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Abstract: This paper introduces a new method of compressing digital images by using the Difference
Transform applied in medical imaging. The Difference Transform algorithm performs the decorrela-
tion process of image data, and in this way improves the encoding process, achieving a file with a
smaller size than the original. The proposed method proves to be competitive and in many cases
better than the standards used for medical images such as TIFF or PNG. In addition, the Difference
Transform can replace other transforms like Cosine or Wavelet.

Keywords: lossless image compression; image transform; difference transform

1. Introduction

The use of images has been beneficial for human beings in every aspect of their lives.
For every individual, it is very important to have visible evidence of their environment
because it provides information that will allow them to make informed decisions. For
instance, monitoring medical images is crucial because it equips healthcare professionals
with information to assist their patients, with the aim of improving their quality of life. For
this reason, technology specialists and healthcare professionals have developed computer-
aided systems that rely on image processing [1–6] to give better diagnoses [7,8]. Many
machine learning and deep learning researchers base their decisions on image databases
and other types of databases that could reveal disease information with the goal of handing
tools to healthcare professionals so that they come to better conclusions [9–16].

Computer-aided medical systems generate images with higher resolution and a better
bit depth; thus, the information which must be processed is higher, especially when 3D
scanning technology is used [17–19]. Medical imaging also has a defined graphic format
called digital imaging and communication in medicine (DICOM) [20].

As is evident, images within the medical area are vital. However, their use is very
sensitive. There are mainly two important concerns in the use of medical imaging. The
first concern is that images take up a lot of space on devices and consume a lot of time
when transmitted by media such as the Internet, so it is necessary to compress them; in
doing so, there is a risk of losing important information and in the medical arena, to lose
this type of information is restricted by law [15,16]. To address this issue, researchers have
developed methods of lossless image compression to be used in medical pursuits and other
areas [17,18,20–33]. The second issue is how to eliminate acquisition of noise in images, a
topic that has been the inspiration for much research [34–39].

Data compression is a mechanism that removes or encodes information with the objec-
tives of reducing storage space and increasing the transmission speed in communication
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networks [40]. Image compression can be lossy and lossless. Lossy compression removes
information to reduce storage space and when reconstructing the information the result
approaches the original data. Lossless compression encodes data with a certain amount of
information, reducing storage space and, by decoding, reconstructs the original data [22,41].
Lossless compression is the goal of many researchers [16–18,20–33].

State-of-the-art lossless compression methods have been published, and two in partic-
ular stand out—Wavelets [17,20,24,27,28,32,33] and deep learning and machine learning
methods have obtained very promising results [42–51].

The aim of this paper is to present a new lossless medical image compression algo-
rithm. The Difference Transform algorithm is designed in such a way that, if there is a lot
of information, its compression will be greater. Therefore, if the images contain a lot of
information, such as RGB images, the compression will be greater than commercial formats
such as JPEG, PNG, and TIFF. Another advantage of the algorithm is its implementation
because it is simple; this will be shown later in the paper. The algorithm shows disadvan-
tages with 8-bit grayscale images. The problem to solve, in this paper, is to find a new
model of lossless compression that overcomes the TIFF and JPG graphic formats that are
widely used in medical image compression. The proposed algorithm, as will be shown in
the results section, is an algorithm that can be taken into account for lossless medical image
compression. To summarize, we will present in this paper a new state-of-the-art method
based on the transformation of differences for the lossless compression of medical images.

Related Works

In this section, we will describe works related to lossless image compression that
provide relevant information for the Difference Transform algorithm. For the purposes of
this paper, we will classify the application of lossless image compression into two classes;
that of natural or conventional compression images and that of compression medical
images. The aim of this classification is to highlight that existing state-of-the-art methods
or algorithms apply to any image regardless of what it represents. The importance of
emphasizing medical images is because in these there is a very important impact and
meaning for the human being. In addition, we emphasize that the use of existing lossless
compression algorithms, as well as the algorithm we propose are very useful for the storage
and transmission of medical images due to the volume of information they contain and the
importance of the losslessness of information.

A method of compression in non-medical images is presented by Báscones and et.al.
They show a new lossless compression algorithm applied to hyperspectral images based
on the Wavelets transform. The algorithm spectrally decorrelates the image by vector
quantification, carries out the analysis of main components, and applies the JPEG2000
algorithm to the main components, taking advantage of the fact that the dimensionality
reduction preserves more information. The algorithm gets a 1- to 3-dB increase in signal-
to-noise ratio for the same compression ratio just by using its PCA + JPEG2000 algorithm,
while raising compression and decompression by more than 10% [21].

