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Abstract: In this work, we address the question of the role of the influence of group size on the emer-
gence of various collective social phenomena, such as consensus, polarization and social hysteresis.
To answer this question, we study the three-state noisy q-voter model with bounded confidence,
in which agents can be in one of three states: two extremes (leftist and rightist) and centrist. We
study the model on a complete graph within the mean-field approach and show that, depending on
the size q of the influence group, saddle-node bifurcation cascades of different length appear and
different collective phenomena are possible. In particular, for all values of q > 1, social hysteresis is
observed. Furthermore, for small values of q ∈ (1, 4), disagreement, polarization and domination of
centrists (a consensus understood as the general agreement, not unanimity) can be achieved but not
the domination of extremists. The latter is possible only for larger groups of influence. Finally, by
comparing our model to others, we discuss how a small change in the rules at the microscopic level
can dramatically change the macroscopic behavior of the model.

Keywords: agent-based model; opinion dynamics; bounded confidence; voter model; consensus;
polarization; hysteresis; tipping point; bifurcation

1. Introduction

Over the past decade, there has been a significant increase in the number of articles
devoted to the dynamics of opinion. According to the Scopus data base, the total number of
papers in which the phrase “opinion dynamics” appears in the title, abstract or keywords
is approaching 2000, of which as many as 250 were published last year! Among all
these 2000 articles, 24.7% have been published in the area of computer science, 24.1% in
mathematics, 13.5% in physics, 5.1% in social science, 3.4% in decision science and the rest
in other subject areas. Of course, not all papers on opinion dynamics include the phrase
“opinion dynamics” in the title/summary/keywords; therefore, the numbers we provided
are certainly undercounted.

However, they show that this is an area that is attracting increasing attention from
researchers in a variety of disciplines. The popularity of the topic is also demonstrated by
the number of recent review articles on opinion dynamics [1–7]. Most opinion models can
be classified into one of two main families: continuous or discrete opinion models [2–5]. The
second family is dominated by models with binary opinions; however, some multi-state mod-
els have also been proposed [8–24]. Those with three opinions [9,10,12,14,16,17,21,22,25–32],
often interpreted as leftists, centrists and rightists, are particularly relevant in the context of
this work.

The one we propose and study here is the modification of the recently introduced
multi-state noisy q-voter model (qVM) [24]. The modification involves the introduction
of a bounded confidence rule (BC), which was originally introduced within continuous
opinion models [1,33–35].
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In the framework of discrete models, this rule typically involves prohibiting interac-
tions between agents whose opinions differ by more than one [8–10,14,36]. This means, for
example, that leftists and rightists do not interact [10]. Recently, the BC rule has also been
extended to other types of social response, such as independence, which means that no
change in the state of an agent can be greater than one during a single update [36]. We
will not use this extended definition of BC here for reasons that will be discussed in the
last section of this paper. This means that, within our model, BC applies exclusively to the
interactions between agents and independence plays the role of pure noise, as in the noisy
multi-state qVM without BC [24].

One might have doubts: if there are so many different models, why introduce yet
another one? The answer lies in a characteristic feature of the q-voter model, which allows
determination of the role of the size of the influence group on the evolution and stationary
states of the system. Here, another question arises: why is it important to examine the role
of group size? This is because a number of empirical studies showed that the group size
makes a difference in many aspects [37–41].

For example, it was shown that conformity increases with the size of the group of
influence, however, only to the certain threshold of four to five people [37]. Moreover, it
was shown that the average conversation group size is around three [40], and groups
containing three to six members were significantly more productive and creative than
larger groups [38]. Here, we ask the question whether the size of the influence group can
influence the emergence of polarization, consensus or another type of behavior. To our
knowledge, such a question has not yet been asked.

The special feature of the qVM, mentioned above, is that the size of the influence
group q is a parameter of the model and is not equivalent to the total number of friends
(neighbors) of a given agent [42]. The logic behind qVM is the following: even if an agent
has many friends, at a given moment, it interacts only with a few of them. We show that
a variety of collective social phenomena can be observed depending on the size of the
influence group q, which could not be observed within the three-state qVM without BC [24]
or within the three-state qVM with an extended definition of BC [36].

