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Abstract: Caching technique is a promising approach to reduce the heavy traffic load and improve
user latency experience for the Internet of Things (IoT). In this paper, by exploiting edge cache
resources and communication opportunities in device-to-device (D2D) networks and broadcast
networks, two novel coded caching schemes are proposed that greatly reduce transmission latency
for the centralized and decentralized caching settings, respectively. In addition to the multicast gain,
both schemes obtain an additional cooperation gain offered by user cooperation and an additional
parallel gain offered by the parallel transmission among the server and users. With a newly established
lower bound on the transmission delay, we prove that the centralized coded caching scheme is
order-optimal, i.e., achieving a constant multiplicative gap within the minimum transmission delay.
The decentralized coded caching scheme is also order-optimal if each user’s cache size is larger
than a threshold which approaches zero as the total number of users tends to infinity. Moreover,
theoretical analysis shows that to reduce the transmission delay, the number of users sending signals
simultaneously should be appropriately chosen according to the user’s cache size, and always letting
more users send information in parallel could cause high transmission delay.

Keywords: coded cache; cooperation; device-to-device; transmission delay

1. Introduction

With the rapid development of Internet of Things (IoT) technologies, IoT data traffic,
such as live streaming and on-demand video streaming, has grown dramatically over the
past few years. To reduce the traffic load and improve the user latency experience, the
caching technique has been viewed as a promising approach that shifts the network traffic
to low congestion periods. In the seminal paper [1], Maddah-Ali and Niesen proposed a
coded caching scheme based on centralized file placement and coded multicast delivery
that achieves a significantly larger global multicast gain compared to the conventional
uncoded caching scheme.

The coded caching scheme has attracted wide and significant interest. The coded
caching scheme was extended to a setup with decentralized file placement, where no
coordination is required for the file placement [2]. For the cache-aided broadcast network,
ref. [3] showed that the rate–memory tradeoff of the above caching system is within a factor
of 2.00884. For the setting with uncoded file placement where each user stores uncoded
content from the library, refs. [4,5] proved that Maddah-Ali and Niesen’s scheme is optimal.
In [6], both the placement and delivery phases of coded caching are depicted using a
placement delivery array (PDA), and an upper bound for all possible regular PDAs was
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established. In [7], the authors studied a cached-aided network with heterogeneous setting
where the user cache memories are unequal. More asymmetric network settings have
been discussed, such as coded caching with heterogeneous user profiles [8], with distinct
sizes of files [9], with asymmetric cache sizes [10–12] and with distinct link qualities [13].
The settings with varying file popularities have been discussed in [14–16]. Coded caching
that jointly considers various heterogeneous aspects was studied in [17]. Other works on
coded caching include, e.g., cache-aided noiseless multi-server network [18], cache-aided
wireless/noisy broadcast networks [19–22], cache-aided relay networks [23–25], cache-
aided interference management [26,27], coded caching with random demands [28], caching
in combination networks [29], coded caching under secrecy constraints [30], coded caching
with reduced subpacketization [31,32], the coded caching problem where each user requests
multiple files [33], and a cache-aided broadcast network for correlated content [34], etc.

A different line of work is to study the cached-aided networks without the presence
of a server, e.g., the device-to-device (D2D) cache-aided network. In [35], the authors
investigated coded caching for wireless D2D network [35], where users locate in a fixed
mesh topology wireless D2D network. A D2D system with selfish users who do not
participate in delivering the missing subfiles to all users was studied in [36]. Wang et al.
applied the PDA to characterize cache-aided D2D wireless networks in [37]. In [38], the
authors studied the spatial D2D networks in which the user locations are modeled by
a Poisson point process. For heterogeneous cache-aided D2D networks where users are
equipped with cache memories of distinct sizes, ref. [39] minimized the delivery load by
optimizing over the partition during the placement phase and the size and structure of
D2D during the delivery phase. A highly dense wireless network with device mobility was
investigated in [40].

In fact, combining the cache-aided broadcast network with the cache-aided D2D
network can potentially reduce the transmission latency. This hybrid network is common
in many practical distributed systems such as cloud network [41], where a central cloud
server broadcasts messages to multiple users through the cellular network, and meanwhile
users communicate with each other through a fiber local area network (LAN). A potential
scenario is that users in a moderately dense area, such as a university, want to download
files, such as movies, from a data library, such as a video service provider. It should be
noted that the user demands are highly redundant, and the files need not only be stored by
a central server but also partially cached by other users. Someone can attain the desired
content through both communicating with the central server and other users such that the
communication and storage resources can be used efficiently. Unfortunately, there is very
little research investigating the coded caching problem for this hybrid network. In this
paper, we consider such hybrid cache-aided network where a server consisting of N ∈ Z+

files connects with K ∈ Z+ users through a broadcast network, and meanwhile the users
can exchange information via a D2D network. Unlike the settings of [35,38], in which each
user can only communicate with its neighboring users via spatial multiplexing, we consider
the D2D network as either an error-free shared link or a flexible routing network [18].
In particular, for the case of the shared link, all users exchange information via a shared
link. In the flexible routing network, there exists a routing strategy adaptively partitioning
all users into multiple groups, in each of which one user sends data packets error-free to the
remaining users in the corresponding group. Let α ∈ Z be the number of groups who send
signals at the same time, then the following fundamental questions arise for this hybrid
cache-aided network:

• How does α affect the system performance?
• What is the (approximately) optimal value of α to minimize the transmission latency?
• How can communication loads be allocated between the server and users to achieve the

minimum transmission latency?

In this paper, we try to address these questions, and our main contributions are
summarized as follows:
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• We propose novel coded caching schemes for this hybrid network under centralized
and decentralized data placement. Both schemes efficiently exploit communication
opportunities in D2D and broadcast networks, and appropriately allocate communi-
cation loads between the server and users. In addition to multicast gain, our schemes
achieve much smaller transmission latency than both that of Maddah-Ali and Niesen’s
scheme for a broadcast network [1,2] and the D2D coded caching scheme [35]. We
characterize a cooperation gain and a parallel gain achieved by our schemes, where the
cooperation gain is obtained through cooperation among users in the D2D network,
and the parallel gain is obtained through the parallel transmission between the server
and users.

• We prove that the centralized scheme is order-optimal, i.e., achieving the optimal
transmission delay within a constant multiplicative gap in all regimes. Moreover,
the decentralized scheme is also optimal when the cache size of each user M is larger
than the threshold N(1− K−1

√
1/(K + 1)) that is approaching zero as K → ∞.

• For the centralized data placement case, theoretical analysis shows that α should
decrease with the increase of the user caching size. In particular, when each user’s
caching size is sufficiently large, only one user should be allowed to send information,
indicating that the D2D network can be just a simple shared link connecting all users.
For the decentralized data placement case, α should be dynamically changing accord-
ing to the sizes of subfiles created in the placement phase. In other words, always
letting more users parallelly send information can cause a high transmission delay.

Please note that the decentralized scenario is much more complicated than the central-
ized scenario, since each subfile can be stored by s = 1, 2, . . . , K users, leading to a dynamic
file-splitting and communication strategy in the D2D network. Our schemes, in particular
the decentralized coded caching scheme, differ greatly with the D2D coded caching scheme
in [35]. Specifically, ref. [35] considered a fixed network topology where each user connects
with a fixed set of users, and the total user cache sizes must be large enough to store all files
in the library. However, in our schemes, the user group partition is dynamically changing,
and each user can communicate with any set of users via network routing. Moreover, our
model has the server share communication loads with the users, resulting in an alloca-
tion problem on communication loads between the broadcast network and D2D network.
Finally, our schemes achieve a tradeoff between the cooperation gain, parallel gain and
multicast gain, while the schemes in [1,2,35] only achieve the multicast gain.

The remainder of this paper is as follows. Section 2 presents the system model,
and defines the main problem studied in this paper. We summarize the obtained main
results in Section 3. Following that is a detailed description of the centralized coded
caching scheme with user cooperation in Section 4. Section 5 extends the techniques we
developed for the centralized caching problem to the setting of decentralized random
caching. Section 6 concludes this paper.

2. System Model and Problem Definition

Consider a cache-aided network consisting of a single server and K users as depicted
in Figure 1. The server has a library of N independent files W1, . . . , WN . Each file Wn,
n = 1, . . . , N, is uniformly distributed over

[2F] , {1, 2, . . . , 2F},

for some positive integer F. The server connects with K users through a noisy-free shared
link but rate-limited to a network speed of C1 bits per second (bits/s). Each user k ∈ [K] is
equipped with a cache memory of size MF bits, for some M ∈ [0, N], and can communicate
with each other via a D2D network.

We mainly focus on two types of D2D networks: a shared link as in [1,2] and a flexible
routing network introduced in [18]. In the case of a shared link, all users connect with each
other through a shared error-free link but rate-limited to C2 bits/s. In the flexible routing
network, K users can arbitrarily form multiple groups via network routing, in each of



Entropy 2022, 24, 1034 4 of 29

which at most one user can send error-free data packets at a network speed C2 bits/s to the
remaining users within the group. To unify these two types of D2D networks, we introduce
an integer αmax ∈ {1, bK

2 c}, which denotes the maximum number of groups allowed to
send data parallelly in the D2D network. For example, when αmax = 1, the D2D network
degenerates into a shared link, and when αmax = bK

2 c, it turns to be the flexible network.