Further relevant work in the compression of non-medical images is the one shown
in [52].They propose an alternative but efficient coding algorithm that uses Huffman’s
coding algorithm. The proposed algorithm reduces the number of bits that are symbolized
by long bitcode words by using Huffman’s encoding algorithm. The algorithm validates
it with three different groups of images. The algorithm successfully encodes image com-
pression operations. Depending on the image characteristics, the algorithm achieves a
2.48% to 36% compression. Another interesting compression algorithm is the one proposed
by Starosolski where a new transformation based on the discrete transformed Wavelet is
presented. This transformation is built adaptively to the image by using heuristics and
entropy estimation. Compared to unmodified JPEG2000, it improved the compression
ratios of photographic and non-photographic images, on average, by 1.2% and 30.9%,
respectively [24].
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The algorithms mentioned above were based on the use of transform and Huffman’s
coding method. Now we will cite an interesting work of convolutional neural networks
for the losses of non-medical image compression. In [23], a low-complexity compression
approach to multispectral imaging based on convolution neural networks is proposed
(CNNs). They create a new spectral transformation by using CNN. Their experimental
results show that the proposed method improved compression efficiency by 49.66%.

The latter work presents an interesting submission on CNN for losses in non-medical
compression. Nonetheless, the works cited above show two distinct areas that treat image
compression, implementing transformations and deep learning. It is interesting to see that
these two areas are generating important results in lossless images compression, and it will
be seen in the following works that this type of algorithm is applicable to medical images
with notorious results.

Reference [20] shows a method using second-generation Wavelets and the set parti-
tioning in hierarchical trees (SPIHT) algorithm. The experiments shown from 3D DWT
tomographic images indicate that the bit width of the wavelet filter coefficients could be
significantly reduced to obtain high-quality medical images. The algorithm shows that at
low bit rates, its algorithm called bandelet-SPIHT yields significantly better results com-
pared to some coding techniques, such as the H.26x family (i.e., H.264 and H.265), ensuring
that this is appropriate for medical use.

Another lossless medical image compression algorithm is the one presented in [28].
This work presents a hybrid method that enhances JP3D compression of volumetric medical
images. The method is based on the discrete wavelet transformation (DWT). It applies
reversible noise removal and elevation steps with a three-dimensional (3D) DWT step jump
and builds a hybrid transformation that combines 3D-DWT with prediction. The authors
propose practical compression schemes that improve the compression ratio by up to 6.5%.

Now then, in [53] it shows a method that uses combinations of algorithms that com-
press X-ray images, which are registered in the state of the art. The results show that
the right combination of used compression algorithms submit high percentages of lossy
and lossless compression. The algorithms that obtained the best compression were the
RLE-Compressed, Discrete Cosine Transform (DCT), and the Discrete Wavelets Transform
(DWT). Their results show that under the criteria of peak signal-to-noise ratio, the DCT
obtained 89.98 and the DWT obtained 54.77, highlighting that these two algorithms are the
ones that had the best performance.

In [54] a non-iterative method of lossless dental imagery compression is proposed,
based on the discrete cosine transformation and the optimization of the partition scheme,
procuring improvements in the compression of the images used. They achieved compres-
sion ratio values between 7.5 and 20.6, depending on the image format with which they
were compared, one of those being JPEG2000. In [55], it proposes a method of compression
of endoscopic images that is based on the 3D discrete cosine transformation and proposes
an adaptive filter of frequency domain that is fundamental for compression. The results
show that the proposed method reaches a compression ratio of 22.94:1 with the peak signal
to noise ratio of 40.73 dB.

As can be seen, the works related to the lossless medical image compression demon-
strate that the use of DTC and DWT are cornerstones for compression, in addition to the
quintessential JPEG2000 method. This is relevant because we propose an algorithm based
on the transform of differences that outpaces JPEG2000 and that the implementation of the
method is simpler than that of DTC and DWT.

2. Materials and Methods
2.1. Laplacian Pyramid

A powerful but conceptually simple structure that can be used for the representation
of images in more than one dimension is the Laplacian pyramid or pyramidal multiresolu-
tion [56]. These structures were originally developed for applications in computer vision
and image compression. An image pyramid is a collection of images with decreasing reso-
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lutions arranged in a pyramid shape [57]. As shown in Figure 1, the base of the pyramid
contains a high resolution representation of the image to be processed and the peak contains
a low resolution approximation. As one moves up the pyramid, the size and the resolution
decreases. Taking the J base level with a size of 2J × 2J or N × N, and intermediate levels
taking a size 2j × 2j, with 0 ≤ j ≤ J.

Figure 1. An image pyramid structure.

