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Abstract: In a blind adaptive deconvolution problem, the convolutional noise observed at the
output of the deconvolution process, in addition to the required source signal, is—according to the
literature—assumed to be a Gaussian process when the deconvolution process (the blind adaptive
equalizer) is deep in its convergence state. Namely, when the convolutional noise sequence or,
equivalently, the residual inter-symbol interference (ISI) is considered small. Up to now, no closed-
form approximated expression is given for the residual ISI, where the Gaussian model can be used
to describe the convolutional noise probability density function (pdf). In this paper, we use the
Maximum Entropy density technique, Lagrange’s Integral method, and quasi-moment truncation
technique to obtain an approximated closed-form equation for the residual ISI where the Gaussian
model can be used to approximately describe the convolutional noise pdf. We will show, based on
this approximated closed-form equation for the residual ISI, that the Gaussian model can be used to
approximately describe the convolutional noise pdf just before the equalizer has converged, even at a
residual ISI level where the “eye diagram” is still very closed, namely, where the residual ISI can not
be considered as small.

Keywords: residual ISI; MET; moment truncation technique; Laplace’s integral method; blind
adaptive deconvolution; Lagrange multipliers

1. Introduction

The convolutional noise brought on by a blind adaptive deconvolution or blind adap-
tive equalization system is the subject of this research. In a blind adaptive deconvolution
(blind adaptive equalization) system, all that is available is the output sequence of an
unidentified linear system (channel), and the goal is to recover the input sequence of that
system without the aid of a training sequence [1–7]. Numerous fields, including seismology,
underwater acoustics, image restoration, and digital communication, use blind adaptive
deconvolution systems [7–39]. For a moment, let us think about the scenario of digital
communication, where a source signal gets convolutedly distorted during transmission be-
tween its symbols and the channel impulse response. The recovery process is significantly
hampered by this distortion, known as ISI, which produces detrimental distortions [39].
An adaptive blind equalizer is used to solve the ISI problem. The coefficients of the ideal
blind adaptive equalizer are unknown because the channel coefficients are unknown. In a
blind adaptive deconvolution system, the equalizer’s coefficients are only approximated
values to the optimal ones, resulting in the addition of an error signal to the source signal at
the deconvolution process’s output. This error signal is defined as the convolutional noise
and is closely related to the residual ISI. If the system’s residual ISI level is relatively low
after the blind adaptive equalization, it means that the convolutional noise is considered
very small. Until recently, the Gaussian pdf was frequently used [1,2,6,34,40–43] to approxi-
mate the convolutional noise pdf throughout the iterative deconvolution process. However,
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according to [41], the convolutional noise pdf tends approximately to a Gaussian pdf only
at the end of the iterative deconvolution process when the equalizer has converged to a
relatively low residual ISI (where the convolutional noise is relatively low). The input se-
quence and the convolutional noise sequence are significantly associated in the early stages
of the iterative deconvolution process because the ISI is often high, and the convolutional
noise pdf is more uniform than Gaussian [41,44]. It should be noted that even though the
Gaussian model was utilized for the convolutional noise sequence throughout the entire
deconvolution procedure in [1,2,6,34,40–43], satisfying equalization performances were
obtained. Recently, an attempt was made to approximate the convolutional noise pdf dif-
ferently than with the Gaussian one in order to obtain improved equalization performance.
In [4], the maximum entropy density approximation method [1,2,45,46] and Lagrange
multipliers up to order four were used to approximate the convolutional noise pdf. In [5],
the convolutional noise pdf was approximated with the Edgeworth Expansion series [47,48]
up to order six. In [3], the Generalized Gaussian Density (GGD) [49,50] function and the
Edgeworth Expansion [47,48] were applied to approximate the convolutional noise pdf.
The GGD [49,50] is based on a shape parameter that modifies the pdf, which for shape
parameters equal to one, two, and infinity, respectively, may have a Laplacian, or double
exponential distribution, a Gaussian distribution, or a uniform distribution. Even though
equalization performance was enhanced with these new approximation techniques for the
convolutional noise pdf compared with the Gaussian case, a much higher equalization
performance improvement was expected but not achieved. Thus, it makes us wonder if
maybe the Gaussian model for the convolutional noise pdf is approximately correct even
when the residual ISI is not so small. There is currently no closed-form approximated
expression for the residual ISI where the Gaussian model can be used to describe approx-
imately the convolutional noise pdf. It is well known that the equalizer can converge
at a residual ISI level that might not be very low even high, depending on the applied
step-size parameter used in the equalizer’s coefficients update mechanism. Furthermore,
the equalization performance from the residual ISI point of view depends on the chosen
equalization algorithm, equalizer’s tap length, input signal statistics, channel character-
istics, and step size parameter. Thus, any closed-form approximated expression for the
residual ISI where the convolutional noise pdf can be considered approximately Gaussian,
must be a function of all the abovementioned parameters playing a role in the equalization
performance from the residual ISI point of view. In this study, we address the noiseless and
16 Quadrature Amplitude Modulation (16QAM) situation. We use the Maximum Entropy
density approximation technique [1,2,45,46] with Lagrange multipliers up to order six to
approximate the pdf of the real part of the convolutional noise pdf. Then, we use Laplace’s
integral method [51] and quasi-moment truncation technique [48] in order to obtain an
approximated closed-form expression for the residual ISI for which the pdf of the real part
of the convolutional noise can be approximately considered as Gaussian. This closed-form
approximated expression is a function of the channel power, input sequence statistics,
equalizer’s tap length and properties of the chosen equalizer. It is appropriate for the type
of blind adaptive equalizers where the error that is given into the adaptive mechanism that
updates the equalizer’s taps can be described as a polynomial function of the equalized
output up to order three. It should be pointed out that Godard’s algorithm [52], for example,
belongs to the mentioned type of blind equalizers. Based on this closed-form approximated
expression for the residual ISI, we are able to show via simulation results that the Gaussian
assumption for the convolutional noise pdf can be approximately made just before the
equalizer has converged, even at a residual ISI level where the “eye diagram” is still very
closed, namely, where the residual ISI can not be considered as very small. At that level
of residual ISI, the fourth Lagrange multiplier in the approximated pdf of the real part of
the convolutional noise is approximately zero, while the sixth Lagrange multiplier is very
small and tends approximately to zero. Please note, since we deal with a two-independent
quadrature carrier input case, all the even Lagrange multipliers in the convolutional noise
pdf approximation are zero.
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2. System Description