In particular, we show that, for small values of q, polarization, as well as consensus
on moderate opinion or disagreement, can be achieved; however, extremism never wins.
On the other hand, for larger groups of influence and low independence, consensus on
extreme opinion can be achieved. In contrast, in [24,36], polarization cannot be observed
for any value of the model parameters. In this work, we use the term consensus as defined
by Webster’s or Oxford dictionary, which define it as a general agreement and distinguish
it from unanimity.

In fact, consensus, understood as unanimity, is almost impossible to achieve in real-life
large social groups. It only appears in theoretical models in the absence of noise. In the
presence of noise, only strong dominance of one opinion is possible [24,43], which basically
agrees with the actual definition of consensus. Therefore, in the rest of the paper, we use
the words consensus and dominance of one opinion interchangeably.

Summarizing, the purpose of this work is twofold:

1. Socially motivated: to determine the role of the size of the influence group on the
emerging social behavior (consensus, polarization, hysteresis, etc.).

2. Theoretically motivated: to evaluate the impact of a small change introduced to the
model at the microscopic level on its performance at the macroscopic level, since the
results for this model without BC [24] and with an extended definition of BC [36] are
already known.

The remainder of this paper is structured as follows. In Section 2, we introduce
the model and describe an algorithm for an elementary update. In Section 3, we derive,
within the mean-field approach (MFA), the set of differential equations that describe the
temporal evolution of the system. Moreover, using the symmetry between extreme states,
we analytically calculate the stationary behavior of the system. We present the results
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in Section 4, which is divided into three subsections. In Section 4.1, we present sample
trajectories obtained numerically within the MFA equations.

Then, in Section 4.2, we analyze the model more systematically and present the
influence of the model parameters on the stationary states. Finally, in Section 4.3 we present
phase portraits that help to identify the role of initial conditions and to understand more
deeply the rich behavior displayed by the model. We conclude the paper with a discussion
of the obtained results in the context of other similar models. This allows us to show how
a small change in rules at the microscopic level can dramatically change the macroscopic
behavior of the model.

2. Model

We consider a society of N agents placed at the nodes of an arbitrary, undirected,
social network of size N. This means that all nodes are occupied and are equivalent to
agents. Therefore, we use here the terms node and agent interchangeably. Each node
i ∈ {1, . . . , N} has a set of ki neighbors—that is, the set of nodes directly linked to node
i. We assume that the agents do not belong to their own neighborhood, following other
versions of qVM [42,44]. Furthermore, as in most previous papers on qVM, we use a
random sequential update scheme. This means that, in an elementary time step ∆t, we
update the state of a single agent (target), which is chosen at random. A time unit that
corresponds to the single Monte Carlo step consists, as usual, of N elementary updates—
that is, N∆t = 1. This update scheme mimics continuous time t for large systems, since
∆t = 1/N → 0 for N → ∞.

Unlike most versions of the qVM, which, as reviewed in [2], describe binary opinions,
here an agent can be in one of three alternative states Si(t) ∈ {1, 2, 3}. To our knowledge,
such non-binary versions of the qVM have been considered so far only in [24,36]. As in
many other articles on qVM [3,43–51], the state of an agent changes over time under the
influence of one of two social responses with complementary probabilities: independence
with probability p or conformity with probability 1− p. This type of qVM is known as
a noisy qVM [24,46,47,50] or a qVM with independence [43–45,48,49]. The novelty with
respect to the multi-state model proposed in [24] is the introduction of bounded confidence
(BC). Previously, the unanimity of the influence group of q agents was sufficient to induce
conformity. Here, we additionally require that the opinion of the unanimous influence
group differs by no more than one level from the opinion Si(t) of a target, which means
that agents with opinions 1 and 3 do not interact. As a result, a single update at time t is
defined as follows:

1. Choose a target agent i ∼ U{1, N}, where U{1, N} is a discrete uniform distribution
in the interval [1, N],

2. Choose r ∼ U (0, 1), where U (0, 1) is a continuous uniform distribution in the interval
(0, 1), to determine the type of social response,

3. If r < p then independence: Si(t + ∆t) := 1, 2 or 3 with equal probabilities 1/3,
4. Otherwise conformity:

(a) Select at random without repetition q agents from ki neighbors of the target
agent—they form the source of influence, called also the q-panel, and are
indexed by j = 1, . . . , q.

(b) If the q-panel is unanimous, i.e., ∀j=1,...,qSj(t) = S ∈ {1, 2, 3} and the BC
requirement is fulfilled, then Si(t + ∆t) = S.