Server

User 1

User 2

User K

Figure 1. Caching system considered in this paper. A server connects with K cache-enabled users
and the users can cooperate through a flexible network.

The system works in two phases: a placement phase and a delivery phase. In the
placement phase, all users will access the entire library W1, . . . , WN and fill the content to
their caching memories. More specifically, each user k, for k ∈ [K], maps W1, . . . , WN to its
cache content:

Zk , φk(W1, . . . , WN), (1)

for some caching function

φk : [2F]N → [b2MFc]. (2)

In the delivery phase, each user requests one of the N files from the library. We denote
the demand of user k as dk ∈ [N], and its desired file as Wdk

. Let d , (d1, . . . , dK) denotes
the request vector. In this paper, we investigate the worst request case where each user
makes a unique request.

Once the request vector d is informed to the server and all users, the server produces
the symbol

X , fd(W1, . . . , WN), (3)

and broadcasts it to all users through the broadcast network. Meanwhile, user k ∈ {1, . . . , K}
produces the symbol (Each user k can produce Xk as a function of Zk and the received
signals sent by the server, but because all users can access to the server’s signal due to the
fact that the server broadcasts its signals to the network, it is equivalent to generating Xk as
a function Zk).

Xk , fk,d(Zk), (4)

and sends it to a set of intended users Dk ⊆ [K] through the D2D network. Here, Dk repre-
sents the set of destination users served by node k, fd and fk,d are some encoding functions

fd : [2F]N → [b2R1Fc], fk,d : [b2MFc]→ [b2R2Fc], (5)

where R1 and R2 denote the transmission rate sent by the server in the broadcast network
and by each user in the D2D network, respectively. Here we focus on the symmetric case
where all users have the same transmission rate. Due to the constraint of αmax, at most
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αmax users can send signals parallelly in each channel use. The set of αmax users who send
signals in parallel could be adaptively changed in the delivery phase.

At the end of the delivery phase, due to the error-free transmission in the broadcast
and D2D networks, user k observes symbols sent to them, i.e., (Xj : j ∈ [K], k ∈ Dj),
and decodes its desired message as Ŵdk

= ψk,d(X, (Xj : j ∈ [K], k ∈ Dj), Zk), where ψk,d is
a decoding function.

We define the worst-case probability of error as

Pe , max
d∈Fn

max
k∈[K]

Pr
(
Ŵdk
6= Wdk

)
. (6)

A coded caching scheme (M, R1, R2) consists of caching functions {φk}, encoding
functions { fd, fk,d} and decoding functions {ψk,d}. We say that the rate region (M, R1, R2)
is achievable if for every ε > 0 and every large enough file size F, there exists a coded
caching scheme such that Pe is less than ε.

Since the server and the users send signals in parallel, the total transmission delay,
denoted by T, can be defined as

T , max{R1F
C1

,
R2F
C2
}. (7)

The optimal transmission delay is T∗ , inf{T : T is achievable}. For simplicity, we assume
that C1 = C2 = F, and then from (7) we have

T = max{R1, R2}. (8)

When C1 6= C2, e.g., C1 : C2 = 1/k, one small adjustment allowing our scheme to con-
tinue to work is multiplying λ by 1/(k(1− λ) + λ), where λ is a devisable parameter
introduced later.

Our goal is to design a coded caching scheme to minimize the transmission delay.
Finally, in this paper we assume K ≤ N and M ≤ N. Extending the results to other
scenarios is straightforward, as mentioned in [1].

3. Main Results

We first establish a general lower bound on the transmission delay for the system
model described in Section 2, then present two upper bounds of the optimal transmission
delay achieved by our centralized and decentralized coded caching schemes, respectively.
Finally, we present the optimality results of these two schemes.

Theorem 1 (Lower Bound). For memory size 0 ≤ M ≤ N, the optimal transmission delay is
lower bounded by

T∗ ≥ max
{

1
2

(
1− M

N

)
, max

s∈[K]

(
s− KM
bN/sc

)
, max

s∈[K]

(
s− sM
bN/sc

) 1
1 + αmax

}
. (9)

Proof. See the proof in Appendix A.

3.1. Centralized Coded Caching

In the following theorem, we present an upper bound on the transmission delay for
the centralized caching setup.
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Theorem 2 (Upper Bound for the Centralized Scenario). Let t , KM/N ∈ Z+, and α ∈ Z+.
For memory size M ∈ {0, N

K , 2N
K , . . . , N}, the optimal transmission delay T∗ is upper bounded by

T∗ ≤ Tcentral, where

Tcentral , min
α≤αmax

K
(

1−M
N

) 1
1+t+α min{bK

α c−1, t}
. (10)

For general 0 ≤ M ≤ N, the lower convex envelope of these points is achievable.

Proof. See scheme in Section 4.

The following simple example shows that the proposed upper bound can greatly
reduce the transmission delay.

Example 1. Consider a network described in Section 2 with KM/N = K− 1. The coded caching
scheme without D2D communication [1] has the server multicast an XOR message useful for all K
users, achieving the transmission delay K

(
1− M

N
) 1

1+t =
1
K . The D2D coded caching scheme [35]

achieves the transmission delay N
M (1− M

N ) = 1
K−1 . The achievable transmission delay in Theorem 2

equals 1
2K−1 by letting α = 1, almost twice as short as the transmission delay of previous schemes if

K is sufficiently large.

From (10), we obtain that the optimal value of α, denoted by α∗, equals 1 if t ≥ K− 1
and to αmax if t ≤ b K

αmax
c−1. When ignoring all integer constraints, we obtain α∗ = K

t+1 .
We rewrite this choice as follows:

α∗ =


1, t ≥ K− 1,

K/(t + 1), bK/αmaxc−1< t<K−1,

αmax, t ≤ bK/αmaxc−1.

(11)

Remark 1. From (11), we observe that when M is small such that t ≤ bK/αmaxc−1, we have
α∗ = αmax. As M is increasing, α∗ becomes K/(t + 1), smaller than αmax. When M is sufficiently
large such that M ≥ (K− 1)N/K, only one user should be allowed to send information, i.e., α∗ = 1.
This indicates that letting more users parallelly send information could be harmful. The main reason
for this phenomenon is the existence of a tradeoff between the multicast gain, cooperation gain and
parallel gain, which will be introduced below in this section.

Comparing Tcentral with the transmission delay achieved by Maddah-Ali and Niesen’s
scheme for the broadcast network [1], i.e., K

(
1− M

N
) 1

1+t , Tcentral consists of an additional factor

Gcentral,c ,
1

1 + α
1+t min{bK

α c−1, t}
, (12)

referred to as centralized cooperation gain, as it arises from user cooperation. Comparing
Tcentral with the transmission delay achieved by the D2D coded caching scheme [35],
i.e., N

M (1− M
N ), Tcentral consists of an additional factor

Gcentral,p ,
1

1 + 1
t +

α
t min{bK

α c−1, t}
, (13)

referred to as centralized parallel gain, as it arises from parallel transmission among the
server and users. Both gains depend on K, M/N and αmax.
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Substituting the optimal α∗ into (12), we have

Gcentral,c =



1 + t
K + t

, t ≥ K− 1,

1 + t
K− K

t+1+t
, b K

αmax
c−1< t<K−1,

1 + t
αmaxt + t + 1

, t ≤ b K
αmax

c−1.

(14)

When fixing (K, N, αmax), Gcentral,c in general is not a monotonic function of M. More
specifically, when M is small enough such that t < b K

αmax
c−1, the function Gcentral,c is

monotonically decreasing, indicating that the improvement caused by introducing D2D
communication. This is mainly because relatively larger M allows users to share more
common data with each other, providing more opportunities on user cooperation. However,
when M grows larger such that t ≥ b K

αmax
c−1, the local and global caching gains become

dominant, and less improvement can be obtained from user cooperation, turning Gcentral,c
to a monotonic increasing function of M,

Similarly, substituting the optimal α∗ into (13), we obtain

Gcentral,p =



t
K + t

, t ≥ K− 1,

t
t·K
t+1 + t + 1

, b K
αmax

c−1< t<K−1,

t
αmaxt + t + 1

, t ≤ b K
αmax

c−1.

(15)

Equation (15) shows that Gcentral,p is monotonically increasing with t, mainly due to the
fact that when M increases, more content can be sent through the D2D network without the
help of the central server, decreasing the improvement from parallel transmission between
the server and users.

The centralized cooperation gain (12) and parallel gain (13) are plotted in Figure 2
when N = 40, K = 20 and αmax = 5.

0 5 10 15 20 25 30 35 40

M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
a
in

centralized cooperation gain

centralized parallel gain

Figure 2. Centralized cooperation gain and parallel gain when N = 40, K = 20 and αmax = 5.

Remark 2. Larger α could lead to better parallel and cooperation gain (more uses can concurrently
multicast signals to other users), but will result in worse multicast gain (signals are multicast to
fewer users in each group). The choice of α in (11) is in fact a tradeoff between the multicast gain,
parallel gain and cooperation gain.

The proposed scheme achieving the upper bound in Theorem 2 is order-optimal.