Given a sequence x(n), n ∈ Z it is possible to derive a signal in low resolution by a
low-pass filtering g(n) and then applying subsampling by two, thus doubling scale analysis.
The result is a signal y(n) given by

y(n) =
∞

∑
k=−∞

g(k)x(2n− k). (1)

The change in resolution is obtained by the low-pass filter (loss of high-frequency
detail). The scale change is due to the subsampling by two, because a displacement by two
in the original signal x(n) results in a displacement by one in y(n). Based on the filtered
and subsampled version of x(n), it is possible to find an approximation x(n) of the original.
This is done first by oversampling y(n) by two, because it is necessary to have a sign of the
same scale as the original for comparison:

y′(n) = y(n), y′(2n + 1) = 0. (2)

Then y′(n) is passed by a filter impulse response g′(n) to obtain the approximation to a(n):

a(n) =
∞

∑
k=−∞

g′(k)y′(n− k). (3)

Of course, generally, a(n) will not be equal to x(n); therefore it is possible calculate
the difference between a(n) and x(n) as

d(n) = x(n)− a(n). (4)

As shown, x(n) can be reconstructed by adding a(n) and d(n). However, some
redundancy exists, because a signal with sampling frequency fs is expressed in the two
signals y(n) and d(n) with sampling frequencies fs

2 and fs, respectively. The separation of
the original signal x(n) into an approximation a(n), plus the sum of a signal containing
the detail d(n) is conceptually important, because changing the resolution and some other
relationships are part of the multiresolution analysis.
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2.2. Subband Coding

In subband coding, a signal is a set of elements in limited bands named subbands,
which can used to recover the original image without error. First developed for voice
compression [57,58], each subband is generated by band-pass filtering of the input; then,
the resulting bandwidth is smaller than in the original image. Furthermore, each subband
may be subsampled without loss of information.

The process for subband coding is part of the pyramidal multiresolution scheme. The
signal obtained from the low-pass filtering is the same, but instead of a difference signal,
it calculates a detail aggregate through a high-pass filtering x(n) by using a filter with
impulse response h(n), followed by subsampling by two. Intuitively, it is clear that the
added detail of the low-pass approximation has to be a high-pass signal. In addition, if g(n)
is an ideal halfband filter lowpass, then a half-band filter is ideal for a perfect representation
of the original version with the two undersampled versions.

Then x(n) can be recovered from the two filtered and undersampled versions y0(n)
and y1(n) by g(n) and h(n), respectively. These are necessary for both the oversample as
to filtering by g′(n) and h′(n), respectively, and finally adding both, as shown in Figure 2.
Conversely, in the pyramidal case, the reconstructed signal x̂(n) is not equal to x(n),
unless the filters have specific characteristics. The simplest case occurs when analyzing the
reconstructed signal is identical to the original (x̂(n) = x(n)). If this happens, then it is said
that the filters have the property of perfect reconstruction.

Figure 2. Subband coding scheme.

Because the attainment of the perfect reconstruction filter is the subject of much
research, it is assumed to have a finite impulse response filter (FIR). So it turns out that the
low-pass and high-pass filters are related to

h(L− 1− n) = (−1)ng(n), (5)

where L is the filter length.
Now, the filter bank in Figure 2, which computes convolutions followed by subsampling by

two, evaluates the inner product of the sequence x(n) and the sequences g(2k− n), h(2k− n):

y0 = ∑
n

x(n)g(2k− n), (6)

y1 = ∑
n

x(n)h(2k− n), (7)

and reconstructing x(n) is given by

x(n) =
∞

∑
k=−∞

[
y0(k)g′(2k− n) + y1(k)h′(k− n)

]
. (8)

3. Differences Transform

A major reduction in the amount of data representing an image is obtained by elim-
inating or decreasing the redundancy between them. The best way to achieve this is by
using some cane transformation of the processed image. In this paper, we propose to use a
difference transform, observing that the redundancy can be eliminated by correlation of the
analyzed image. For this, the analysis is based on the relationship between three adjacent
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samples. The difference transform operator can be developed within the discrete plane
as follows.

Given a sample sequence x(n), it is possible to know the value of any of the samples
by means of neighbors. This is achieved by dividing the sequence into two parts. The
first part will contain an undersampled-by-two version of the original sequence and the
second part consists of the values obtained by subtracting the remaining samples with the
neighbors average; this can be expressed by Equations (12) and (13):

y(k) = x(2k), (9)

y
(

k +
N
2

)
=

⌊
x(k− 1) + x(k + 1)

2

⌋
− x(k), (10)

where N is the size of the sequence.
The second part (Equation (13)) can be considered as follows:

y
(

k +
N
2

)
=

x(k− 1)
2

+
x(k + 1)

2
− x(k)

=
x(k− 1)

2
− x(k) +

x(k + 1)
2

(11)

=
1
2

x(k− 1) + (−1)x(k) +
1
2

x(k + 1)

=
1

∑
l=−1

h(l)x(k− 1).