3. Mean-Field Approach

The model described above can be considered on the top of any undirected graph;
however, here, we focus exclusively on the complete graph (CG) for two reasons:

1. For the CG we are able to obtain exact analytical results within MFA.
2. To understand the role of BC in three-state qVM, we need to use the same structure as

in [24], in which three-state qVM without BC was considered—that is, CG.
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We realize that the structure of the complete graph is realistic only in some real-life
cases, such as relatively small social groups. However, we would like to clarify what we
mean when we write relatively small, in the context of the qVM. Note that in the qVM,
only q neighbors influence the agent at one time, no matter how large the neighborhood is.
To visualize what this means, let us take the following example. In Warsaw, the capital of
Poland, which is our home country, there are over 2× 105 students.

A conversation between any q of Warsaw students along the Vistula River, in one of the
libraries, at the student party, etc. is possible even if they have never met before. Someone
might have the objection that 105 is not yet infinity, which is used within MFA. This is
definitely true; however, it has been shown in several papers that the results on the complete
graphs of size N = 105 agree perfectly with the MFA results [24,36,43]. Nevertheless, in the
future we also plan to check what is the role of the network structure in such a model and
then other structures will be also used.

As usual, we start by writing down the transition probabilities: the probabilities that
the state of the system changes from one state to another during the elementary update of
duration ∆t. For the CG, the state of the system is fully described by the concentration of
agents with opinion k [2,44]:

ck =
Nk
N

, (1)

where Nk is the number of agents in the state k ∈ {1, 2, 3}. As we use random sequential
updates, ck can change only by ±1/N in a single update of duration ∆t = 1/N. We use the
following notation:

γ+
k = Pr

(
ck(t + ∆t) = ck(t) +

1
N

)
,

γ−k = Pr
(

ck(t + ∆t) = ck(t)−
1
N

)
. (2)

We can now write down the time evolution of the expected value ck. For N → ∞, we can
safely assume that the random variable ck converges to its expected value, and thus [2,44]:

ck(t + ∆t) = ck(t) +
γ+

k − γ−k
N

. (3)

As we assumed that ∆t = 1/N and N → ∞, and we obtain:

dck(t)
dt

= γ+
k − γ−k . (4)

The state of a system can change due to one of two processes: independence or conformity.
Therefore, let us decompose γ±k into components related to these processes:

γ±k = γ±k,ind + γ±k,con. (5)

The first component, which is related to independence, is straightforward and has the same
form for all states k—that is,

γ+
k,ind =

p
3

Nk−1 + Nk+1
N

,

γ−k,ind =
2p
3

Nk
N

. (6)

To derive γ±k,con, which is related to conformity, we denote by k′ the neighboring opinion to
the opinion k—that is, k′ = 2 for k ∈ {1, 3} and k′ ∈ {1, 3} for k = 2. The agent acts as a
conformist with probability (1− p) and then changes its state if the group of q neighbors
shares the same opinion k′:
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γ+
k,con = (1− p)∑

k′

Nk′

N

(
q−1

∏
i=0

Nk − i
N − 1− i

)
,

γ−k,con = (1− p)∑
k′

Nk
N

(
q−1

∏
i=0

Nk′ − i
N − 1− i

)
. (7)

Therefore, the explicit forms of γ+
k can be written as:

γ+
1 = (1− p)

N2

N

(
q−1

∏
i=0

N1 − i
N − 1− i

)
+

p
3

N2 + N3

N
,

γ+
2 = (1− p)

N1 + N3

N

(
q−1

∏
i=0

N2 − i
N − 1− i

)
+

p
3

N1 + N3

N
,

γ+
3 = (1− p)

N2

N

(
q−1

∏
i=0

N3 − i
N − 1− i

)
+

p
3

N1 + N2

N
, (8)

Similarly, explicit forms of γ−k can be written as follows:

γ−1 = (1− p)
N1

N

(
q−1

∏
i=0

N2 − i
N − 1− i

)
+

2p
3

N1

N
,

γ−2 = (1− p)
N2

N

(
q−1

∏
i=0

N1 − i
N − 1− i

+
q−1

∏
i=0

N3 − i
N − 1− i

)
+

2p
3

N2

N
,

γ−3 = (1− p)
N3

N

(
q−1

∏
i=0

N2 − i
N − 1− i

)
+

2p
3

N3

N
. (9)