Figure 1 provides a description of the system under study. Please note that the
described system is recalled from [53,54]. It should be noted here that the described system
in Figure 1 is not unique but is a general description of a system using a blind adaptive
equalizer to recover the input sequence from an unknown linear channel, as is the case
in [52,55,56] and in other works.

Figure 1. System description.

In this paper, we make the following assumptions:

1. The input sequence x[n] is a 16QAM source, which can be expressed as x[n] = x1[n] +
jx2[n] where x1[n] and x2[n] are x[n]’s real and imaginary parts, respectively. 16QAM
is a modulation that uses ± {1,3} levels for in-phase and quadrature components.
E[x[n]] = 0 and E[(·)] denotes the expectation of (·). The real and imaginary parts of
x[n] are independent.

2. The unidentified channel h[n] is a linear time-invariant filter that may not have a
minimum phase and whose transfer function lacks “deep zeros,” or zeros that are
sufficiently removed from the unit circle. The channel’s tap length is R.

3. The filter c[n] is a tap-delay line.
4. The channel noise w[n] is an additive Gaussian white noise.

The sequence x[n] is sent through the channel h[n] where the output sequence from the
channel is corrupted with noise w[n]. The input sequence to the blind adaptive equalizer is
denoted as y[n] and expressed by:

y[n] = x[n] ∗ h[n] + w[n] (1)

where the convolution operation is indicated by the symbol ∗. z[n] is the equalized output
sequence and given by:

z[n] = c[n] ∗ y[n] = x[n] ∗ s[n] + c[n] ∗ w[n] =

x[n] + p[n] + c[n] ∗ w[n]

where

s[n] = h[n] ∗ c[n]; p[n] = x[n] ∗ (s[n]− δ[n])

(2)

where p[n] is the convolutional noise arising for not having the optimal values for the
equalizer’s coefficients. The real and imaginary components of p[n] are denoted in the
following as p1[n] and p2[n], respectively. Since we deal with a two independent quadrature
carrier constellation input, E[xv

1 [n]] = E[xv
2 [n]] and E[pv

1[n]] = E[pv
2[n]] for v = 1, 2, . . . , V.

The ISI expression is used to evaluate the equalizer’s performance:
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ISI = ∑m |sm[n]|2 − |sm[n]|2max
|sm[n]|2max

(3)

where | · | is the value of (·) in absolute terms and |sm[n]|max is the component of s[n] in (2)
with the highest absolute value. For the noiseless case, |sm[n]|2max = 1 and the equalizer
has entered its convergence state, we may write according to [1]:

ISI ' 10log10

(
E[|p[n]|2]
E[|x[n]|2]

)
for |sm[n]|2max = 1 (4)

Since we are dealing with the 16QAM constellation input situation of two independent
quadrature carriers, we may express (4) as:

ISI ' 10log10

(
E[p2

1[n]]
E[x2

1[n]]

)
for |sm[n]|2max = 1 (5)

The equalizer’s update mechanism can be described by:

c[n + 1] = c[n]− µ
∂F[n]
∂z[n]

y∗[n] (6)

where the conjugate operation is ()∗, the step-size parameter is µ, the cost function is F[n],
∂F[n]
∂z[n] is the cost function’s derivation from the equalized output sequence and c[n] is the

equalizer vector where y[n] = [y[n] . . . y[n− N + 1]]T is the input vector. The equalizer’s

tap length is N, and the operator ()T stands for the transpose of the function (). In this
paper, the MMA algorithm [55,56] and Godard’s algorithm [52] are used. The equalizer’s
coefficients are updated according to the MMA algorithm ([55,56]) by:

c[n + 1] = c[n]− µMMA

[
Re[z[n]]

[
|Re[z[n]]|2 − E[|x1[n]|4]

E[|x1[n]|2]

]
+

j[Im[z[n]]]
[
|Im[z[n]]|2 − E[|x2[n]|4]

E[|x2[n]|2]

]]
y∗[n]

(7)

where µMMA ≥ 0, Re[·] and Im[·] are the real and imaginary parts of [·], respectively.
The equalizer’s coefficients are updated according to Godard’s algorithm [52] by:

c[n + 1] = c[n]− µG

|z[n]|2 − E
[
|x[n]|4

]
E
[
|x[n]|2

]
z[n] (8)

where µG ≥ 0. It needs to be stated that according to [57], Godard’s algorithm is one of
the most widely used blind equalization algorithms and has become the workhorse for
blind equalization. According to [57], Godard’s algorithm is carrier phase independent.
Therefore, carrier synchronization is not necessary prior to blind equalization. However, an
arbitrary phase rotation is present in the constellation visible at the equalized output
sequence [57]. As a result, a phase rotator is necessary at the equalizer’s convergence state
in order to spin the constellation back into place [57]. The MMA method ([55,56]) avoids the
necessity for a phase rotator, in accordance with [57], because it employs a separate error-
calculation, i.e., for the real and imaginary parts of the received signal, separately. In this
paper, we assume that ∂F[n]