As shown, the last equality corresponds to the convolution between x and h; this is
considered as the component of a digital filter that performs a filtering on the sequence. Be-
cause it is also necessary to make an undersampling by two, it is possible to use Equation (1),
finally, to obtain the Difference Transform, as follows:

y(k) = 2k, (12)

y
(

k +
N
2

)
=

∞

∑
l=−∞

h(l)x(2k− l). (13)

The above procedure applies only to the transformation. It is then necessary to have a
method to recover the original sequence, i.e., the inverse transformation.

For the inverse transform, we first proceeded with the sequence y(k) consisting of the
undersampled original samples concatenated with the differences of the average values, by
interleaving them as stated in Equations (14) and (15):

x̂(2n) = y(n), (14)

x̂(2n + 1) = y
(

n +
N
2

)
. (15)

At this stage, the interleaved values x̂(2n + 1) do not correspond to the one original
sequence, but they are related with difference of the average values of its neighbors, as
follows in Equations (13) and (16):

x̂(k) =
⌊

x̂(k− 1) + x̂(k + 1)
2

⌋
− x̂(k), (16)

with k = 2n + 1, and rewriting the Equation (12) as:

x̂(k) =
∞

∑
l=−∞

h(l)x̂(k− l) k = 2n + 1. (17)
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This way, the Inverse Difference Transform is represented by Equations (14)–(16).
Notice that the processes and the transform are very simple, with the involved digital
filters in both processes being the same. The coding scheme using a block diagram for the
Difference Transform in one dimension is shown in Figure 3.

Figure 3. Coding scheme for Difference Transform.

3.1. Difference Transform in Two Dimensions

The Difference Transform in two dimensions for encoding, in case of images, is
developed from the transformation in one dimension as detailed below.

In a similar way as in the Wavelet transformation process [59,60], the Difference Trans-
form in two dimensions used a single digital filter, which is the same as the one used in the
one-dimensional transformation. In the case of wavelets, the filtering is first done in one di-
mension and then performed again in the other dimension in orden to obtain the subsets of
approximation and detail. For this, the wavelet process used four digital filters, two for each
dimensions. On the other hand, the two dimensional process in the Differences Transform
is performed by similar filtering processes, but using only three filtering processes instead
of four. The encoding method using the Difference Transform is performed as follows:
Let f (x, y) be the original image to analyze and hH , hV , hD be the digital filters, whose
dimensions and values are identical and are used to filter the original image. In the first
filtering process, hH is used to obtain details or variations between neighboring samples
horizontally, by hV in the vertical direction and with hD in diagonally. After the Difference
Transform, three subpictures with half-width and half-height dimensions are obtained, and
in addition the image in its original form, undersampled by two, is obtained. Thus we have
four subimages with the same size, whose order can be exemplified by Figure 4.

Figure 4. Coding procedure transform 2D difference.

The filtering process with hH is only on the x axis, and the filtering process with hV

on the y axis. As in one dimension, subimages with horizontal and vertical details are
obtained; for the case of the diagonal details, the direction of the filter is in the x and y axis.
Finally it is necessary to undersample the original image to obtain the two dimensional
difference transform as follows:
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WS(m, n) = f (2m, 2n) (18)

WH
(

m +

(
M
2

)
, n

)
=

∞

∑
l=−∞

hH(l) f (2m− l, 2n) (19)

WV
(

m, n +

(
M
2

))
=

∞

∑
l=−∞

hV(l) f (2m, 2n− l) (20)

WD
(

m +

(
M
2

)
, n +

(
M
2

))
=

∞

∑
l=−∞

hD(l) f (2m− l, 2n− l) (21)

where M is the width and N is the height of the image.
Once the four subimages are obtained, they are arranged similarly to the shape of the

wavelet transform, as shown in Figure 5.

Figure 5. Arrangement of subimages obtained for 2D Difference Transform.

The decorrelation can be achieved through the filtered process because in the analysis
we can come to the following decision: if the pixel is equal to its two neighbors, it can
be removed later and recovered with its neighboring values. However, if the said pixel
value is very different from its neighbors, this indicates that it is a part of the detail of the
image, and therefore it is necessary to keep the value based on the difference between it
and its neighbors. The variations between neighboring pixels of the image—horizontally,
vertically, and diagonally—are obtained by using hH , hV and hD respectively. The filter
structure can be observed in Figure 6.

Figure 6. The filter structure (a) hH , (b) hV , (c) hD.

The Difference Transform algorithm is show in Algorithm 1.
Due to the similarity of the process of wavelet transform with the Difference Transform,

it is possible to perform a multiresolution method. However, in a different way from the
wavelet process, one of the subimages in the decomposition process is not affected by the
filtering process and this is the image that can be affected again by a decomposition process,
thereby obtaining a second level of decomposition with its corresponding four subimages, as
shown in Figure 7. This procedure can be iterated as many times as required or until we get
subimage of 3× 3 pixels. The algorithm for multiresolution process is show in Algorithm 2.
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Algorithm 1: Differences Transform algorithm (TDiferences function).