In the limit of an infinite system, Equation (8) can be rewritten as:

γ+
1 = (1− p)(c2 · c

q
1) +

p
3
(c2 + c3),

γ+
2 = (1− p)(c1 + c3) · c

q
2 +

p
3
(c1 + c3),

γ+
3 = (1− p)(c2 · c

q
3) +

p
3
(c1 + c2), (10)

and Equation (9) as

γ−1 = (1− p)c1 · c
q
2 +

2p
3

c1,

γ−2 = (1− p)c2 ·
(

cq
1 + cq

3

)
+

2p
3

c2,

γ−3 = (1− p)c3 · c
q
2 +

2p
3

c3. (11)

If we insert transition probabilities (10) and (11) to Equation (4), we obtain the set of
equations describing the temporal evolution of the system:

dc1

dt
= (1− p) ·

(
c2 · c

q
1 − c1 · c

q
2

)
+ p

(
1
3
− c1

)
,

dc2

dt
= (1− p) ·

(
(c1 + c3) · c

q
2 − c2 ·

(
cq

1 + cq
3

))
+ p

(
1
3
− c2

)
,

dc3

dt
= (1− p) ·

(
c2 · c

q
3 − c3 · c

q
2

)
+ p

(
1
3
− c3

)
. (12)
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One has to remember that the above equations are not independent, because we deal with
the closed system, and thus:

c1 + c2 + c3 = 1. (13)

Taking Equation (13) into account allows us to describe the system using only two
independent variables, e.g., c1 and c3, which reduces Equation (12) to:

dc1

dt
= (1− p) ·

(
c2 · c

q
1 − c1 · c

q
2

)
+ p

(
1
3
− c1

)
,

dc3

dt
= (1− p) ·

(
c2 · c

q
3 − c3 · c

q
2

)
+ p

(
1
3
− c3

)
, (14)

where c2 = 1− c1 − c3 is treated as a dependent variable. The set of Equation (14) allows
us to calculate numerically the temporal evolution of the system and also the stationary
states, which are given by the condition:

dc1

dt
=

dc3

dt
= 0. (15)

The problem of finding stationary states can also be approached analytically. First,
let us notice that an obvious solution is of the form c1 = c2 = c3 = 1

3 . If we insert it
in Equation (14), we see that the stationary condition is satisfied regardless of p and q.
Other solutions can be obtained due to the fact that p appears only linearly in the above
equations and by noticing the symmetry between states 1 and 3, which is clearly seen from
Equation (14). Although it may be broken by the initial conditions, it is mostly satisfied.
Equating the time derivatives (14) to zero and employing the symmetry c1 = c3, we obtain
a single equation for stationary states other than c1 = c2 = c3. This can of course be
expressed in the language of any of the three variables c1, c2, c3. We use the middle opinion
because it is somehow dominant, as will be shown later, and thus:

p =

(
1− cst

2
)(

cst
2
)q − 2cst

2

(
1−cst

2
2

)q

(
1− cst

2
)(

cst
2
)q − 2cst

2

(
1−cst

2
2

)q
− 1

3 + cst
2

, (16)

where cst
2 denotes the fraction of opinion 2 in the stationary state. In the next section, we

use Equation (16) to show cst
2 as a function of p simply by flipping the plot, as was done

in [44]. Moreover, we use Equation (14) to obtain phase portraits in plane (c1, c3).

4. Results
4.1. Trajectories

Let us start by presenting sample trajectories that can be obtained numerically from
Equation (14). These are valid for arbitrary initial conditions—that is, even if the symmetry
c1 = c3 is not fulfilled. As we see in Figure 1, for a given initial conditions and a fixed size
of the influence group q different scenarios can be observed, depending on the value of the
parameter p.

Let us look at the example shown in Figure 1. Here, initially, opinion 1 (let us call
it leftists) strongly dominates over opinion 3 (rightists) but only slightly over opinion 2
(centrists). For a small probability of independence, as shown in Figure 1a,b, the system
eventually polarizes between leftists and rightists, whereas centrists disappeared almost
completely. The temporal evolution in this case is interesting because initially the number of
leftists increases, and thus one may think that this option will eventually win. A completely
different scenario is observed for larger values of p as shown in Figure 1c.