∂z[n] can be expressed as a polynomial function of the equalized
output namely as:

P[z[n]] =
∂F[n]
∂z[n]

(9)
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Thus, based on (9) and [58], the real part of the polynomial function P[z[n]] of order
up to three can be expressed by:

Re[P[z[n]]] = a1z1[n] + a3z3
1[n] + a12z1[n]z2

2[n] (10)

where the real and imaginary components of the equalized output z[n] are denoted as
z1[n] and z2[n], respectively. Please note that for the 16QAM constellation input case,

a1 = −
E
[
|x[n]|4

]
E
[
|x[n]|2

] , a3 = 1 and a12 = 1 for Godard’s algorithm [52] while for the MMA

algorithm ([55,56]) we have that a1 = −
E
[
|x1[n]|4

]
E
[
|x1[n]|2

] , a3 = 1 and a12 = 0.

3. The Residual ISI That Leads Approximately to a Gaussian pdf for the
Convolutional Noise

In this section, we present a closed-form approximated expression for the residual ISI
as a function of the system’s parameters (step-size parameter, input constellation statistics,
Equalizer’s tap length, channel power and properties of the chosen equalizer via a1, a3
and a12) for which the convolutional noise pdf can be approximately considered as a
Gaussian pdf.

Theorem 1. The residual ISI (ISIres) for which the convolutional noise pdf associated with the blind
adaptive equalization problem is approximately a Gaussian pdf can be expressed for the noiseless
case by:

ISIres ' 10log10mp − 10log10m2; m2 = E[x2
1[n]]; mp = E[p1[n]2] (11)

where mp is the solution of the following equation:

A1m3
p + A2m2

p + A3mp + A4 = 0

where

A1 = 105T
(

3B2a2
12
( 3

T − 1
)
+ B2a2

3

(
135
T − 15

)
+ 6B2a3a12

( 3
T − 1

))
−

30B2
(

a2
3
( 28 350

T − 945
)
− 3a2

12
( 3

T − 1
)( 135

T − 15
)
+ 2a3a12

(
1890

T − 105
))

A2 = 12a12

(
135
T − 15

)
− 30B2

(
6m2a2

12

(
135
T − 15

)
+ 15a2

3m2

(
1890

T − 105
)
−

9m2a2
12
( 3

T − 1
)2

+ 2a1a12

(
135
T − 15

)
+ 2a1a3

(
1890

T − 105
)
+

12a3m2a12

(
135
T − 15

)
+ 2a3m2a12

(
1890

T − 105
))

+

12a3

(
1890

T − 105
)
+ 105T

(
2B
(
a12 − 3a3

( 3
T − 1

))
− 2B2a1a12−

6B2m2a2
12 − 12B2a3m2a12 + 6B2a1a3

( 3
T − 1

)
+

45B2a2
3m2

( 3
T − 1

)
+ 3B2m2a2

12
( 3

T − 1
)
+ 6B2a3m2a12

( 3
T − 1

))
A3 = 2B

(
6a1

(
135
T − 15

)
+ 18a3m2

(
135
T − 15

)
+ 6m2a12

(
135
T − 15

))
−

30B2
(

a2
1

(
135
T − 15

)
+ 15a2

3m4

(
135
T − 15

)
+ m4a2

12

(
135
T − 15

)
+

18m2
2a2

12
( 3

T − 1
)
+ 6a1m2a12

( 3
T − 1

)
+ 6a3m4a12

( 3
T − 1

)
+

12a1a3m2

(
135
T − 15

)
+ 2a1m2a12

(
135
T − 15

)
+ 12a3m2

2a12

(
135
T − 15

))
−

105T
(

B2a2
1 − 2B(a1 + 3a3m2 + m2a12)+

15B2a2
3m4 + B2m4a2

12 + 6B2m2
2a2

12 + 12B2a1a3m2+
4B2a1m2a12 + 2B2a3m4a12 + 12B2a3m2

2a12
)

A4 = −105T
(

B2a2
1m2 + 2m4B2a1a3 + 2B2a1m2

2a12+
m6B2a2

3 + 2m4B2a3m2a12 + m4B2m2a2
12
)
−

30B2(3a2
1m2

( 3
T − 1

)
+ 3a2

3m6
( 3

T − 1
)
+ 6a1a3m4

( 3
T − 1

)
+

6a1m2
2a12

( 3
T − 1

)
+ 3m2m4a2

12
( 3

T − 1
)
+ 6a3m2m4a12

( 3
T − 1

))
where

ml = E[xl
1[n]]; l = 2, 4, 6; B = 2m2µN ∑R−1

k=0 |hk [n]|2 T � 100

(12)
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Proof of Theorem 1. Since we deal with the 16QAM constellation input (a two-independent
quadrature carrier case), we consider in the following only the pdf of the real part of the con-
volutional noise. Please note that the pdf of the imaginary part of the convolutional noise is
approximately equal to the pdf of the real part of the convolutional noise. The pdf of the real
part of the convolutional noise at time indexes n and n + 1, can be approximately expressed
with the help of the Maximum Entropy density approximation technique [1,2,45,46] with
Lagrange multipliers up to order six as:

f (p1[n]) ' exp
(
λ0 + λ2 p2

1[n] + λ4 p4
1[n] + λ6 p6

1[n]
)

f (p1[n + 1]) ' exp
(
λ0 + λ2 p2

1[n + 1] + λ4 p4
1[n + 1] + λ6 p6

1[n + 1]
) (13)

where λ2, λ4 and λ6 are the Lagrange multipliers up to order six. Next, the difference
between the pdf of the real part of the convolutional noise at time index n + 1 with that of
time index n is given by:

∆ f = f (p1[n + 1])− f (p1[n]) =

exp
(
λ0 + λ2 p2

1[n + 1] + λ4 p4
1[n + 1] + λ6 p6

1[n + 1]
)
− exp

(
λ0 + λ2 p2

1[n] + λ4 p4
1[n] + λ6 p6

1[n]
)

= exp
(
λ0 + λ2 p2

1[n] + λ4 p4
1[n] + λ6 p6

1[n]
)(

exp
(
λ2
(

p2
1[n + 1]− p2

1[n]
)
+

λ4(p4
1[n + 1]− p4

1[n]
)
+ λ6(p6

1[n + 1]− p6
1[n])− 1

)
(14)

At the convergence state of the equalizer we may assume that:

∆ f ' 0 (15)

Thus, based on (14) and (15) we may write:

E
[
exp

(
λ2

(
p2

1[n + 1]− p2
1[n]

)
+ λ4

(
p4

1[n + 1]− p4
1[n]

)
+ λ6(p6

1[n + 1]− p6
1[n])

)
− 1
]
' 0 (16)

By using Taylor’s expansion for the exponent [59] (exp(Q) ' 1 + Q) we may write
(16) as:

E
[
exp

(
λ2
(

p2
1[n + 1]− p2

1[n]
)
+ λ4

(
p4

1[n + 1]− p4
1[n]

)
+ λ6(p6

1[n + 1]− p6
1[n])

)
− 1
]
'

E
[
λ2
(

p2
1[n + 1]− p2

1[n]
)
+ λ4

(
p4

1[n + 1]− p4
1[n]

)
+ λ6(p6

1[n + 1]− p6
1[n])

]
' 0

(17)

Based on (17) we have for E
[
(p6

1[n + 1]− p6
1[n])

]
6= 0:

λ6 = −λ2G− λ4F

where

G =
E[p2

1[n+1]−p2
1[n]]

E[(p6
1[n+1]−p6

1[n])]
F =

E[p4
1[n+1]−p4

1[n]]
E[(p6

1[n+1]−p6
1[n])]

(18)

By using (13) and (18) we have:

f (p1[n]) ' exp
(
λ0 + λ2 p2

1[n] + λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]

)
(19)
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In order to find closed-form approximated expressions for λ0, λ2 and λ4 as a function
of the convolutional noise statistics, we use:∫ ∞

−∞ f (p1[n]) = 1∫ ∞
−∞ p2

1[n] f (p1[n])dp1[n] = E
[
p2

1[n]
]

∫ ∞
−∞ p4

1[n] f (p1[n])dp1[n] = E
[
p4

1[n]
] (20)

Now, based on (19) and (20) we can write:∫ ∞
−∞ exp

(
λ0 + λ2 p2

1[n] + λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]

)
dp1[n] ' 1∫ ∞

−∞ p2
1[n] exp

(
λ0 + λ2 p2

1[n] + λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]

)
dp1[n] ' E

[
p2

1[n]
]

∫ ∞
−∞ p4

1[n] exp
(
λ0 + λ2 p2

1[n] + λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]

)
dp1[n] ' E

[
p4

1[n]
] (21)

The first integral in (21) can be written as:

exp(λ0)
∫ ∞
−∞ exp(λ4 p4

1[n]− λ2Gp6
1[n]− λ4Fp6

1[n]) exp
(
λ2
(

p2
1[n]

))
dp1[n] =

exp(λ0)
∫ ∞
−∞ g1(p1[n]) exp(−Ψ(p1[n])

γ )dp1[n]

where

g1(p1[n]) = exp(λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n])

Ψ(p1[n]) = p2
1[n] γ = − 1

λ2

(22)

According to the Laplace’s integral method [51], we can solve the integral in (22) by:∫ ∞
−∞ g1(p1[n]) exp(−Ψ(p1[n])

γ )dp1[n] '

exp
(
−Ψ(p0)

γ

)√
2πγ

Ψ′′(p0)

(
g1(p0) +

g′′1 (p0)
2

γ
Ψ′′(p0)

+
g′′′′1 (p0)

8

(
γ

Ψ′′(p0)

)2
+

gVI
1 (p0)

48

(
γ

Ψ′′(p0)

)3
+

gVII I
1 (p0)

384

(
γ

Ψ′′(p0)

)4
+

gX
1 (p0)
3840

(
γ

Ψ′′(p0)

)5
+ O

(
γ6

(Ψ′′(p0))
6

)) (23)

where ()′′, ()′′′′, ()VI , ()VII I and ()X denote the second, fourth, sixth, eighth and tenth
derivative of (), respectively. O(v) is defined as limv→0O(v)/v = rconst and rconst is a
constant. The function Ψ′′(p0) and (p0) are obtained via:

Ψ′(p1[n]) = 2p1[n] =⇒ Ψ′′(p1[n]) = 2

Ψ′(p1[n]) = 2p1[n] =⇒ Ψ′(p0) = 2p0 = 0 =⇒ p0 = 0
(24)

while:

g1(p0) = 1; g′′1 (p0) = 0; g′′′′1 (p0) = 24λ4; gVI
1 (p0) = −720(Fλ4 + Gλ2) (25)
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Based on (23)–(25), we may write (22) as:

exp(λ0)
∫ ∞
−∞ exp(λ4 p4

1[n]− λ2Gp6
1[n]− λ4Fp6

1[n]) exp
(
λ2
(

p2
1[n]