1 Input: image, Xini, Yini, Xend, Yend
2 w← Xend− Xini
3 h← Yend−Yini
4 hal f W ← w÷ 2
5 hal f H ← h÷ 2
6 auxImage = copy(image)
7 //Transformation algorithm.
8 //Top left
9 i← j← 0

10 for y← Yini to Yend− 1 step 2 do
11 for x ← Xini to Xend− 1 step 2 do
12 auxImage(j, i)← image(y, x)
13 i← i + 1

14 j← j + 1
15 i← 0

16 //top right
17 i← j← 0
18 for y← Yini to Yend step 2 do
19 for x ← Xini to Xend− (w%2) step 2 do
20 if x + 2 ≥ w then
21 auxImage(j, i + hal f W)← image(y, x)− image(y, x + 1)
22 else
23 auxImage(j, i + hal f W)←

((image(y, x) + image(y, x + 2))/2)− image(y, x + 1)

24 i← i + 1

25 j← j + 1
26 i← 0

27 //lower left
28 i← j← 0
29 for y← Yini to Yend− (h%2) step 2 do
30 for x ← Xini to Xend step 2 do
31 if x + 2 ≥ w then
32 auxImage(j + hal f H, i)← image(y, x)− image(y, x + 1)
33 else
34 auxImage(j + hal f H, i)←

((image(y, x) + image(y + 2, x))/2)− image(y + 1, x)

35 i← i + 1

36 j← j + 1
37 i← 0

38 //lower right
39 i← j← 0
40 for y← Yini to Yend− (h%2) step 2 do
41 for x ← Xini to Xend− (w%2) step 2 do
42 if x + 2 ≥ wor(y + 2) ≥ h then
43 auxImage(j + hal f H, i + hal f W)← image(y, x)− image(y + 1, x + 1)
44 else
45 auxImage(j + hal f H, i + hal f W)←

((image(y, x) + image(y + 2, x + 2))/2)− image(y + 1, x + 1)

46 i← i + 1

47 j← j + 1
48 i← 0
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Figure 7. Multiresolution decomposition procedure for 2D Difference Transform.

Algorithm 2: Difference Transform multiresolution algorithm.

1 Input: image, levels
2

3 w← image.width
4 h← image.height
5 auxImage = copy(image)
6

7 for i← 0 to levels do
8 auxImage← TDi f erences(auxImage, 0, 0, w, h)
9 w← f loor(w÷ 2)

10 h← f loor(h÷ 2)

11

12 return auxImage

For the recovery of the image, as expected, it is necessary to change the undersampling
by the oversampling, also using the filters hH , hV , hD, as in the case of one dimension
before performing the filtering process. This process is shown in Figure 8.

Figure 8. Decoding procedure for 2D Difference Transform.
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The oversampling process inserting specific values for the image before the filtering
process is represented by the following equations:

f̂ (2x, 2y) = WS(x, y) (22)

f̂ (2x + 1, 2y) = WH(x, y) (23)

f̂ (2x, 2y + 1) = WV(x, y) (24)

f̂ (2x + 1, 2y + 1) = WD(x, y). (25)

Now that we have an original image, it is passed through the three digital filters, whose
equations are derived in the same way as the one-dimensional process given in the Equation (17):

f̂ (2x + 1, 2y) =
∞

∑
l=−∞

hH f̂ (2x− l, 2y) (26)

f̂ (2x, 2y + 1) =
∞

∑
l=−∞

hV f̂ (2x, 2y− l) (27)

f̂ (2x + 1, 2y + 1) =
∞

∑
l=−∞

hD f̂ (2x− l, 2y− l). (28)

Thus the inverse Difference Transform is formed by Equations (22)–(28). Because in fil-
tering the interleaved sample values depend only on the original samples (WS), filtering
can be performed in any order. This represents the inverse transformation on one level;
consequently, similarly to the decomposition process, it can also be applied to a larger
number of levels, as shown in Figure 9, Algorithms 3 and 4.

Figure 9. Multiresolution decoding procedure for 2D Difference Transform.

Figure 10 shows the diagram of how the complete coding process is performed. At
first, the Difference Transform is applied to the original image and the Huffman encoding
is applied to the resulting data, generating the compressed file of the image. In addition,
in Figure 4, a numerical example is observed when applying the Difference Transform.
The blue color represents the values for Ws, the orange color represents WH , the green
color is WD, and the yellow color is WV . Also, Figure 4 shows the diagram blocks of the
decompression process.
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Algorithm 3: Inverse Differences Transform algorithm (TIDiferences function).