Here, both extreme opinions fade away, and the consensus on the central opinion is
reached. Finally, for large values of p disagreement c1 = c2 = c3 is reached, see Figure 1d.
This single example shows the richness of the behavior that the model exhibits, which was
not seen in the model without BC [24]. Without BC, only two final states were possible,
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independently on q: (1) domination of a single opinion, which was initially dominant or
(2) disagreement c1 = c2 = c3. In general, for the model with BC, we can distinguish four
types of the steady state, which we will refer to later in this paper:

disagreement: c1 = c2 = c3 = 1/3,

central dominance: c2 > c1 = c3,

extreme dominance: c1 > c3 > c2 or c3 > c1 > c2 and

polarization: c1 = c3 > c2.

Figure 1. Trajectories showing the evolution of opinion concentration c ∈ {c1, c2, c3}, as indicated
by the legend, over time t for the size of the influence group q = 2 from the initial condition
c1(0) = 0.5, c2(0) = 0.45, c3(0) = 0.05. Each panel shows trajectories for values of the probability of
independence p from different ranges: (a) p ∈ [0.050, 0.100], (b) p ∈ [0.110, 0.115], (c) p ∈ [0.120, 0.130],
(d) p ∈ [0.255, 0.270]. The color intensity of the trajectories in each panel increases with p.

4.2. Stationary States

To analyze the system more systematically, we now focus on stationary states. As
long as the symmetry c1 = c3 is met, all possible stationary points are described by the
formula Equation (16) or c2 = 1

3 , as shown in Figure 2a, in which solid lines correspond to
stable stationary states, whereas dashed lines correspond to unstable ones. The stability
of stationary solutions has been determined, as always, by calculating the eigenvalues of
the corresponding Jacobian matrix [52]. The critical point p∗ = p∗(q), above which the
disagreement is always reached, decreases with q, similarly to the model without BC [24].

However, the shape of the curve cst
2 = cst

2 (p) > 1/3 in Figure 2a is very differ-
ent from the one observed in [24]. Typically, the relationship p = p(cst

k ) takes one of
two forms [24,43,44]: (1) has one maximum (p = p∗), and all solutions along the curve are
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stable; or (2) has two maxima (p = p∗up) with a local minimum between them (p = p∗low),
and solutions between maxima are unstable.

In such a typical case, it is easy to determine that the first case corresponds to a
continuous phase transition with the critical point at p = p∗ and the second one to a
discontinuous phase transition with an area of metastability (hysteresis) between spinodals
p = p∗low and p = p∗up. On the other hand, in Figure 2a we see that p = p(cst

k ), given by
Equation (16), has only one maximum; however, part of the curve represents unstable
steady states.

To understand this phenomenon, we must go beyond the symmetry condition c1 = c3.
Therefore, in Figure 2b,c we present the numerical stable stationary solutions obtained from the
time evolution of Equation (12) for three distinct initial conditions c0 = (c1(0), c2(0), c3(0)),
which are shifted from unstable fixed points by a small parameter ε = 10−5. Figure 2b
shows that, for the initial condition c0 = (0 + ε, 1− ε, 0), a jump is seen for all q ≥ 2,
which corresponds to a discontinuous phase transition, as in the model without BC.

However, the bottom part of Figure 2b looks different from that for the model without
BC, for which the results for q = 5 are marked with black lines. First, for the model with BC
the transition point to the state of disagreement is split into two, depending on the initial
conditions. Secondly, as seen better in Figure 2c, which is a zoom in panel (b), there is a
second hysteresis for q > 5, which appears for small values of p.

As for the results shown in Figure 2b, we would also like to draw your attention to
the irreversibility of polarization, reported recently in [53]. For the sake of clarification, let
us focus on q = 2. For c2(0) = 1 (initial centrist dominance) with increasing p the system
goes along the upper branch and undergoes a sharp transition at p∗up ∼ 0.27, at which
c2 jumps from 1/2 to 1/3 and then stays at this value for p > p∗up. However, the reverse
path—that is, starting from c2(0) = 1/3—is always along the lower branch (polarization),
continuously up to c2 = 0, which denotes extreme polarization. Therefore, once the system
falls into the lower branch, it can never reach a centrist dominance again and remains
polarized. A similar phenomenon called cusp catastrophe has been reported for various
social systems, both at the level of societies and people [28,54,55].

