm image data is class imbalance. Furthermore,
the patch-based approach ensures that the classes of the input data are balanced and the
patches give the network access to local information about the pixels, which has an impact
on the overall prediction. Table 4 shows the ablation experimental results of one patch as
an input, three continuous slices as an input and our proposed three continuous patches
as an input. The three continuous patches as an input achieved the best results, the three
continuous slices as an input achieved the worst Hausdorff distance and the one patch
as an input achieved the worst result for the other three metrics. This indicates that the
multichannel input provided more 3D spatial information. The Hausdorff distance implies
the degree to which two contours closely match. The three continuous slices as an input
lost detail of the local information, resulting in a poor effect of aneurysm contours.

Table 4. Ablation study on the three-channel input and resolution.

Model Dice IOU Recall Hausdorff_95

One-patch input 0.931 0.919 0.932 6.40
Based on slices 0.939 0.934 0.946 7.42

Proposed 0.944 0.941 0.946 3.12

4. Discussion

In the experiment, we found that the proposed segmentation network architecture
had a great advantage over the previous algorithms. In the ablation study, we verified the
validity of the gradient entropy selection strategy, and the result shows that it had a better
performance in aneurysm segmentation than traditional information entropy selection.
This provides ideas for the development of small medical area segmentation fields. It
reduces false positive and false negative predictions. Three channels provided more 3D
information and had a significant effect on extracting features. The results in Table 1 show
that our network was optimal in all six metrics. Additionally, we can see from Figure 8 that,
whether it is a large aneurysm or a small aneurysm, our model’s performance was better.
Due to the size of the training set being small, the segmentation performance of the 3D
U-Net was not ideal. Compared with the remaining 2D SOTA segmentation networks, our
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input provided additional 3D information, so the segmentation results were better than
those of other networks. Although the DeepLabv3+ network is better than the remaining
networks, there are still holes in the segmentation of aneurysms of a large size.

For our method, although the average performance was better than the other models,
there were still a small number of samples whose segmentation was not ideal, which may
be due to the excellent threshold selection when selecting patches. As a result, the network
did not learn the information specific to the sample, and thus the hyperparameter selection
should be improved.

In the clinical field, aneurysm screening is essential, as early detection can prevent
stroke. Relying on a doctor’s manual observation is inefficient, and different doctors
have different evaluation criteria. In this paper, we provided a new efficient aneurysm
segmentation algorithm, which facilitates rapid diagnosis and unified evaluation criteria.

5. Conclusions

Cerebral aneurysm is one of the most common cerebrovascular diseases, and its
rupture has a high mortality rate from subarachnoid hemorrhage (SAH). Due to the lim-
ited training data, existing automatic segmentation methods cannot segment aneurysms
sufficiently, so we adopted an entropy selection strategy to provide informative training
data. Specifically, we proposed a patch-based segmentation model. Compared with full
resolution inputs, the selected patches are only part of the training data, thus preventing
overfitting. We used the gradient entropy strategy to select patches that may contain
aneurysms, improving and speeding up the network. The experimental results show that
better training data can also improve the network’s performance. We proposed a new ap-
plication scenario for entropy. In future work, we will continue to design deep architectures
for small datasets in medical image processing.
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