1 Input: image, Xini, Yini, Xend, Yend
2 w← Xend− Xini
3 h← Yend−Yini
4 hal f W ← w÷ 2
5 hal f H ← h÷ 2
6 auxImage = copy(image)
7 //Transformation algorithm.
8 //Top left
9 i← j← 0

10 for y← Yini to Yend− 1 step 2 do
11 for x ← Xini to Xend− 1 step 2 do
12 auxImage(y, x)← image(j, i)
13 i← i + 1

14 j← j + 1
15 i← 0

16 //top right
17 i← j← 0
18 for y← Yini to Yend step 2 do
19 for x ← Xini to Xend− (w%2) step 2 do
20 if i + 1 ≥ hal f W then
21 auxImage(y, x + 1)← image(j, i)− image(j, i + hal f W)
22 else
23 auxImage(y, x + 1)←

((image(j, i) + image(j, i + 1))/2)− image(j, i + hal f W)

24 i← i + 1

25 j← j + 1
26 i← 0

27 //lower left
28 i← j← 0
29 for y← Yini to Yend− (h%2) step 2 do
30 for x ← Xini to Xend step 2 do
31 if j + 1 ≥ hal f W then
32 auxImage(y + 1, x)← image(j, i)− image(j + hal f H, i)
33 else
34 auxImage(y + 1, x)←

((image(j, i) + image(j + 1, i))/2)− image(j + hal f H, i + hal f W)

35 i← i + 1

36 j← j + 1
37 i← 0

38 //lower right
39 i← j← 0
40 for y← Yini to Yend− (h%2) step 2 do
41 for x ← Xini to Xend− (w%2) step 2 do
42 if i + 1 ≥ hal f Wor(j + 1) ≥ hal f H then
43 auxImage(y + 1, x + 1)← image(j, i)− image(j + hal f H, i + hal f w)
44 else
45 auxImage(y + 1, x + 1)←

((image(j, i) + image(j + 1, i + 1))/2)− image(j + hal f H, i + hal f W)

46 i← i + 1

47 j← j + 1
48 i← 0
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Algorithm 4: Inverse Difference Transform multiresolution algorithm.

1 Input: image, levels
2

3 auxImage = copy(image)
4 for i← 0 to levels do
5 w← image.width
6 h← image.height
7 for j← 0 to i− 1 do
8 w← f loor(w÷ 2)
9 h← f loor(h÷ 2)

10 auxImage← TIDi f erences(auxImage, 0, 0, w, h)

11

12 return auxImage

Figure 10. Difference Transform compression/decompression model, a numerical example.

4. Results

In this section, we will describe the process for the application of 2D TDC in medical
images and in some conventional images. The image dataset used for the experimental
scheme in this section are comprised of the following:

• 2 classic images (Lena and House) in RGB and grayscale that are referenced in image
processing;

• 9 natural images in PGM format of different sizes in 8 and 16 bits in both color and
grayscale;

• 6 color images with different sizes and 24 bits that correspond to common examples
in image processing; and

• 3 medical imaging datasets. The first dataset contains 612 items corresponding to
24-bit color colonoscopy images captured in original TIFF format. The second dataset
contains 850 chest X-ray images, in 24-bit color of the original PNG format. The third
dataset contains 517 knee X-ray images (1 and 2 knees) in 24-bit color and original
PNG format.
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Figure 11 illustrates the process applied to generate the results of this section. As
shown in Figure 11, Algorithm 2 is applied to the images, which in turn calls on Algorithm 1,
as described in Section 3.1. After applying the Algorithm 2, an array of integer values of the
same dimension as the image is generated. These values are between [−2N , 2N ] where N is
the number of bits with which the image is represented. To achieve compression in this
matrix, it is necessary to apply an encoding method to eliminate data redundancy. In this
paper, to check the 2D TDC efficiency, Huffman coding is applied. As a result of applying
the encoding method, an images bank with lossless compression is obtained. From this
dataset, tables and graphs, which will be shown in this section, are obtained. To verify
that the images were losslessly compressed, Algorithm 4 is applied, which in turn invokes
Algorithm 3, as described in Section 3.1. Although Figure 11 is described for the medical
image dataset, it is also applicable to conventional images.

Figure 11. Process to generate the medical image dataset with lossless compression.

In order to visually illustrate what happens with the 2D TDC, the following Figures
are presented. Figure 12 presents the original images, Figure 13 visually shows the result of
applying the Algorithm 2 and finally Figure 14 shows the result of applying the 2D TDC
three times.

Figure 12. Original images.

Once we know what happens with the 2D TDC, we will begin to apply it to a non-
medical image dataset in order to demonstrate the compression of the 2D TDC capabilities.
After obtaining the results in these images, the algorithm proposed in this paper will be
applied to a medical image dataset to show that 2D CDT is a good alternative in images
where the information must be kept 100% in light files for its use.