Figure 2. Stationary concentration of agents in the middle state as a function of the probability of
independence p for several values of q, as indicated in the legend on the left panel: (a) Analytical
solutions obtained within Equation (16) for the condition c1 = c3—solid and dashed lines correspond
to stable and unstable steady states, respectively. (b) Numerical stable solutions obtained from
the time evolution of Equation (14) for three different initial conditions c0 = (c1(0), c2(0), c3(0)):

c0 =
(

1
2 − ε, 0 + ε, 1

2

)
marked by empty circles, c0 = (1− ε, 0 + ε, 0) marked by full circles and

c0 = (0 + ε, 1− ε, 0) marked by diamonds. (c) Zoom of the panel. (b) The initial points c0 were
moved from unstable fixed points by a small parameter ε = 10−5. In panel (b), additional black lines
indicate the results of the model without BC, as studied in [24], for q = 5 and the same three types of

initial conditions as for the model with BC: c0 =
(

1
2 − ε, 0 + ε, 1

2

)
—solid line, c0 = (1− ε, 0 + ε, 0)—

dashed line, and c0 = (0 + ε, 1− ε, 0)—dotted line.
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4.3. Phase Portraits

To better understand the behavior presented in Figure 2, we decided to study the
phase portraits, obtained from Equation (14), for different values of the model parameters
q, p. For q = 1, there is always a disagreement, independently of p > 0, analogously to
the model without BC [24]. However, already for q = 2, while increasing the value of p,
two bifurcations appear that separate three phases as shown in Figure 3:

(2) polarization + central dominance,

(1) disagreement + central dominance and

(0) disagreement.

We realize that the numbering above from (2) to (0) may be puzzling; however, it is
intentional, which will hopefully become clear in the next paragraph.

Figure 3. Phase portraits for q = 2 and several values of p, as indicated in the panels: p increases
from panel (a) to (f). Stable points are denoted by the circles with small markers inside: (N) disagree-
ment, (•) central dominance and (?) polarization. Unstable fixed points are denoted by the small
empty circles. Trajectories associated with different types of attraction basins are highlighted with
different colors. For q = 2, three different phases are visible: (a–c) polarization + central dominance,
(d,e) disagreement + central dominance and (f) disagreement.

Qualitatively, the same results are obtained for q = 2 and q = 3. However, for q = 4
extreme dominance is also possible, which was not observed for q = 2, 3. It appears for
small values of p and is related to the additional bifurcation that introduces a new phase (3)
extreme dominance + central dominance as shown in Figure 4.
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4.3. Phase Portraits
To better understand the behavior presented in Figure 2, we decided to study the phase portraits,

obtained from Equation (14), for different values of the model parameters q, p. For q = 1, there is
always a disagreement, independently of p > 0, analogously to the model without BC [24]. However,
already for q = 2, while increasing the value of p, two bifurcations appear that separate three phases,
as shown in Figure 3:
(2) polarization + central dominance,
(1) disagreement + central dominance,
(0) disagreement.
We realize that the numbering above from (2) to (0) may be puzzling, but it is intentional, which will
hopefully become clear in the next paragraph.

Qualitatively, the same results are obtained for q = 2 and q = 3. However, for q = 4 extreme
dominance is also possible, which was not observed for q = 2, 3. It appears for small values of p and
is related to the additional bifurcation that introduces a new phase (3) extreme dominance + central
dominance, as shown in Figure 4.

Figure 4. Phase portraits for q = 4 and several values of p, as indicated in the panels: p increases from panel
(a) to (f). Stable points are denoted by the circles with small markers inside: (▴) disagreement, (∙) central
dominance, (⬩) extreme dominance and (⋆) polarization. Unstable fixed points are denoted by the small empty
circles. Trajectories associated with different types of attraction basins are highlighted with different colors.
For q = 4 four different phases are visible: (a) extreme dominance + central dominance, (b,c) polarization +
central dominance, (d,e) disagreement + central dominance, (f) disagreement.

For q = 5, 6, 7 system behavior is even richer, and in total there are 5 possible phases separated
by the bifurcations, as shown in Figure 5. Here, an additional phase appears for which coexistence

) extreme dominance and (?) polarization. Unstable fixed points are denoted
by the small empty circles. Trajectories associated with different types of attraction basins are
highlighted with different colors. For q = 4 four different phases are visible: (a) extreme dominance +
central dominance, (b,c) polarization + central dominance, (d,e) disagreement + central dominance
and (f) disagreement.