Theorem 3. For memory size 0 ≤ M ≤ N,

Tcentral
T∗

≤ 31. (16)
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Proof. See the proof in Appendix B.

The exact gap of Tcentral/T∗ could be much smaller. One could apply the method
proposed in [3] to obtain a tighter lower bound and shrink the gap. In this paper, we only
prove the order optimality of the proposed scheme, and leave the work of finding a smaller
gap as the future work.

Figure 3 plots the lower bound (9) and upper bounds achieved by various schemes,
including the proposed scheme, the scheme Maddah-Ali 2014 in [1] which considers the
broadcast network without D2D communication, and the scheme Ji 2016 in [35], which
considers the D2D network without server. It is obvious that our scheme outperforms the
previous schemes and approaches closely to the lower bound.

0 10 20 30 40

M

0

5

10

15

20

T
ra

n
s
m

is
s
io

n
 d

e
la

y

Figure 3. Transmission delay when N = 40, K = 20 and αmax = 5. The upper bounds are achieved
under the centralized caching scenario.

3.2. Decentralized Coded Caching

We exploit the multicast gain from coded caching, D2D communication, and parallel
transmission between the server and users, leading to the following upper bound.

Theorem 4 (Upper Bound for the Decentralized Scenario). Define p , M/N. For memory
size 0 ≤ M ≤ N, the optimal transmission delay T∗ is upper bounded by

T∗ ≤ Tdecentral , max
{

R∅,
RsRu

Rs + Ru − R∅

}
, (17)

where

R∅ ,K(1− p)K, (18)

Rs ,
1− p

p
(
1− (1− p)K), (19)

Ru ,
1

αmax

d K
αmax e−1

∑
s=2

( s(K
s )

s− 1
ps−1(1−p)K−s+1)+ K

∑
s=d K

αmax e

(K(K−1
s−1 )

f (K, s)
ps−1(1−p)K−s+1), (20)

with

f (K, s) ,

b
K
s
c(s− 1), (K mod s) < 2,

K− 1− bK/sc, (K mod s) ≥ 2.
(21)

Proof. Here, R∅ represents the transmission rate of sending contents that are not cached
by any user, Rs and Ru represent the transmission rate sent by the server via the broad-
cast network, and the transmission rate sent by users via the D2D network, respectively.
Equation (17) balances the communication loads assigned to the server and users. See more
detailed proof in Section 5.
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The key idea of the scheme achieving (17) is to partition K users into dK
s e groups

for each communication round s ∈ [K − 1], and let each group perform the D2D coded
caching scheme [35] to exchange information. The main challenge is that that among all dK

s e
groups, there are bK

s c groups of the same size s, and an abnormal group of size (K mod s) if
(K mod s) 6= 0, leading to an asymmetric caching setup. One may use the scheme [35] for
the groups of size s, for the group of size (K mod s) ≥ 2, but how to exploit the caching
resource and communication capability of all groups while balancing communication
loads among the two types of groups to minimize the transmission delay remains elusive
and needs to be carefully designed. Moreover, this challenge poses complexities both in
establishing the upper bound and in optimality proof.

Remark 3. The upper bound in Theorem 4 is achieved by setting the number of users that exactly
send signals in parallel as follows:

αD =


αmax, case 1,

bK
s
c, case 2,

dK
s
e, case 3.

(22)

If dK
s e > αmax, the number of users who send data in parallel is smaller than αmax, indicating

that always letting more users parallelly send messages could cause higher transmission delay.
For example, when K ≥ 4, s = K− 1 and αmax = bK

2 c, we have αD = 1 < αmax.

Remark 4. From the definitions of Tdecentral, Rs, Ru and R∅, it is easy to obtain that R∅ ≤
Tdecentral ≤ Rs,

Tdecentral =


RsRu

Rs + Ru − R∅
, Ru ≥ R∅,

R∅, Ru < R∅,
(23)

Tdecentral decreases as αmax increases, and Tdecentral increases as Ru increases if Ru ≥ R∅.

Due to the complex term Ru, Tdecentral in Theorem 4 is hard to evaluate. Since Tdecentral
is increasing as Ru increases (see Remark 4), substituting the following upper bound of Ru
into (17) provides an efficient way to evaluate Tdecentral.

Corollary 1. For memory size 0 ≤ p ≤ 1, the upper bound of Ru is given below:

• αmax = 1 (a shared link):

Ru ≤
1− p

p

[
1− 5

2
Kp
(
1− p

)K−1 − 4
(
1− p

)K
+

3(1− (1− p)K+1)

(K + 1)p

]
; (24)

• αmax = bK
2 c (a flexible network):

Ru ≤
K(1− p)
(K− 1)

[
1−

(
1− p

)K−1− 2/p
K−2

(
1−(1−p)K−Kp(1−p)K−1)]. (25)

Proof. See the proof in Appendix C.

Recall that the transmission delay achieved by the decentralized scheme without D2D
communication [2] is equal to Rs given in (19). We define the ratio between Tdecentral and
Rs as decentralized cooperation gain:

Gdecentral,c , max{R∅
Rs

,
Ru

Rs + Ru − R∅
}, (26)
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with Gdecentral,c ∈ [0, 1] because of R∅ ≤ Rs. Similar to the centralized scenario, this gain
arises from the coordination between users in the D2D network. Moreover, we also com-
pare Tdecentral with the transmission delay (1− p)/p, achieved by the D2D decentralized
coded caching scheme [35], and define the ratio between Rs and (1− p)/p as decentralized
parallel gain:

Gdecentral,p , Gdecentral,c ·
(

1− (1− p)K
)

, (27)

where Gdecentral,p ∈ [0, 1] arises from the parallel transmission between the server and
the users.

We plot the decentralized cooperation gain and parallel gain for the two types of
D2D networks in Figure 4 when N = 20 and K = 10. It can be seen that Gdecentral,c and
Gdecentral,p in general are not monotonic functions of M. Here Gdecentral,c performs in a way
similar to Gcentral,c. When M is small, the function Gdecentral,c is monotonically decreasing
from value 1 until reaching the minimum. For larger M, the function Gdecentral,c turns to
monotonically increase with M. The reason for this phenomenon is that in the decentralized
scenario, when M increases, the proportion of subfiles that are not cached by any user and
must be sent by the server is decreasing. Thus, there are more subfiles that can be sent
parallelly via D2D network as M increases. Meanwhile, the decentralized scheme in [2]
offers an additional multicasting gain. Therefore, we need to balance these two gains to
reduce the transmission delay.
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Figure 4. Decentralized cooperation gain and parallel gain when N = 20 and K = 10.

The function Gdecentral,p behaves differently as it monotonically increases when M is
small. After reaching the maximal value, the function Gdecentral,p decreases monotonically
until meeting the local minimum (The abnormal bend in parallel gain when αmax = bK

2 c
comes from a balance effect between the Gdecentral,c and 1− (1− p)K in (27)), then Gdecentral,p
turns to be a monotonic increasing function for large M. Similar to the centralized case,
as M increases, the impact of parallel transmission among the server and users becomes
smaller since more data can be transmitted by the users.

Theorem 5. Define p , M/N and pth , 1−
( 1

K+1
) 1

K−1 , which tends to 0 as K tends to infinity.
For memory size 0 ≤ M ≤ N,

• if αmax = 1 (shared link), then
Tdecentral

T∗
≤ 24;

• if αmax = bK
2 c, then

Tdecentral
T∗

≤

max
{

6, 2K
( 2K

2K + 1

)K−1
}

, p < pth,

6, p ≥ pth.
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Proof. See the proof in Appendix D.

Figure 5 plots the lower bound in (9) and upper bounds achieved by various decen-
tralized coded caching schemes, including our scheme, the scheme Maddah-Ali 2015 in [2]
which considers the case without D2D communication, and the scheme Ji 2016 in [35] which
considers the case without server.
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Figure 5. Transmission delay when N = 100, K = 20 and αmax = 3. The upper bounds are achieved
under the decentralized random caching scenario.

4. Coding Scheme under Centralized Data Placement

In this section, we describe a novel centralized coded caching scheme for arbitrary K,
N and M such that t = KM/N is a positive integer. The scheme can be extended to the
general case 1 ≤ t ≤ K by following the same approach as in [1].

We first use an illustrative example to show how we form D2D communication
groups, split files and deliver data, and then present our generalized centralized coding
caching scheme.

4.1. An Illustrative Example

Consider a network consisting of K = 6 users with cache size M = 4, and a library
of N = 6 files. Thus, t = KM/N = 4. Divide all six users into two groups of equal size,

and choose an integer L1 = 2 that guarantees K(K−1
t )L1

min{α(bK/αc−1),t} to be an integer. (According
to (11) and (29), one optimal choice could be (α = 1, L1 = 4, λ = 5/9), here we choose
(α = 2, L1 = 2, λ = 1/3) for simplicity, and also in order to demonstrate that even
with a suboptimal choice, our scheme still outperforms that in [1,35]). Split each file Wn,
for n = 1, . . . , N, into 3(6

4) = 45 subfiles:

Wn = (W l
n,T : l ∈ [3], T ⊂ [6], |T | = 4).