))
dp1[n] '

exp(λ0)

√
−2π 1

λ2
2

(
1 + 24λ4

8

(
− 1

λ2
2

)2

− 720 Fλ4+Gλ2
48

(
− 1

λ2
2

)3
)
'

exp(λ0)
√
−π
λ2

(
1 + 3λ4

4λ2
2
+ 15(Fλ4+Gλ2)

8λ3
2

)
(26)

Based on (21) and (26) we have:

exp(−λ0) '
√
−π

λ2

(
1 +

3λ4

4λ2
2
+

15(Fλ4 + Gλ2)

8λ3
2

)
(27)

Next, we turn to calculate the second integral in (21), which can be expressed as:

exp(λ0)
∫ ∞
−∞ p2

1[n] exp(λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]) exp

(
λ2
(

p2
1[n]

))
dp1[n] =

exp(λ0)
∫ ∞
−∞ g2(p1[n]) exp(−Ψ(p1[n])

γ )dp1[n]

where

g2(p1[n]) = p2
1[n] exp(λ4 p4

1[n]− λ2Gp6
1[n]− λ4Fp6

1[n])

(28)

According to Laplace’s integral method [51], we can write (28) as:∫ ∞
−∞ g2(p1[n]) exp(−Ψ(p1[n])

γ )dp1[n] '

exp
(
−Ψ(p0)

γ

)√
2πγ

Ψ′′(p0)

(
g2(p0) +

g′′2 (p0)
2

γ
Ψ′′(p0)

+
g′′′′2 (p0)

8

(
γ

Ψ′′(p0)

)2
+

gVI
2 (p0)

48

(
γ

Ψ′′(p0)

)3
+

gVII I
2 (p0)

384

(
γ

Ψ′′(p0)

)4
+ O

(
γ5

(Ψ′′(p0))
5

)) (29)

where:
g2(p0) = 0; g′′2 (p0) = 2; g′′′′2 (p0) = 0

gVI
2 (p0) = 720λ4; gVII I

2 (p0) = −40320Fλ4 − 40320Gλ2

(30)

Based on (21), (29) and (30) we may write (28) as:

exp(λ0)
∫ ∞
−∞ p2

1[n] exp(λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]) exp

(
λ2
(

p2
1[n]

))
dp1[n] '

exp(λ0)
√
−π
λ2

(
− 1

2λ2
− 15λ4

1
8λ3

2
− (105Fλ4 + 105Gλ2)

1
16λ4

2

)
' mp

(31)
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Based on (27) and (31) we have:√
−π
λ2

(
− 1

2λ2
− 15λ4

1
8λ3

2
− (105Fλ4 + 105Gλ2)

1
16λ4

2

)
'

mp exp(−λ0) ' mp

√
−π
λ2

(
1 + 3λ4

4λ2
2
+ 15(Fλ4+Gλ2)

8λ3
2

)
⇓

λ4 '

(
− 1

2λ2
−105Gλ2

1
16λ4

2

)
−mp

(
1+ 15Gλ2

8λ3
2

)
15

8λ3
2
+ 105F

16λ4
2
+mp

(
3

4λ2
2
+ 15F

8λ3
2

)

(32)

Next, we turn to calculate the third integral in (21), which can be expressed as:

exp(λ0)
∫ ∞
−∞ p4

1[n] exp(λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]) exp

(
λ2
(

p2
1[n]

))
dp1[n] =

exp(λ0)
∫ ∞
−∞ g3(p1[n]) exp(−Ψ(p1[n])

γ )dp1[n]

where

g3(p1[n]) = p4
1[n] exp(λ4 p4

1[n]− λ2Gp6
1[n]− λ4Fp6

1[n])

(33)

According to Laplace’s integral method [51], we can write (33) as:∫ ∞
−∞ g3(p1[n]) exp(−Ψ(p1[n])

γ )dp1[n] '

exp
(
−Ψ(p0)

γ

)√
2πγ

Ψ′′(p0)

(
g3(p0) +

g′′3 (p0)
2

γ
Ψ′′(p0)

+
g′′′′3 (p0)

8

(
γ

Ψ′′(p0)

)2
+

gVI
3 (p0)

48

(
γ

Ψ′′(p0)

)3
+

gVII I
3 (p0)

384

(
γ

Ψ′′(p0)

)4
+

gX
3 (p0)
3840

(
γ

Ψ′′(p0)

)5
+ O

(
γ6

(Ψ′′(p0))
6

)) (34)

where:

g3(p0) = 0; g′′3 (p0) = 0; g′′′′3 (p0) = 24

gVI
3 (p0) = 0; gVII I

3 (p0) = 40320λ4; gX
3 (p0) = −3628800Fλ4 − 3628800Gλ2

(35)

Based on (21), (34) and (35) we can write (33) as:

exp(λ0)
∫ ∞
−∞ p4

1[n] exp(λ4 p4
1[n]− λ2Gp6

1[n]− λ4Fp6
1[n]) exp

(
λ2
(

p2
1[n]

))
dp1[n] '

exp(λ0)
√
−π
λ2

(
3
(

1
4λ2

2

)
+ 105λ4

(
1

16λ4
2

)
− 945(Fλ4 + Gλ2)

(
1

32λ5
2

))
= E

[
p4

1[n]
] (36)
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Based on (27) and (36) we may write:√
−π
λ2

(
3
(

1
4λ2

2

)
+ 105λ4

(
1

16λ4
2

)
− 945(Fλ4 + Gλ2)