For q = 5, 6, 7, the system behavior is even richer, and in total, there are five possible
phases separated by the bifurcations as shown in Figure 5. Here, an additional phase ap-
pears for which coexistence of three types of steady states is possible, namely: polarization
+ central dominance + extreme dominance. However, this is not the end of increasing the
complexity of system behavior. For q > 7, one more phase appears, namely: disagreement
+ central dominance + extreme dominance.

If we consider the results for all values of q, we can distinguish six different phases
in total:

(5) polarization + central dominance + extreme dominance,

(4) disagreement + central dominance + extreme dominance,

(3) extreme dominance + central dominance,

(2) polarization + central dominance,

(1) disagreement + central dominance and

(0) disagreement.

Not only the number of phases but also the order of their appearance depends on q. As we
see in Figure 6, the order of phases with decreasing p > 0 is the following:
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q = 1 : (0)

q ∈ {2, 3} : (0)→ (1)→ (2)

q = 4 : (0)→ (1)→ (2)→ (3)

q ∈ {5, 6, 7} : (0)→ (1)→ (2)→ (5)→ (3)

q ∈ {8, 9, 10} : (0)→ (1)→ (4)→ (5)→ (3) (17)

Only in phase (0) there is no coexistence of different types of steady states. In all the others,
several of them can be achieved, depending on the initial conditions. This means that
social hysteresis exists for all values of q > 1 and p ∈ (0, p∗up), where p∗up = p∗up(q) is the
bifurcation above which only phase (0) exists. As seen in Figures 3–5, this is a saddle-node
bifurcation during which stable and unstable fixed points collide and annihilate. As always
in the noisy q-voter models p∗up = p∗up(q) is a decreasing function of q [24,43,44], which is
clearly seen in Figure 6.

Figure 5. Phase portraits for q = 6 and several values of p, as indicated in the panels: p increases from
panel (a) to (f). Stable points are denoted by the circles with small markers inside: (N) disagreement,
(•) central dominance, (
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To better understand the behavior presented in Figure 2, we decided to study the phase portraits,

obtained from Equation (14), for different values of the model parameters q, p. For q = 1, there is
always a disagreement, independently of p > 0, analogously to the model without BC [24]. However,
already for q = 2, while increasing the value of p, two bifurcations appear that separate three phases,
as shown in Figure 3:
(2) polarization + central dominance,
(1) disagreement + central dominance,
(0) disagreement.
We realize that the numbering above from (2) to (0) may be puzzling, but it is intentional, which will
hopefully become clear in the next paragraph.

Qualitatively, the same results are obtained for q = 2 and q = 3. However, for q = 4 extreme
dominance is also possible, which was not observed for q = 2, 3. It appears for small values of p and
is related to the additional bifurcation that introduces a new phase (3) extreme dominance + central
dominance, as shown in Figure 4.

Figure 4. Phase portraits for q = 4 and several values of p, as indicated in the panels: p increases from panel
(a) to (f). Stable points are denoted by the circles with small markers inside: (▴) disagreement, (∙) central
dominance, (⬩) extreme dominance and (⋆) polarization. Unstable fixed points are denoted by the small empty
circles. Trajectories associated with different types of attraction basins are highlighted with different colors.
For q = 4 four different phases are visible: (a) extreme dominance + central dominance, (b,c) polarization +
central dominance, (d,e) disagreement + central dominance, (f) disagreement.

For q = 5, 6, 7 system behavior is even richer, and in total there are 5 possible phases separated
by the bifurcations, as shown in Figure 5. Here, an additional phase appears for which coexistence

) extreme dominance and (?) polarization. Unstable fixed points are denoted
by the small empty circles. Trajectories associated with different types of attraction basins are
highlighted with different colors. For q = 6 five different phases are visible: (a) extreme dominance
+ central dominance, (b) polarization + central dominance + extreme dominance, (c) polarization +
central dominance, (d,e) disagreement + central dominance and (f) disagreement.
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Figure 6. Phase diagrams showing the different phases that occur for given values of model param-
eters q ∈ {1, 10} and p ∈ (0, 0.3) (left panel), zoom for p ∈ (0, 0.03) (right panel). Numbers at the
color bars indicate the following phases: (0) disagreement, (1) disagreement + central dominance,
(2) polarization + central dominance, (3) extreme dominance + central dominance, (4) disagreement
+ central dominance + extreme dominance and (5) polarization + central dominance + extreme
dominance.