We list all the requested subfiles uncached by all users as follows: for l = 1, 2, 3,

W l
d1,{2,3,4,5}, W l

d1,{2,3,4,6}, W l
d1,{2,3,5,6}, W l

d1,{2,4,5,6}, W l
d1,{3,4,5,6};

W l
d2,{1,3,4,5}, W l

d2,{1,3,4,6}, W l
d2,{1,3,5,6}, W l

d2,{1,4,5,6}, W l
d2,{3,4,5,6};

W l
d3,{1,2,4,5}, W l

d3,{1,2,4,6}, W l
d3,{1,2,5,6}, W l

d3,{1,4,5,6}, W l
d3,{2,4,5,6};

W l
d4,{1,2,3,5}, W l

d4,{1,2,3,6}, W l
d4,{1,2,5,6}, W l

d4,{1,3,5,6}, W l
d4,{2,3,5,6};

W l
d5,{1,2,3,4}, W l

d5,{1,2,3,6}, W l
d5,{1,2,4,6}, W l

d5,{1,3,4,6}, W l
d5,{2,3,4,6};

W l
d6,{1,2,3,4}, W l

d6,{1,2,3,5}, W l
d6,{1,2,4,5}, W l

d6,{1,3,4,5}, W l
d6,{2,3,4,5}.

The users can finish the transmission in different partitions. Table 1 shows the trans-
mission in four different partitions over the D2D network.
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Table 1. Subfiles sent by users in different partition, l = 1, 2.

{1, 2, 3} {4, 5, 6}
user 2: W1

d1,{2,3,4,5}⊕W1
d3,{1,2,4,5} user 5: W1

d4,{2,3,5,6}⊕W1
d6,{2,3,4,5}

user 2: W1
d1,{2,3,4,6}⊕W1

d3,{1,2,4,6} user 5: W1
d4,{1,2,5,6}⊕W1

d6,{1,2,4,5}
user 1: W1

d2,{1,3,4,6}⊕W1
d3,{1,2,5,6} user 4: W1

d5,{2,3,4,6}⊕W1
d6,{1,3,4,5}

user 3: W1
d1,{2,3,5,6}⊕W1

d2,{1,3,5,6} user 6: W1
d4,{1,3,5,6}⊕W1

d5,{1,3,4,6}

{1, 2, 4} {3, 5, 6}
user 2: W l

d1,{2,4,5,6}⊕W l
d4,{1,2,3,5} user 5: W l

d3,{1,4,5,6}⊕W l
d6,{1,2,3,5}

{1, 4, 6} {2, 3, 5}
user 6: W l

d1,{3,4,5,6}⊕W l
d4,{1,2,3,6} user 3: W l

d2,{3,4,5,6}⊕W l
d5,{1,2,3,4}

{1, 2, 5} {3, 4, 6}
user 1: W l

d2,{1,4,5,6}⊕W l
d5,{1,2,3,6} user 4: W l

d3,{2,4,5,6}⊕W l
d6,{1,2,3,4}

{1, 2, 3} {4, 5, 6}
user 3: W2

d1,{2,3,4,5}⊕W2
d2,{1,3,4,5} user 4: W2

d5,{2,3,4,6}⊕W2
d6,{2,3,4,5}

user 3: W2
d1,{2,3,4,6}⊕W2

d2,{1,3,4,6} user 4: W2
d5,{1,2,4,6}⊕W2

d6,{1,2,4,5}
user 2: W2

d1,{2,3,5,6}⊕W2
d3,{1,2,4,5} user 5: W2

d4,{1,3,5,6}⊕W2
d6,{1,3,4,5}

user 1: W2
d3,{1,2,4,6}⊕W2

d2,{1,3,5,6} user 6: W2
d4,{1,2,5,6}⊕W2

d5,{1,3,4,6}
user 1: W2

d3,{1,2,5,6}⊕W1
d2,{1,3,4,5} user 6: W1

d5,{1,2,4,6}⊕W2
d4,{2,3,5,6}

In Table 1, all users first send XOR symbols with superscript l = 1. Please note that

the subfiles W1
d2,{1,3,4,5} and W1

d5,{1,2,4,6} are not delivered at the beginning since K(K−1
t )

α(bK/αc−1)

is not an integer. Similarly, for subfiles with l = 2, W2
d3,{1,2,5,6} and W2

d4,{2,3,5,6} remain
to be sent to user 3 and 4. In the last transmission, user 1 delivers the XOR message
W2

d3,{1,2,5,6} ⊕W1
d2,{1,3,4,5} to user 2 and 3, and user 6 multicasts W1

d5,{1,2,4,6} ⊕W2
d4,{2,3,5,6} to

user 5 and 6. The transmission rate in the D2D network is R2 = 1
3 .

For the remaining subfiles with superscript l = 3, the server delivers them in the
same way as in [1]. Specifically, it sends symbols ⊕k∈SW3

dk ,S\{k}, for all S ⊆ [K] :

|S| = 5. Thus, the rate sent by the server is R1 = 2
15 , and the transmission delay

Tcentral = max{R1, R2} = 1
3 , which is less than the delay achieved by the coded caching

schemes for the broadcast network [1] and the D2D communication [35], respectively.

4.2. The Generalized Centralized Coding Caching Scheme

In the placement phase, each file is first split into (K
t ) subfiles of equal size. More

specifically, split Wn into subfiles as follows: Wn = (Wn,T : T ⊂ [K], |T | = t). User k caches
all the subfiles if k ∈ T for all n = 1, ..., N, occupying the cache memory of MF bits. Then

split each subfile Wn,T into two mini-files as Wn,T =
(

Ws
n,T , Wu

n,T

)
, where

|Ws
n,T | = λ · |Wn,T | = λ · F

(K
t )

,

|Wu
n,T | = (1− λ) · |Wn,T | = (1− λ) · F

(K
t )

,
(28)

with

λ =
1 + t

α min{bK
α c − 1, t}+ 1 + t

. (29)
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Here, the mini-file Ws
n,T and Wu

n,T will be sent by the server and users, respectively. For
each mini-file Wu

n,T , split it into L1 pico-files of equal size (1− λ) · F
L1(

K
t )

, i.e., Wu
n,T =(

Wu,1
n,T , . . . , Wu,L1

n,T

)
, where L1 satisfies

K · (K−1
t ) · L1

α min{bK
α c − 1, t}

∈ Z+. (30)

As we will see later, condition (29) ensures that communication loads can be optimally
allocated between the server and the users, and (30) ensures that the number of subfiles is
large enough to maximize multicast gain for the transmission in the D2D network.

In the delivery phase, each user k requests file Wdk
. The request vector d = (d1, d2, . . . , dK)

is informed by the server and all users. Please note that different parts of file Wdk
have been

stored in the user cache memories, and thus the uncached parts of Wdk
can be sent both by

the server and users. Subfiles(
Wu,1

dk ,T , . . . , Wu,L1
dk ,T : T ⊂ [K], |T | = t, k /∈ T

)
are requested by user k and will be sent by the users via the D2D network. Subfiles(

Ws
dk ,T : T ⊂ [K], |T | = t, k /∈ T

)
are requested by user k and will be sent by the server via the broadcast network.

First consider the subfiles sent by the users. Partition the K users into α groups of
equal size:

G1, . . . ,Gα,

where for i, j = 1, . . . , α, Gi ⊆ [K] : |Gi| = bK/αc, and Gi ∩ Gj = ∅, if i 6= j. In each group
Gi, one of bK/αc users plays the role of server and sends symbols based on its cached
contents to the remaining (bK/αc − 1) users within the group.

Focus on a group Gi and a set S ⊂ [K] : |S| = t + 1. If Gi ⊆ S , then all nodes in Gi
share subfiles

(Wu,l
n,T : l ∈ [L1], n ∈ [N],Gi ⊆ T , |T | = t).

In this case, user k ∈ Gi sends XOR symbols that contains the requested subfiles useful to
all remaining bK/αc − 1 users in Gi, i.e., ⊕j∈Gi\{k}W

u,l(k,Gi ,S)
dj ,S\{j} , where l(k,Gi,S) ∈ [L1] is a

function of (k,Gi,S) which avoids redundant transmission of any fragments.
If S ⊆ Gi, then the nodes in S share subfiles

(Wu,l
n,T : l ∈ [L1], n ∈ [N], T ⊂ S , |T | = t).

In this case, user k ∈ S sends an XOR symbol that contains the requested subfiles for all
remaining t− 1 users in S , i.e., ⊕j∈S\{k}W

u,l(k,Gi ,S)
dj ,S\{j} . Other groups perform the similar steps

and concurrently deliver the remaining requested subfiles to other users.
By changing group partition and performing the delivery strategy described above,

we can send all the requested subfiles

(Wu,1
dk ,T , . . . , Wu,L1

dk ,T : T ⊂ [K], |T | = t, k /∈ T )K
k=1 (31)

to the users.
Since α groups send signals in a parallel manner (α users can concurrently deliver

contents), and each user in a group delivers a symbol containing min{bK/αc − 1, t} non-
repeating pico-files requested by other users, in order to send all requested subfiles in (31),
we need to send in total
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K · (K−1
t ) · L1

α min{bK
α c − 1, t}

(32)

XOR symbols, each of size 1−λ

(K
t )

F bits. Notice that L1 is chosen according to (30), ensuring

that (32) equals to an integer. Thus, we obtain R2 as

R2 =
KL1 · (K−1

t )

α min{bK
α c − 1, t}

· 1− λ

L1(
K
t )

= K
(

1−M
N

) 1
1+t+α min{bK

α c−1, t}
, (33)

where the last equality holds by (29).
Now consider the delivery of the subfiles sent by the server. Apply the delivery

strategy as in [1], i.e., the server broadcasts

⊕k∈SWs
dk ,S\{k}

to all users, for all S ⊆ [K] : |S| = t + 1. We obtain the transmission rate of the server

R1 =λ · K
(

1− M
N

)
· 1

1 + t

=K
(

1−M
N

) 1
1+t+α min{bK

α c−1, t}
. (34)

From (33) and (34), we can see that the choice λ in (29) guarantees equal communication
loads at the server and users. Since the server and users transmit the signals simultane-
ously, the transmission delay of the whole network is the maximum between R1 and R2,
i.e., Tcentral = max{R1, R2} = K(1−M/N)

1+t+α min{bK/αc−1,t} , for some α ∈ [αmax].