(
1

32λ5
2

))
'

√
−π
λ2

(
1 + 3λ4

4λ2
2
+ 15(Fλ4+Gλ2)

8λ3
2

)
E
[
p4

1[n]
]

⇓

λ4 '

(
1+ 15G

8λ2
2

)
E[p4

1[n]]−
3

4λ2
2
+945G

(
1

32λ4
2

)
105

16λ4
2
−945F 1

32λ5
2
− 3

4λ2
2
− 15F

8λ3
2

(37)

However, we already received λ4 in (32). Thus, the expression for λ4 in (37) and that
obtained in (32) should be approximately the same. Thus, we may write:

(
− 1

2λ2
−105Gλ2

1
16λ4

2

)
−mp

(
1+ 15Gλ2

8λ3
2

)
15

8λ3
2
+ 105F

16λ4
2
+mp

(
3

4λ2
2
+ 15F

8λ3
2

) '

(
1+ 15G

8λ2
2

)
E[p4

1[n]]−
3

4λ2
2
+945G

(
1

32λ4
2

)
105

16λ4
2
−945F 1

32λ5
2
− 3

4λ2
2
− 15F

8λ3
2

(38)

Now, for 8λ2
2

105 � G we may write (38) as:

− 1
2λ2
−mp

15
8λ3

2
+ 105F

16λ4
2
+mp

(
3

4λ2
2
+ 15F

8λ3
2

) ' E[p4
1[n]]−

3
4λ2

2
+945G

(
1

32λ4
2

)
105

16λ4
2
−945F 1

32λ5
2
− 3

4λ2
2
− 15F

8λ3
2

(39)

Next, let us write G ' 8λ2
2

105T where T is very large positive value and use it in (39):

− 1
2λ2
−mp

15
8λ3

2
+ 105F

16λ4
2
+mp

(
3

4λ2
2
+ 15F

8λ3
2

) ' E[p4
1[n]]−

3
4λ2

2
+ 9

4λ2
2T

105
16λ4

2
−945F 1

32λ5
2
− 3

4λ2
2
− 15F

8λ3
2

(40)

A possible solution for the left side of (40) being equal to its right side is when:

− 1
2λ2
' mp; E

[
p4

1[n]
]
− 3

4λ2
2
+ 9

4λ2
2T
' 0

⇓

mp ' − 1
2λ2

⇒ E
[
p4

1[n]
]
' 3m2

p
(
1− 3

T
)

(41)
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Please note that when (41) holds it means that λ4 ' 0. In addition, for T → ∞,

E
[
p4

1[n]
]
→ 3m2

p, which holds in the Gaussian case. Next, by using (18), G ' 8λ2
2

105T and (41)
we may write:

E[p2[n+1]−p2[n]]
E[(p6[n+1]−p6[n])] '

8λ2
2

105T '
8
(
− 1

2mp

)2

105T ' 2
105m2

pT

⇓

λ6 = −λ2
E[p2

1[n+1]−p2
1[n]]

E[(p6
1[n+1]−p6

1[n])]
− λ4

E[p4
1[n+1]−p4

1[n]]
E[(p6

1[n+1]−p6
1[n])]

'

−λ2
E[p2

1[n+1]−p2
1[n]]

E[(p6
1[n+1]−p6

1[n])]
' 1

105m3
pT

(42)

By using (27), G ' 8λ2
2

105T , (41) and (42) we may write f (p1[n]) in (13) as:

f (p1[n]) ' exp
(
λ0 + λ2 p2

1[n] + λ4 p4
1[n] + λ6 p6

1[n]
)
'

1√
2πmp(1+ 1

7T )
exp

(
− 1

2mp
p2

1[n] +
1

105m3
pT

p6
1[n]

) (43)

Please note that for mp 6= 0 and T → ∞, the convolutional noise pdf given in (43)
tends to the Gaussian one. However, this does not tell us for which residual ISI this occurs.
Thus, we turn to the expression of G ' 8λ2

2
105T and ask ourselves what is the residual ISI

or mp for which G ' 8λ2
2

105T holds. In order to do this, we first have to obtain closed-form
expressions for E

[
p2[n + 1]− p2[n]

]
and E

[
p6[n + 1]− p6[n]

]
. According to [58], we have:

∆g̃i =
∂g̃i

∂p1[n]
∆p1 +

1
2

∂2 g̃i
∂2 p1[n]

(∆p1)
2 + O(∆p1)

3; i = 1, 2;

where

∆g̃i = g̃i[n + 1]− g̃i[n]; ∆p1 = −Re
[
µP[z[n]]∑m=R−1

m=0 y[n−m]y∗[n−m]
] (44)

where P[z[n]] and Re[P[z[n]]] are given in (9) and (10) respectively. Thus, based on (44)
we have:

g̃1[n] = p2
1[n] ⇒ E

[
p2

1[n + 1]− p2
1[n]

]
' 2E[p1[n]∆p1] + E

[
(∆p1)

2
]

g̃2[n] = p6
1[n] ⇒ E

[
p6

1[n + 1]− p6
1[n]

]
' 6E

[
p5

1[n]∆p1
]
+ 15E

[
p4

1[n](∆p1)
2
] (45)

In the following, we assume that E
[
(∑m=R−1

m=0 y[n−m]y∗[n−m])2
]
' B2, as was

done in [58]. Please note that in [58], the expression for E
[
p2

1[n + 1]− p2
1[n]