The compression ratio, shown in all Tables, was calculated by the original image file
size divided by the compressed image file size (TDC and encoding).
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Figure 13. Result of applying the 2D TDC for the first time.

Figure 14. Result of applying the 2D TDC three times.

Figures 15 and 16 show a set of 9 images with different sizes, which represent the
images in grayscale and in color used, both for 8 and 16 bits. As seen in Tables 1 and 2, the
commercial JPEG-LS algorithm is practically the one with the best lossless compression for
this image set. However, the results shown in Tables 1 and 2 of the 2D TDC are the ones
with the least compression. This does not necessarily imply that this algorithm should be
discarded because the 2D TDC is designed in such a way that the greater the number of
bits used, the greater the compression ratio. The increase in compression is linear; thus,
more information means more compression. Due to the nature of the 8-bit images used
in this process, the images are already light by definition. The 2D TDC compresses less
than the other algorithms, and the impact on the final size is not very significant. This is
illustrated in the results shown in Tables 3 and 4.
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Figure 15. Set of 8-bit and 16-bit grayscale images.

Figure 16. Set of 8-bit and 16-bit color images.
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Table 1. Compression rate in 8-bit grayscale. (common formats).

Image Name (Dimensions) JPEG-LS JPEG 2000 Lossless JPEG PNG TDC

1. artificial.pgm (2048 × 3072) 10.03 6.72 4.884 8.678 3.793
2. big_tree.pgm (4550 × 6088) 2.144 2.106 1.806 1.973 1.503
3. bridge.pgm (4049 × 2749) 1.929 1.91 1.644 1.811 1.370

4. cathedral.pgm (4049 × 2749) 2.241 2.16 1.813 2.015 1.488
5. deer.pgm (2641 × 4043) 1.717 1.748 1.583 1.713 1.358

6. fireworks.pgm (2352 × 3136) 5.46 4.853 3.355 4.095 3.077
7. flowers_foveon.pgm (1512 × 2268) 3.925 3.65 2.97 3.054 2.045

8. hdr.pgm (2048 × 3072) 3.678 3.421 2.795 2.857 1.947
9. spider_web.pgm (2848 × 4256) 4.531 4.202 3.145 3.366 2.390

Table 2. Compression rate in 8-bit RGB (common formats).

Image Name (Dimensions) JPEG-LS JPEG 2000 Lossless JPEG PNG TDC

1. artificial.pgm (2048 × 3072) 10.333 8.183 4.924 10.866 3.860
2. big_tree.pgm (4550 × 6088) 1.856 1.823 1.585 1.721 1.330
3. bridge.pgm (4049 × 2749) 1.767 1.765 1.553 1.686 1.301

4. cathedral.pgm (4049 × 2749) 2.12 2.135 1.734 1.922 1.428
5. deer.pgm (2641 × 4043) 1.532 1.504 1.407 1.507 1.231

6. fireworks.pgm (2352 × 3136) 5.262 4.496 3.279 3.762 2.834
7. flowers_foveon.pgm (1512 × 2268) 3.938 3.746 2.806 3.149 2.128

8. hdr.pgm (2048 × 3072) 3.255 3.161 2.561 2.653 1.869
9. spider_web.pgm (2848 × 4256) 4.411 4.209 3.029 3.365 2.041

Table 3. Compression rate in 16-bit Grayscale (common formats).

Image Name (Dimensions) JPEG-LS JPEG 2000 Lossless JPEG PNG TDC

1. artificial.pgm (2048 × 3072) 4.703 4.007 2.791 4.381 7.619
2. big_tree.pgm (4550 × 6088) 1.355 1.325 1.287 1.181 3.561
3. bridge.pgm (4049 × 2749) 1.309 1.279 1.244 1.147 2.735

4. cathedral.pgm (4049 × 2749) 1.373 1.337 1.293 1.191 2.978
5. deer.pgm (2641 × 4043) 1.252 1.241 1.225 1.132 2.705

6. fireworks.pgm (2352 × 3136) 1.946 1.809 1.740 1.604 6.207
7. flowers_foveon.pgm (1512 × 2268) 1.610 1.591 1.523 1.316 4.102

8. hdr.pgm (2048 × 3072) 1.195 1.563 1.491 1.297 3.922
9. spider_web.pgm (2848 × 4256) 1.736 1.771 1.554 1.367 5.032

Table 4. Compression rate in 16-bit RGB (common formats).