5. Coding Scheme under Decentralized Data Placement

In this section, we present a novel decentralized coded caching scheme for joint
broadcast network and D2D network. The decentralized scenario is much more complicated
than the centralized scenario, since each subfile can be stored by s = 1, 2, . . . , K users,
leading to a dynamic file-splitting and communication strategy in the D2D network. We
first use an illustrative example to demonstrate how we form D2D communication groups,
split data and deliver data, and then present our generalized coding caching scheme.

5.1. An Illustrative Example

Consider a joint broadcast and D2D network consisting of K = 7 users. When using
the decentralized data placement strategy, the subfiles cached by user k can be written as(

Wn,T : n ∈ [N], k ∈ T , T ⊆ [7]
)

. (35)

We focus on the delivery of subfiles Wn,T : n ∈ [N], k ∈ T , |T | = s = 4, i.e., each subfile
is stored by s = 4 users. A similar process can be applied to deliver other subfiles with
respect to s ∈ [K]\{4}.

To allocate communication loads between the server and users, we divide each subfile
into two mini-files Wn,T =

(
Ws

n,T , Wu
n,T

)
, where mini-files {Ws

n,T } and {Wu
n,T } will be

sent by the server and users, respectively. To reduce the transmission delay, the size of
Ws

n,T and Wu
n,T need to be chosen properly such that R1 = R2, i.e., the transmission rate of

the server and users are equal; see (37) and (39) ahead.
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Divide all the users into two non-intersecting groups (Gr
1,Gr

2), for r ∈ [35] which satisfies

Gr
1 ⊂ [K],Gr

2 ⊂ [K], |Gr
1| = 4, |Gr

2| = 3,Gr
1 ∩ Gr

2 = ∅.

There are (7
4) = 35 kinds of partitions in total, thus r ∈ [35]. Please note that for any

user k ∈ Gr
i , |Gr

i | − 1 of its requested mini-files are already cached by the rest users in Gr
i ,

for i = 1, 2.
To avoid repetitive transmission of any mini-file, each mini-file in

(Wu
dk ,T \{k} : T ⊆ [7], k ∈ [7])

is divided into non-overlapping pico-files Wu1
dk ,T \{k} and Wu2

dk ,T \{k}, i.e.,

Wu
dk ,T \{k} = (Wu1

dk ,T \{k}, Wu2
dk ,T \{k}).

The sizes of Wu1
n,T and Wu2

n,T need to be chosen properly to have equal transmission rate of
group Gr

1 and Gr
2; see (51) and (52) ahead.

To allocate communication loads between the two different types of groups, split each
Wu1

dk ,T \{k} and Wu2
dk ,T \{k} into 3 and two equal fragments, respectively, e.g.,

Wu1
d2,{1,3,4} =

(
Wu1,1

d2,{1,3,4}, Wu1,2
d2,{1,3,4}, Wu1,3

d2,{1,3,4}

)
,

Wu2
d2,{1,3,4} =

(
Wu2,1

d2,{1,3,4}, Wu2,2
d2,{1,3,4}

)
.

During the delivery phase, in each round, one user in each group produces and
multicasts an XOR symbol to all other users in the same group, as shown in Table 2.

Table 2. Parallel user delivery when K = 7, s = 4, Gr
1 = 4 and Gr

2 = 3, r ∈ [35].

{1, 2, 3, 4} {5, 6, 7}
user 1: Wu1,1

d2,{1,3,4}⊕Wu1,1
d3,{1,2,4}⊕Wu1,1

d4,{1,2,3} user 5: ∪
x∈{1,2,3,4}

Wu2,1
d6,{5,7,x}⊕Wu2,1

d7,{5,6,x}

user 2: Wu1,1
d1,{2,3,4}⊕Wu1,2

d3,{1,2,4}⊕Wu1,2
d4,{1,2,3} user 6: ∪

x∈{1,2,3,4}
Wu2,1

d5,{6,7,x}⊕Wu2,2
d7,{5,6,x}

user 3: Wu1,2
d2,{1,3,4}⊕Wu1,2

d1,{2,3,4}⊕Wu1,3
d4,{1,2,3} user 7: ∪

x∈{1,2,3,4}
Wu2,2

d6,{5,7,x}⊕Wu2,2
d5,{6,7,x}

user 4: Wu1,3
d2,{1,3,4}⊕Wu1,3

d3,{1,2,4}⊕Wu1,3
d1,{2,3,4}

{1, 2, 3, 5} {4, 6, 7}
user 1: Wu1,1

d2,{1,3,5}⊕Wu1,1
d3,{1,2,5}⊕Wu1,1

d5,{1,2,3} user 4: ∪
x∈{1,2,3,5}

W
u2,y(..)
d6,{4,7,x}⊕W

u2,y(..)
d7,{4,6,x}

user 2: Wu1,1
d1,{2,3,5}⊕Wu1,2

d3,{1,2,5}⊕Wu1,2
d5,{1,2,3} user 6: ∪

x∈{1,2,3,5}
Wu2,1

d4,{6,7,x}⊕W
u2,y(..)
d7,{4,6,x}

user 3: Wu1,2
d2,{1,3,5}⊕Wu1,2

d1,{2,3,5}⊕Wu1,3
d5,{1,2,3} user 7: ∪

x∈{1,2,3,5}
W

u2,y(..)
d6,{4,7,x}⊕Wu2,2

d4,{6,7,x}
user 5: Wu1,3

d2,{1,3,5}⊕Wu1,3
d3,{125}⊕Wu1,3

d1,{235}

{1, 2, 3, 6} {4, 5, 7}
user 1: Wu1,1

d2,{1,3,6}⊕Wu1,1
d3,{1,2,6}⊕Wu1,1

d6,{1,2,3} user 4: ∪
x∈{1,2,3,6}

W
u2,y(..)
d5,{4,7,x}⊕W

u2,y(..)
d7,{4,5,x}

user 2: Wu1,1
d1,{2,3,6}⊕Wu1,2

d3,{1,2,6}⊕Wu1,2
d6,{1,2,3} user 5: ∪

x∈{1,2,3,6}
Wu2,1

d4,{5,7,x}⊕W
u2,y(..)
d7,{4,5,x}

user 3: Wu1,2
d2,{1,3,6}⊕Wu1,2

d1,{2,3,6}⊕Wu1,3
d6,{1,2,3} user 7: ∪

x∈{1,2,3,6}
W

u2,y(..)
d5,{4,7,x}⊕Wu2,2

d4,{5,7,x}
user 6: Wu1,3

d2,{1,3,6}⊕Wu1,3
d3,{1,2,6}⊕Wu1,3

d1,{2,3,6}

· · · · · · · · · · · · · · · · · ·
There should be 35 partitions in total while the table only shows three partitions.

Please note that in this example, each group only appears one time among all parti-
tions. However, for some other values of s, each group could appear multiple times in
different partitions. For example, when s = 2, group {1, 2} appears in both partitions
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{{1, 2}, {3, 4}, {5, 6, 7}} and {{1, 2}, {3, 5}, {4, 6, 7}}. To reduce the transmission delay, one
should balance communication loads between all groups, and between the server and
users as well.

5.2. The Generalized Decentralized Coded Caching Scheme

In the placement phase, each user k applies the caching function to map a subset of
MF
N bits of file Wn, n = 1, ..., N, into its cache memory at random: Wn =

(
Wn,T : T ⊆ [K]

)
.

The subfiles cached by user k can be written as
(

Wn,T : n ∈ [N], k ∈ T , T ⊆ [K]
)

. When
the size of file F is sufficiently large, by the law of large numbers, the subfile size with high
probability can be written by

|Wn,T | ≈ p|T |(1− p)K−|T |. (36)

The delivery procedure can be characterized into three different levels: allocating
communication loads between the server and user, inner-group coding (i.e., transmission
in each group) and parallel delivery among groups.