]
was already

derived. However, in [58], the Gaussian case was assumed, while here, we do not use this
assumption. Therefore, in our case, all the higher moments (higher than four) associated
with the real part of the convolutional noise have to be obtained differently than in [58].
In addition, the obtained expression for E

[
p2

1[n + 1]− p2
1[n]

]
in [58] was set to zero to find

the residual ISI applicable in the convergence state, while in our case it is not set to zero.
In order to carry out the calculations of E

[
p2

1[n + 1]− p2
1[n]

]
and E

[
p6

1[n + 1]− p6
1[n]

]
, we

need the moments up to order ten of the real part of the convolutional noise. Since we can
not use the Gaussian assumption but have on hand the fourth moment of the real part of
the convolutional noise (41), thus we only need to find a technique that supplies us with
all the higher order moments (higher than four) of the real part of the convolutional noise.
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The quasi moment truncation technique is related to the Hermite polynomials where the
high-order central moments are approximated in terms of lower order central moments [48].
Thus, according to the quasi moment truncation technique [48] and with the help of (41)
we have:

E
[
p6

1
]
' 15mpE

[
p4

1
]
− 30m3

p =
(

15− 135
T

)
m3

p

E
[
p8

1
]
' 28mpE

[
p6

1
]
− 210m2

pE
[
p4

1
]
+ 315m4

p =
(

105− 1890
T

)
m4

p

E
[
p10

1
]
' 45mpE

[
p8

1
]
− 630m2

pE
[
p6

1
]
+ 3150m3

pE
[
p4

1
]
− 3780m5

p =
(
945− 28 350

T
)
m5

p

(46)

Next, by using (41), (44)–(46), we may write:

E
[
p2

1[n + 1]− p2
1[n]

]
'
(
−3B2a2

12
( 3

T − 1
)
− B2a2

3

(
135
T − 15

)
−

6B2a3a12
( 3

T − 1
))

m3
p +

(
2B2a1a12 − 2B

(
a12 − 3a3

( 3
T − 1

))
+

6B2m2a2
12 + 12B2a3m2a12 − 6B2a1a3

( 3
T − 1

)
− 45B2a2

3m2
( 3

T − 1
)
−

3B2m2a2
12
( 3

T − 1
)
− 6B2a3m2a12

( 3
T − 1

))
m2

p+(
B2a2

1 − 2B(a1 + 3a3m2 + m2a12) + 15B2a2
3m4 + B2m4a2

12 + 6B2m2
2a2

12+

12B2a1a3m2 + 4B2a1m2a12 + 2B2a3m4a12 + 12B2a3m2
2a12

)
mp+(

B2a2
1m2 + 2m4B2a1a3 + 2B2a1m2

2a12 + m6B2a2
3+

2m4B2a3m2a12 + m4B2m2a2
12
)

(47)

and:

E
[
p6

1[n + 1]− p6
1[n]

]
'
(
−15B2

(
a2

3

(
28 350

T − 945
)
− 3a2

12

(
3
T − 1

)(
135
T − 15

)
+

2a3a12

(
1890

T − 105
)))

m5
p +

(
6a12

(
135
T − 15

)
−

15B2
(

6m2a2
12

(
135
T − 15

)
+ 15a2

3m2

(
1890

T − 105
)
− 9m2a2

12

(
3
T − 1

)2
+

2a1a12

(
135
T − 15

)
+ 2a1a3

(
1890

T − 105
)
+ 12a3m2a12

(
135
T − 15

)
+

2a3m2a12

(
1890

T − 105
))

+ 6a3

(
1890

T − 105
))

m4
p+(

B
(

6a1

(
135
T − 15

)
+ 18a3m2

(
135
T − 15

)
+ 6m2a12

(
135
T − 15

))
−

15B2
(

a2
1

(
135
T − 15

)
+ 15a2

3m4

(
135
T − 15

)
+ m4a2

12

(
135
T − 15

)
+

18m2
2a2

12

(
3
T − 1

)
+ 6a1m2a12

(
3
T − 1

)
+ 6a3m4a12

(
3
T − 1

)
+ 12a1a3m2

(
135
T − 15

)
+

2a1m2a12

(
135
T − 15

)
+ 12a3m2

2a12

(
135
T − 15

)))
m3

p+(
−15B2

(
3a2

1m2

(
3
T − 1

)
+ 3a2

3m6

(
3
T − 1

)
+ 6a1a3m4

(
3
T − 1

)
+

6a1m2
2a12

(
3
T − 1

)
+ 3m2m4a2

12

(
3
T − 1

)
+ 6a3m2m4a12

(
3
T − 1

)))
m2

p

(48)
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Based on (42) we may write:

2
(

E
[
(p6[n + 1]− p6[n])

])
−
(

E
[

p2[n + 1]− p2[n]
])

105m2
pT ' 0 (49)

Next, by substituting (47) and (48) into (49) and dividing both sides of the obtained
equation by m2

p for mp 6= 0, we obtain (12). By substituting the solution for mp obtained
in (12) into (5), together with E[x2

1[n]], (11) is obtained.

4. Simulation

In the previous section we derived a closed-form approximated expression for the
residual ISI (11) as a function of the system’s parameter (step-size parameter, input con-
stellation statistics, equalizer’s tap length, channel power and properties of the chosen
equalizer via a1, a3 and a12) for which the pdf of the real part of the convolutional noise can
be approximately considered as a Gaussian pdf. In this section we wish to calculate the
residual ISI (11) and see if the obtained level for the residual ISI (11) is above the −16 [dB]
where the “eye diagram” is still closed. Specifically, when decisions on the equalized output
sequence cannot be made with confidence. In the following, we use the channel proposed
by [7]: hn =

{
0 for n < 0; −0.4 for n = 0; 0.84 · 0.4n−1 for n > 0

}
.