5. Discussion

It was recently shown that whether opinions are discrete or continuous depends on
the agent’s attention to the given issue: binary in the case of high attention or continuous
in other cases [55]. However, three-state opinions, as considered in this paper, can be
useful when describing an actual choice between two extremes and balanced option or the
response on the three-point psychometric Likert scale (disagree, neither agree nor disagree
and agree).

This scale was recently tested in a simple discrete choice experiment, in which several
granularities of the response scales (2, 3, 4 and 5 points) were compared [56]. As a result, it
was concluded that odd-numbered Likert scales contribute to lower error variance, and
using 3-point response scales seems more advisable than using 5-point ones. Therefore,
three-state variables seem to be particularly useful when it comes to measuring opinions in
social surveys.

This motivated us to focus on the three-state model with BC. This is not the first paper
to be devoted to this issue. However, most of the earlier models, often based on a linear
voter model [9,10,14,19,27] or on the majority vote model [25,26,29–31,57], did not allow
us to study directly the effect of influence group size on the emergence on different social
collective phenomena.

It is likely that the only other sociophysics model—apart from the q-voter model—that
allows one to directly examine the role of the size of the group is the Galam model, which
has also been studied in its three-state version [12,16]. However, the Galam model, which
is a hierarchical voting model, is not devoted to analyze various collective phenomena that
appear spontaneously under the influence of interactions in continuous time (sequential
updates). It is rather to design a winning strategy as an outcome of the voting, which
occurs in discrete time steps (synchronous updates).

Of course, modifications of the update scheme to random sequential updating is
possible and has already been proposed in the case of binary opinions [58]. However, to the
best of our knowledge, the Galam model has never been analyzed under the constraint of
BC. In the future, one could generalize the sequential version of the model proposed in [58]
to multi-state opinions and then introduce BC, which seems to be an interesting task.

Thus far, there are two three-state models in the context of which our model should be
discussed. The first is based on a linear voter model [9,10]. Within this model, in a single
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update, a randomly selected agent adopts the opinion of a randomly selected neighbor if
the opinions of the agent and the neighbor do not differ by more than one. In such a model,
the influence group is always of size 1, and thus the role of the influence group cannot
be studied.

Moreover, due to the lack of noise, a system always evolves toward an absorbing
(frozen) state. Depending on the initial fraction of centrists, one of two absorbing states
can be reached: consensus of any of the three opinions or polarization. Our model reduces
to this for q = 1 and p = 0, and thus it can be treated as a generalization of the model
introduced in [9]. However, we find the results for q > 1 and p > 0 particularly interesting.
For these parameter values, our model displays social hysteresis, which has recently
received particular attention in the context of social polarization [53].

The second three-state model with BC, which is crucial in the context of this paper, is
based, like ours, on a multi-state noisy qVM [36]. The only difference from our model is
that, additionally, the restriction on changing opinions under the influence of independence
was introduced. In our model, BC is only about the interaction between agents, i.e., it
applies to conformity. In the case of independence, any of three opinions can be taken,
which corresponds exactly to the noise in the original multi-state q-voter model [24]. On
the contrary, in [36], also under independence, the agent could not change her opinion by
more than one.

This seemingly small difference between the models has surprisingly far-reaching
effects. In particular, in our model, disagreement is possible, as in [24]. On the other
hand, the complete disagreement, defined as c1 = c2 = c3, is never possible in the model
proposed in [36]. Even for p = 1, when the system is driven only by the noise, centrists
slightly dominate—that is, c1 = c3 = 2/7, c2 = 3/7. This is because, as written in [36]:
transitions between states 1 and 3 are forbidden; therefore, opinions 1 and 3 have only opinion 2 as a
neighboring one, whereas for opinion 2, both 1 and 3 are the neighboring states .

The lack of complete disagreement is certainly not the main difference with our model.
One can always manipulate the transition rates in the case of independence in such a
way that complete disagreement becomes possible. However, more interestingly, in [36],
polarization between extreme opinions was not observed. In general, the model studied
here shows a much richer behavior than the one introduced in [36]. This shows how a
small change, introduced at the microscopic level, can dramatically alter and enrich the
macroscopic behavior of a model. However, a heuristic understanding of what precisely
influences the polarization and when irreversible polarization can be seen in this type of
models is still missing and is a desirable task for the future.
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