5.2.1. Allocating Communication Loads between the Server and User

To allocate communication loads between the server and users, split each subfile Wn,T ,
for T ⊆ [K] : T 6= ∅, into two non-overlapping mini-files

Wn,T =
(

Ws
n,T , Wu

n,T

)
,

where
|Ws

n,T | = λ · |Wn,T |,
|Wu

n,T | = (1− λ) · |Wn,T |,
(37)

and λ is a design parameter whose value is determined in Remark 5.
Mini-files (Ws

dk ,T \{k} : k ∈ [K]) will be sent by the server using the decentralized coded
caching scheme for the broadcast network [2], leading to the transmission delay

λRs = λ
1−M/N

M/N

(
1−

(
1− M

N
)K
)

, (38)

where Rs is defined in (19).
Mini-files (Wu

dk ,T \{k} : k ∈ [K]) will be sent by users using parallel user delivery de-
scribed in Section 5.2.3. The corresponding transmission rate is

R2 = (1− λ)Ru, (39)

where Ru represents the transmission bits sent by each user normalized by F.
Since subfile Wdk ,∅ is not cached by any user and must be sent exclusively from the

server, the corresponding transmission delay for sending (Wdk ,∅ : k ∈ [K]) is

R∅ = K
(
1− M

N
)K, (40)

where R∅ coincides with the definition in (18).
By (38)–(40), we have

R1 = R∅ + λRs, R2 = (1− λ)Ru. (41)

According to (8), we have Tdecentral = max{R1, R2}.
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Remark 5 (Choice of λ). The parameter λ is chosen such that Tdecentral is minimized. If Ru < R∅,
then the inequality R2 ≤ R1 always holds and Tdecentral reaches the minimum Tdecentral = R∅

with λ = 0. If Ru ≥ R∅, solving R1 = R2 yields λ = Ru−R∅
Rs+Ru

and Tdecentral =
RsRu

Rs+Ru−R∅
.

5.2.2. Inner-Group Coding

Given parameters (s,G, i, γ) where s ∈ [K− 1], G ⊆ [K], i ∈ {u, u1, u2}with indicators
u, u1, u2 described in (37) and (51), and γ ∈ Z+, we present how to successfully deliver

(Wi
dk ,S\{k} : ∀S ⊆ [K], |S| = s,G ⊆ S)

to every user k ∈ G via D2D communication.
Split each Wi

dk ,S\{k} into (|G| − 1)γ non-overlapping fragments of equal size, i.e.,

Wi
dk ,S\{k} =

(
Wi,l

dk ,S\{k} : l ∈ [(|G| − 1)γ]
)

, (42)

and each user k ∈ G takes turn to broadcast XOR symbol

Xi
k,G,s , ⊕j∈G\{k}W

i,l(j,G,S)
dj ,S\{j} , (43)

where l(k,G,S) ∈ [(|G| − 1)γ] is a function of (k,G,S) which avoids redundant trans-
mission of any fragments. The XOR symbol Xi

k,G,s will be received and decoded by the
remaining users in G.

For each group G, inner-group coding encodes in total (K−|G|
s−|G| ) of Wi

dk ,S\{k}, and each

XOR symbol Xi
k,G,s in (43) contains fragments required by |G| − 1 users in G.

5.2.3. Parallel Delivery among Groups

The parallel user delivery consists of (K − 1) rounds characterized by s = 2, . . . , K.
In each round s, mini-files

(Wu
dk ,T \{k} : ∀T ⊆ [K], |T | = s, k ∈ [K])

are recovered through D2D communication.
The key idea is to partition K users into dK

s e groups for each communication round
s ∈ {2, ..., K}, and let each group perform the D2D coded caching scheme [35] to exchange
information. If (K mod s) 6= 0, there will be bK

s c numbers of groups of the same size s,
and an abnormal group of size (K mod s), leading to an asymmetric caching setup. We
optimally allocate the communication loads between the two types of groups, and between
the broadcast network and D2D network as well.

Based on K, s and αmax, the delivery strategy in the D2D network is divided into
3 cases:

• Case 1: dK
s e > αmax. In this case, αmax users are allowed to send data simultaneously.

Select s · αmax users from all users and divide them into αmax groups of equal size s.
The total number of such kinds of partition is

β1 ,
(K

s )(
K−s

s ) · · · (K−s(αmax−1)
s )

αmax!
. (44)

In each partition, αmax users, selected from αmax groups, respectively, send data in
parallel via the D2D network.
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• Case 2: dK
s e ≤ αmax and (K mod s) < 2. In this case, choose (bK

s c − 1)s users from all
users and partition them into (bK

s c − 1) groups of equal size s. The total number of
such kind partition is

β2 ,
(K

s )(
K−s

s ) · · · (K−s(b K
s c−1)

s )

bK
s c!

. (45)

In each partition, (bK
s c − 1) users selected from (bK

s c − 1) groups of equal size s,
respectively, together with an extra user selected from the abnormal group of size
K− s(bK

s c − 1) send data in parallel via the D2D network.
• Case 3: dK

s e ≤ αmax and (K mod s) ≥ 2. In this case, every s users form a group,
resulting in bK

s c groups consisting of sbK
s c users. The remaining (K mod s) users

form an abnormal group. The total number of such kind of partition is

β3 = β2. (46)

In each partition, bK
s c users selected from bK

s c groups of equal size s, respectively,
together with an extra user selected from the abnormal group of size (K mod s) send
data in parallel via the D2D network.

Thus, the exact number of users who parallelly send signals can be written as follows:

αD =


αmax, case 1,

bK
s
c, case 2,

dK
s
e, case 3.

(47)

Please note that each group G re-appears

NG ,
(K−s

s ) · · · (K−s·(αD−1)
s )

(αD − 1)!
(48)

times among [βc] partitions.
Now we present the decentralized scheme for these three cases as follows.
Case 1 (dK

s e > αmax): Consider a partition r ∈ [β1], denoted by

Gr
1, . . . ,Gr

αD
,

where |Gr
i | = s and Gr

i ∩ Gr
j = ∅, ∀i, j ∈ [αD] and i 6= j.

Since each group Gr
i re-appears NGr

i
times among [β1] partitions, and (|Gr

i | − 1) users
take turns to broadcast XOR symbols (43) in each group Gr

i , in order to guarantee that each
group can send a unique fragment without repetition, we split each mini-file Wu

dk ,S\{k} into
(|Gr

i | − 1)NGr
i

fragments of equal size.
Each group Gr

i , for r ∈ [β1] and i ∈ [αD], performs inner-group coding (see Section 5.2.2)
with parameters

(s,Gr
i , u, NGr

i
),

for all s satisfying dK
s e > αmax. For each round r, all groups Gr

1, . . . ,Gr
αD

parallelly send
XOR symbols containing |Gr

i | − 1 fragments required by other users of its group. By the
fact that the partitioned groups traverse every set T , i.e.,

T ⊆ {Gr
1 ∪ . . . ∪ Gr

αD
}β1

r=1, ∀T ⊆ [K] : |T | = s,
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and since inner-group coding enables each group Gr
i to recover

(Wu
dk ,S\{k} : ∀S ⊆ [K], |S| = s,Gr

i ⊆ S , k ∈ [K]),

we can recover all required mini-files

(Wu
dk ,T \{k} : ∀T ⊆ [K], |T | = s, k ∈ [K]).

The transmission delay of Case 1 in round s is thus

Ru
case1(s) , ∑

r∈[β1]
∑

k∈Gr
i

|Xu
k,Gr

i ,s|

(a)
=

K(K−1
s−1 )

αD(s− 1)
|Wu

dk ,T \{k}|

=
K(K−1

s−1 )

αmax(s− 1)
(1− λ)ps−1(1− p)K−s+1, (49)

where (a) follows by (44) and (48).
Case 2 (dK

s e ≤ αmax and (K mod s) < 2): We apply the same delivery procedure as
Case 1, except that β1 is replaced by β2 and αD = bK

s c. Thus, the transmission delay in
round s is

Ru
case2(s) =

K(K−1
s−1 )

αD(s− 1)
|Wu

dk ,T \{k}|

=
K(K−1

s−1 )

bK
s c(s− 1)

(1− λ)ps−1(1− p)K−s+1. (50)

Case 3 ( dK
s e ≤ αmax and (K mod s) ≥ 2): Consider a partition r ∈ [β3], denoted as

Gr
1, . . . ,Gr

αD
,

where Gr
i ⊆ [K], Gr

i ∩ Gr
j = ∅, ∀i, j ∈ [αD − 1] and i 6= j and Gr

αD
= [K]\(∪αD−1

i=1 G
r
i ) with

|Gr
i | = s, |Gr

αD
| = (K mod s).

Since group Gr
i : i ∈ [αD − 1] and Gr

αD
have different group sizes, we further split each

mini-file Wu
dk ,T \{k} into two non-overlapping fragments such that

|Wu1
dk ,T \{k}| = λ2|Wu

dk ,T \{k}|, (51)

|Wu2
dk ,T \{k}| = (1− λ2)|Wu

dk ,T \{k}|,

where λ2 ∈ [0, 1] is a designed parameter satisfying (52).
Split each mini-file Wu1

dk ,S\{k} and Wu2
dk ,S\{k} into fragments of equal size:

Wu1
dk ,S\{k} =

(
Wu1,l

dk ,S\{k} : l ∈ [(s− 1)NGr
i
]
)

,

Wu2
dk ,S\{k} =

(
Wu2,l

dk ,S\{k} : l ∈
[(
|Gr

αD
| − 1

)( s− 1
|Gr

αD
| − 1

)
NGr

i

])
.