Figure 2 describes the averaged ISI and equalized output constellation obtained for
Godard’s algorithm [52], where decisions on the equalized output sequence can be made
rather reliably. Figure 3 describes the comparison between the simulated ISI with Godard’s
algorithm [52] and with those calculated via the expression for the residual ISI given
in (11) for two different values for T and using the values for a1, a12 and a3 associated
with Godard’s algorithm [52]. According to Figure 3, the simulated ISI is above the
−16 [dB] where decisions on the equalized output sequence cannot be made in a reliable
manner as it can be clearly seen from Figure 4. According to Figure 3, the calculated
residual ISI (11) for both cases (T = 500 and T = 1000) is above the obtained level for the
simulated ISI. Thus, we have shown here via simulation that the Gaussian assumption
for the convolutional noise pdf can be approximately made just before the equalizer has
converged, even at a residual ISI level where no trustworthy judgements can be made. Next,
we apply the MMA algorithm [55,56] for the blind adaptive equalization task. Figure 5
describes the comparison between the simulated ISI with the MMA algorithm [55,56]
and with those calculated via the expression for the residual ISI given in (11) for two
different values for T and using the values for a1, a12 and a3 associated with the MMA
algorithm [55,56]. According to Figure 5, the simulated ISI is above the −16 [dB] where
decisions on the equalized output sequence cannot be made in a reliable manner as it can
be clearly seen from Figure 6. According to Figure 5, the calculated residual ISI (11) for
both cases (T = 500 and T = 1000) is above the obtained level for the simulated ISI. Thus,
also here, we see via simulation that the Gaussian assumption for the convolutional noise
pdf can be approximately made just before the equalizer has converged even at a residual
ISI level where no reliable decisions can be carried out. Please note that we used T = 500
and T = 1000 since according to (12) the value for T should be T � 100.
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Figure 2. Right side plot: Simulated ISI with Godard’s algorithm for the 16QAM constellation input.
For the noiseless case, 100 Monte Carlo runs produced the averaged results. The equalizer’s and
channel’s tap length were set to 13 (N = R = 13), µ = 0.0001. Left side plot: Equalized output
constellation with Godard’s algorithm for N = R = 13 and µ = 0.0001.
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Figure 3. Simulated ISI with Godard’s algorithm for the 16QAM constellation input. For the noiseless
case, 100 Monte Carlo runs produced the averaged results. The averaged results were compared with
the calculated residual ISI given in (11) for N = R = 13, µ = 0.00022 and two cases for T.
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Figure 4. Equalized output constellation with Godard’s algorithm for N = R = 13 and µ = 0.00022.
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Figure 5. Simulated ISI with the MMA algorithm for the 16QAM constellation input. For the noiseless
case, 100 Monte Carlo runs produced the averaged results. The averaged results were compared with
the calculated residual ISI given in (11) for N = R = 13, µ = 0.000365 and two cases for T.
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Figure 6. Equalized output constellation with the MMA algorithm for N = R = 13 and µ = 0.000365.

5. Discussion

In this study, a closed-form approximated expression was established for the residual
ISI (11) for which the real part of the convolutional noise’s pdf can be approximately
regarded as Gaussian. In the previous section, we have shown via simulation that the
Gaussian assumption for the real part of the convolutional noise’s pdf can be approximately
made just before the equalizer has converged even at a residual ISI level where no reliable
decisions can be made unlike it was believed in the literature [41]. Thus, this may be the
reason for achieving satisfactory equalization results from an ISI and acquisition perspective
from those blind adaptive equalizer’s ([1,2,6,34,40–43]) based on the Gaussian assumption
throughout the entire deconvolution procedure for the convolutional noise pdf.

Let us go back for a moment to the obtained expression for the pdf associated with the
real part of the convolutional noise given in (43). As it was already stated, for mp 6= 0 and

T → ∞, the convolutional noise pdf given in (43) tends to the Gaussian one. Since G ' 8λ2
2

105T ,
it means that G ' 0 for T → ∞. Now, based on (18), G ' 0 for E

[
p2

1[n + 1]− p2
1[n]

]
' 0.

In [58], the expression for E
[
p2

1[n + 1]− p2
1[n]

]
was obtained for the Gaussian case and set

to zero to find the residual ISI applicable in the convergence state for the noiseless case.
Thus, for T → ∞, the obtained expression for the residual ISI (11) for which the real part of
the convolutional noise’s pdf can be approximately regarded as Gaussian is approximately
the obtained expression for the residual ISI applicable in the convergence state given in [58].
This may be the reason why having very satisfying results in [58] for the 16QAM case,
even for residual ISI levels above −16 [dB]. Although we considered in this paper only
the 16QAM constellation input, the expression for the residual ISI given in (11) holds also
for the real valued input case and for any other input constellation that belongs to the
two-independent quadrature carrier case as the 64QAM and 256QAM inputs. Although
we used only one channel for the simulation task, the expression for the residual ISI given
in (11) holds also for any channel that complies with assumption two from the system
description section. As was already pointed out, for T → ∞, the obtained expression
for the residual ISI (11) for which the real part of the convolutional noise’s pdf can be
approximately regarded as Gaussian is approximately the obtained expression for the
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residual ISI applicable in the convergence state given in [58]. Eight different channels and
three different input sources (16QAM, 64QAM and 4QAM) were considered in [58] for the
simulation task. According to [58], very satisfying simulation results were obtained. Thus,
in this paper, there was no need to take more channels and different input sources than the
16QAM for the simulation task.
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