Following the similar encoding operation in (43), group Gr
i : i ∈ [αD − 1] and group

Gr
αD

send the following XOR symbols, respectively:

(
Xu1

k,Gr
i ,s : k ∈ Gr

i
)(αD−1)

i=1 ,
(
Xu2

k,Gr
αD ,s : k ∈ Gr

αD

)
.
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For each s ∈ {2, . . . , K}, the transmission delay for sending the XOR symbols above by
group Gr

i : i ∈ [αD − 1] and group Gr
d K

s e
can be written as

Ru1
case3(s) =

λ2K(K−1
s−1 )

(αD − 1)(s− 1)
· |Wu

dk ,T \{k}|,

Ru2
case3(s) =

(1− λ2)K(K−1
s−1 )

(K mod s)− 1
· |Wu

dk ,T \{k}|,

respectively. Since Gi : i ∈ [bK
s c] and group Gd K

s e
can send signals in parallel, by letting

Ru1
case3(s) = Ru2

case3(s), (52)

we eliminate the parameter λ2 and obtain the balanced transmission delay at users for
Case 3:

Ru
case3(s) ,

K(K−1
s−1 )

K− 1− bK
s c

(1− λ)ps−1(1− p)K−s+1. (53)

Remark 6. The condition dK
s e > αmax in Case 1 implies that s ≤ d K

αmax
e − 1. In this regime,

the transmission delay is given in (49). If s ≥ d K
αmax
e − 1 and (K mod s) < 2, scheme for Case 2

starts to work and the transmission delay is given in (50); If s ≥ d K
αmax
e − 1 and (K mod s) ≥ 2,

scheme for Case 3 starts to work and the transmission delay is given in (53).

In each round s ∈ {2, . . . , K}, all requested mini-files can be recovered by the delivery
strategies above. By Remark 6, the transmission delay in the D2D network is

R2 = (1−λ)
1

αmax

d K
αmax e−1

∑
s=2

[ s(K
s )

s− 1
ps−1(1−p)K−s+1]+ (1−λ)

K

∑
s=d K

αmax e

[K(K−1
s−1 )

f (K, s)
ps−1(1−p)K−s+1]

= (1− λ)Ru, (54)

where Ru is defined in (20) and

f (K, s) ,

b
K
s
c(s− 1), (K mod s) < 2,

K− 1− bK/sc, (K mod s) ≥ 2.
(55)

6. Conclusions

In this paper, we considered a cache-aided communication via joint broadcast network
with a D2D network. Two novel coded caching schemes were proposed for centralized
and decentralized data placement settings, respectively. Both schemes achieve a parallel
gain and a cooperation gain by efficiently exploiting communication opportunities in the
broadcast and D2D networks, and optimally allocating communication loads between the
server and users. Furthermore, we showed that in the centralized case, letting too many
users parallelly send information could be harmful. The information theoretic converse
bounds were established, with which we proved that the centralized scheme achieves the
optimal transmission delay within a constant multiplicative gap in all regimes, and the
decentralized scheme is also order-optimal when the cache size of each user is larger than
a small threshold which tends to zero as the number of users tends to infinity. Our work
indicates that combining the cache-aided broadcast network with the cache-aided D2D
network can greatly reduce the transmission latency.
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Appendix A. Proof of the Converse

Let T∗1 and T∗2 denote the optimal rate sent by the server and each user. We first con-
sider an enhance system where every user is served by an exclusive server and user, which
both store full files in the database, then we are easy to obtain the following lower bound:

T∗ ≥ 1
2
(1− M

N
). (A1)

Another lower bound follows similar idea to [1]. However, due to the flexibility of
D2D network, the connection and partitioning status between users can change during the
delivery phase, prohibiting the direct application of the proof in [1] into the hybrid network
considered in this paper. Moreover, the parallel transmission of the server and many users
creates abundant different signals in the networks, making the scenario more sophisticated.

Consider the first s users with cache contents Z1, ..., Zs. Define X1,0 as the signal
sent by the server, and X1,1, . . . , X1,αmax as the signals sent by the αmax users, respectively,
where Xj,i ∈ [b2T∗2 Fc] for j ∈ [s] and i ∈ [αmax]. Assume that W1, . . . , Ws are determined
by X1,0, X1,1, . . . , X1,αmax and Z1, . . . , Zs. Additionally, define X2,0, X2,1, . . . , X2,αmax as the
signals which enable the users to decode Ws+1, ..., W2s. Continue the same process such
that XbN/sc,0, XbN/sc,1, . . . , XbN/sc,αmax are the signals which enable the users to decode
WsbN/sc−s+1, ..., WsbN/sc. We then have Z1, . . . , Zs, X1,0, . . . , XbN/sc,0, and

X1,1, . . . , X1,αmax , . . . , XbN/sc,1, . . . , XbN/sc,αmax

to determine W1, . . . , WsbN/sc. Let

X1:αmax , (X1,1, . . . , X1,αmax , . . . , XbN/sc,1, . . . , XbN/sc,αmax).

By the definitions of T∗1 , T∗2 and the encoding function (5), we have

H(X1,0, . . . , XbN/sc,0) ≤ bN/scT∗1 F, (A2)

H(X1:αmax) ≤ bN/scαmaxT∗2 F, (A3)

H(X1:αmax , Z1, . . . , Zs) ≤ KMF. (A4)

Consider the cut separating X1,0, . . . , XbN/sc,0, X1:αmax , and Z1, . . . , Zs from the corre-
sponding s users. By the cut-set bound and (A2), we have

bN
s
csF ≤ bN

s
cT∗1 F + KMF, (A5)

bN
s
csF ≤ bN

s
cT∗1 F + sMF + bN

s
cαmaxT∗2 F. (A6)

Since we have T∗ ≥ T∗1 and T∗ ≥ max{T∗1 , T∗2 } from the above definition, we obtain

T∗ ≥ max
s∈[K]

(s− KM
bN/sc ), (A7)

T∗ ≥ max
s∈[K]

(s− sM
bN/sc )

1
1 + αmax

. (A8)
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Appendix B

We prove that Tcentral is within a constant multiplicative gap of the minimum trans-
mission delay T∗ for all values of M. To prove the result, we compare them in the follow-
ing regimes.

• If 0.6393 < t < bK/αc − 1, from Theorem 1, we have

T∗ ≥ (s− Ms
bN/sc )

1
1 + αmax

(a)
≥ 1

12
· K
(

1− M
N

) 1
1 + t

· 1
1 + αmax

,
(A9)

where (a) follows from [1] [Theorem 3]. Then we have

Tcentral
T∗

≤ 12 · (1 + αmax)(1 + t)
1 + t + αt

= 12 · (1 + αmax)

1 + αt/(1 + t)

≤ 12 · (1 + αmax)

1 + α · 0.6393/(1 + 0.6393)

≤ 31, (A10)

where the last inequality holds by setting α = αmax.
• If t > bK/αc − 1, we have

Tcentral
T∗

≤
K(1− M

N ) 1
1+t+α(bK/αc−1)

1
2 (1−

M
N )

=
2K

1 + t + α(bK/αc − 1)
(a)
≤ 2K

K + KM/N
≤ 2, (A11)

where (a) holds by choosing α = 1.
• If t ≤ 0.6393, setting s = 0.275N, we have

T∗ ≥ s− KM
bN/sc

(a)
≥ s− KM

N/s− 1
= 0.275N − t · 0.3793N

≥ 0.0325N >
1

31
· N, (A12)

where (a) holds since bxc ≥ x− 1 for any x ≥ 1. Please note that for all values of M,
the transmission delay

Tcentral ≤ min{K, N}. (A13)

Combining with (A12) and (A13), we have Tcentral
T∗ ≤ 31.
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Appendix C

Appendix C.1. Case αmax = bK
2 c

When αmax = bK
2 c, we have

Ru = Ru-f ,
K

∑
s=2

K(K−1
s−1 )

f (K, s)
ps−1qK−s+1, (A14)

where Ru-f denotes the user’s transmission rate for a flexible D2D network with αmax = bK
2 c.

In the flexible D2D network, at most bK
2 c users are allowed to transmit messages simulta-

neously, in which the user transmission turns to unicast.
Please note that in each term of the summation:

K(K−1
s−1 )

f (K, s)
≤

K(K−1
s−1 )

K− 1− K
s

=
( K

K− 1
+

( K
K−1

)2

s− K
K−1

)
·
(

K− 1
s− 1

)

≤
K(K−1

s−1 )

K− 1
+

2K(K
s )

(K− 1)(K− 2)
, (A15)

where the last inequality holds by s ≥ K
K−1 + K−2

K−1 = 2 and( K
K−1

)2

s− K
K−1

(
K− 1
s− 1

)
=

K2(K−1
s−1 )

(K− 1)(K− 2)
·

K−2
K−1

s− K
K−1

≤
K2(K−1

s−1 )

(K− 1)(K− 2)
·

K−2
K−1 + K

K−1

s− K
K−1 + K

K−1

=
2K

(K− 1)(K− 2)
·
(

K
s

)
.

Therefore, by (A15), Ru-f can be rewritten as

Ru-f ≤
K

K− 1

K

∑
s=2

(
K− 1
s− 1

)
ps−1qK−s+1 +

2K
(K− 1)(K− 2)

K

∑
s=2

(
K
s

)
ps−1qK−s+1

=
Kq

K− 1
·

K−1

∑
i=1

(
K− 1

i

)
piqK−1−i +

2Kq/p
(K− 1)(K− 2)

·
K

∑
s=2

(
K
s

)
psqK−s

=
Kq

K− 1

(
1− qK−1

)
+

2Kq/p
(K− 1)(K− 2)

·
(

1− qK − KpqK−1
)

.
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Appendix C.2. Case αmax = 1

When αmax = 1, the cooperation network degenerates into a shared link where only
one user acts as the server and broadcasts messages to the remaining K− 1 users. A similar
derivation is given in [35]. In this case, Ru can be rewritten as

Ru =
K

∑
s=2

s(K
s )

s− 1
ps−1qK−s+1

≤
K

∑
s=2

(
1 +

3
s + 1

)(K
s

)
ps−1qK−s+1

=
K

∑
s=2

(
K
s

)
ps−1qK−s+1 +

3
K + 1

K

∑
s=2

(
K + 1
s + 1

)
ps−1qK−s+1

=
q
p

(
1− qK − KpqK−1

)
+

3q/p2

K + 1

(
1− qK+1 −

(
K + 1

)
pqK − K(K + 1)

2
p2qK−1

)
=

q
p

(
1− 5

2
KpqK−1 − 4qK +

3(1− qK+1)

(K + 1)p

)
,

where the inequality holds by the fact that s ≥ 2.

Appendix D

Appendix D.1. When αmax = bK
2 c

Recall that pth , 1−
(

1
K+1

) 1
K−1

, which tends to zero as K goes to infinity. We first
introduce the following three lemmas.

Lemma A1. Given arbitrary convex function g1(p) and arbitrary concave function g2(p), if they
intersect at two points with p1 < p2, then g1(p) ≤ g2(p) for all p ∈ [p1, p2].

We omit the proof of Lemma A1 as it is straightforward.

Lemma A2. For memory size 0 ≤ p ≤ 1 and αmax = bK
2 c, we have

Ru ≥ R∅, Tdecentral =
RsRu

Rs + Ru − R∅
, for all p ∈ [pth, 1].

Proof. When αmax = bK
2 c, from Equation (20), we have

Ru =
K

∑
s=2

K(K−1
s−1 )

f (K, s)
ps−1(1− p)K−s+1

≥ K
K

K−1

∑
x=1

(
K− 1

x

)
px(1− p)K−x

= (1− p)
(
1− (1− p)K−1), (A16)

where the first inequality holds by letting x = s− 1 and K
K−1−b K

s c
> K

K−1 . It is easy to show that

(1− p)
(
1− (1− p)K−1) is a concave function of p by verifying ∂2(1−p)(1−(1−p)K−1)

∂p2 ≤ 0.

On the other hand, one can easily show that

R∅ = K(1− p)K
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is a convex function of p by showing ∂2R∅(p)
∂p2 ≥ 0. Since the two functions (1− p)

(
1− (1−

p)K−1) and R∅ intersect at pth = 1−
(

1
K+1

) 1
K−1

and p2 = 1 with pth ≤ p2, from Lemma A1
and (A16), we have

Ru ≥ (1− p)
(
1− (1− p)K−1) ≥ R∅,

for all p ∈ [pth, 1]. From Remark 4, we know that Tdecentral =
RsRu

Rs+Ru−R∅
if Ru ≥ R∅

Lemma A3. For memory size 0 ≤ p ≤ 1 and αmax = bK
2 c, we have

RsRu

Rs + Ru − R∅
≤ 6T∗.

Proof. From (25) and (19), we have

Ru ≤
K

K− 1
·
(

q− qK
)
+

2K
(K− 1)(K− 2)

· q
p

(
1− qK − KpqK−1

)
(a)
≤ K

K− 1
·
(

q− qK
)
+

2K
(K− 1)(K− 2)

· q
p

(
1−

(
1− Kp

)
− KpqK−1

)
=

K(3K− 2)
(K− 1)(K− 2)

·
(

q− qK
)

, (A17)

Rs =
q
p

(
1− qK

) (b)
≤ q

p

(
1−

(
1− Kp

))
= Kq, (A18)

where (a) and (b) both follow from inequality(
1− p

)K ≥
(
1− Kp

)
. (A19)

Then, by Remark 4 and (A17), (A18) and definition of R∅ in (18), if αmax = bK
2 c, then

RsRu

Rs + Ru − R∅
≤

Kq · K(3K−2)
(K−1)(K−2)

(
q− qK)

Kq + K(3K−2)
(K−1)(K−2)

(
q− qK

)
− KqK

=
(

3− 2
K

)
· q. (A20)

From Theorem 1, we have T∗ ≥ 1
2 q. Thus, we obtain

RsRu

Rs + Ru − R∅
· 1

T∗
≤

(
3− 2/K

)
· q

q/2
≤ 6− 4

K
< 6.

Next, we use Lemmas A2 and A3 to prove that when αmax = bK
2 c,

Tdecentral
T∗

≤

max
{

6, 2K
( 2K

2K + 1

)K−1
}

, p < pth,

6, p ≥ pth.

Appendix D.1.1. Case αmax = bK
2 c and p ≥ pth

In this case, from Lemma A2, we have

Tdecentral =
RsRu

Rs + Ru − R∅
.
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Thus, from Lemma A3,

Tdecentral =
RsRu

Rs + Ru − R∅
≤ 6T∗.

Appendix D.1.2. Case αmax = bK
2 c and p ≤ pth

From the definition of Tdecentral in (17), we have

Tdecentral
T∗

= max{R∅
T∗

,
RsRu

Rs + Ru − R∅
· 1

T∗
}. (A21)

From Lemma A3, we know that

RsRu

Rs + Ru − R∅
· 1

T∗
≤ 6, (A22)

and thus only focus on the upper bound of R∅/T∗.
According to Theorem 1, T∗ has the following two lower bounds: T∗ ≥ 1−p

2 , and

T∗ ≥ max
s∈[K]

(
s− KM
bN/sc

)
≥ max

s∈[K]

(
s− KM

N/(2s)

)
.

Let R∗1(p) , 1
2 (1− p) and R∗2(p) , (K− 2K2 p), then we have

T∗ ≥ max{R∗1(p), R∗2(p)}.

Here R∅/R∗1(p) and R∅/R∗2(p) both are monotonic functions of p according to the
following properties:

∂
(

R∅/R∗1(p)
)

∂p
=

∂
(
2K(1− p)K−1)

∂p
≤ 0,

∂
(

R∅/R∗2(p)
)

∂p
=

∂
(
qK/(1− 2Kp)

)
∂p

=
KqK−1(1 + 2(K− 1)p

)
(1− 2Kp)2 ≥ 0.

Additionally, notice that if p = 0, then R∅
R∗2(p) = 1 < R∅

R∗1(p) , and if p = 1, R∅
R∗2(p) >

R∅
R∗1(p) = 1.

Therefore, the maximum value of R∅/ max{R∗1 , R∗2} is chosen at p = 1
2K+1 which satisfying

R∗1(
1

2K+1 ) = R∗2(
1

2K+1 ), implying that

R∅
T∗
≤

R∅(
1

2K+1 )

R∗1(
1

2K+1 )
= 2K

( 2K
2K + 1

)K−1
. (A23)

From (A21)–(A23), we obtain the following equality:

Tdecentral
T∗

≤ max
{

2K
( 2K

2K+1

)K−1
, 6
}

.
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Appendix D.2. When αmax = 1

From Equation (24), we obtain that

Ru ≤
q
p

(
1− 5

2
KpqK−1 − 4qK +

3(1− qK+1)

(K + 1)p

)
≤ q

p

(
1− 5

2
KpqK−1 − 4qK +

3(K + 1)p
(K + 1)p

)
=

q
p

(
4 · (1− qK)− 5

2
KpqK−1

)
≤ q

p
(4 · (1− qK))

= 4Rs, (A24)

where the second inequality holds by (A19) and the last equality holds by the definition
Rs ,

q
p (1− qK) in (19). On the other hand, rewrite the second lower bound of T∗:

T∗ ≥ max
s∈[K]

(
s− sM
bN/sc

) 1
1 + αmax

. (A25)

From the result in [2] (Appendix B), we have

Rs

maxs∈[K]
(
s− sM

bN/sc
) ≤ 12. (A26)

Combining (A24)–(A26), we have

Rs

T∗
≤ 12(1 + αmax),

Ru

T∗
≤ 48(1 + αmax). (A27)

If p ≤ pth, by (A27) and since R∅ ≤ Tdecentral ≤ Rs (see Remark 4), we have

Tdecentral
T∗

≤ Rs

T∗
≤ 12(1 + αmax) = 24, (A28)

the last equality holds by the fact αmax = 1.
If p ≥ pth, from Lemma A2, we have Ru ≥ R∅ and

Tdecentral
T∗

=

RsRu
Rs+Ru−R∅

T∗

≤ min{Ru, Rs}
T∗

≤ min{12(1 + αmax), 48(1 + αmax)}
= 24, (A29)

where the second inequality holds by (A27) and the last equality is from the fact αmax = 1
in this case.
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