Image Name (Dimensions) JPEG-LS JPEG 2000 Lossless JPEG PNG TDC

1. artificial.pgm (2048 × 3072) 4.335 4.734 2.695 4.896 7.756
2. big_tree.pgm (4550 × 6088) 1.302 1.261 1.249 1,159 2.660
3. bridge.pgm (4049 × 2749) 1.274 0.1243 1.240 1.132 2.598

4. cathedral.pgm (4049 × 2749) 1.379 1.333 1.267 1.218 2.859
5. deer.pgm (2641 × 4043) 1.197 1.173 1.236 1.100 2.459

6. fireworks.pgm (2352 × 3136) 2.378 1.832 1.688 2.053 5.829
7. flowers_foveon.pgm (1512 × 2268) 1.724 1.664 1.494 1.371 4.261

8. hdr.pgm (2048 × 3072) 1.535 1.518 1.473 1.275 3.733
9. spider_web.pgm (2848 × 4256) 1.702 1.784 1.531 1.360 4.072

Figure 17 shows the difference in compression rates between JPEG-LS and 2D TDC
for the 9 images used. It can be highlighted that, with the exception of the first image,
which is synthetic, the difference in compression is not remarkable. Figure 17 confirms
what was mentioned in the previous paragraph. As there is less information, because they
are 8-bit images, the 2D TDC compresses less than the JPEG-LS, but the difference in the
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compression rate is not significant. Similarly, Figure 18, based on the data in Table 2, shows
the same behavior as Figure 17 and the reason is that both sets of images are 8 bit. In regard
to image 1, which is the 8-bit synthetic, the colors and grayscales are arranged in such a
way that it generates an advantage for the compression algorithms that are different from
the 2D TDC, which is why the difference in compression is so marked between the JPEG-LS
and the 2D TDC in this image.

Figure 17. Compression rate difference between JPEG-LS and TDC with 8-bit grayscale images.

Figure 18. Compression rate difference between JPEG-LS and TDC with 8-bit color images.

Table 3 shows the compression ratio between the algorithms used in this paper. The
algorithms are applied to a set of 9 16-bit grayscale images. The 2D TDC obtains the best lossless
compression and JPEG-LS is second. It was previously highlighted that Figures 17 and 18 show
that the difference between the image compression rates of the JPEG-LS and 2D TDC algorithms
was not very noticeable. However, the situation changes, because now that there are more bits,
the 2D TDC is compressed more, and the difference in compression rates between the JPEG-LS
and the 2D TDC is further apart.

Table 4 shows the compression ratio of a set of 16-bit RGB images. It can be seen that
the 2D TDC algorithm is the one with the highest lossless compression. The second highest
is the JPEG-LS algorithm (an algorithm widely used in commercial applications). The 2D
TDC confirms that the more information the image has, the more it is compressed, and this
is graphically shown in Figures 19 and 20. When comparing Figures 17–20, it can be seen
that the more bits are present drives the difference of the rate compression between the
JPEG-LS and 2D TDC to be more significant; that is, the rate compression of 2D TDC is
better than the JPEG-LS.
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Figure 19. Compression rate difference between JPEG-LS and TDC with 16-bit gray-scale images.

Figure 20. Comparison JPEG-LS VS TDC (Table 4).

Figure 21 shows a set of 6 24-bit RGB images. The lossless compression algorithms
used are PNG, TIFF, and TDC. The TIFF format is added as it is widely used for creating
medical imaging datasets. Table 5 and Figure 22 illustrate that TIFF has the best lossless
compression on this set of images. The TDC generates the second best compression and
lastly is the PNG. The images that make up this set are relatively medium-sized images;
however the information content they have is high, which implies the importance of
compression. In addition, it is shown that the difference between the compression rate with
non-medical images between the TIFF and the TDC is not very big. TIFF seems to be a
better compressor, although in medical images, Tables 6–9 show the opposite.

Table 5. Compression rate in 24-bit RGB (common formats).

Image Name (Dimensions) PNG TIFF TDC

1. Baboon.bmp (512 × 512) 0.9234 1.0842 0.8354
2. Barbara.bmp (720 × 576) 1.0629 1.2408 1.1921
3. Flowers.bmp (500 × 362) 1.0813 1.3300 1.0725

4. Girl.bmp (720 × 576) 1.1828 1.4138 1.4139
5. House.bmp (256 × 256) 1.1395 1.4000 1.2564
6. Lenna.bmp (512 × 512) 0.9846 1.3591 1.0842
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Figure 21. Set of 24-bit color images.

Figure 22. Comparison between JPEG-LS and 2D TDC (Table 5).

Table 6. Compression rate medical images CVC-ClinicDB.

Image Name (Dimensions) PNG TDC

1. 1.tif (384 × 288) 3.4766 5.5759
2. 10.tif (384 × 288) 3.6817 5.6551
3. 20.tif (384 × 288) 4.3624 6.0639
4. 30.tif (384 × 288) 3.7004 5.6567
5. 40.tif (384 × 288) 4.1710 6.5407
6. 50.tif (384 × 288) 5.1542 7.2669
7. 60.tif (384 × 288) 6.2902 7.1897

8. Average (384 × 288) 3.9926 5.8980
9. Maximum (384 × 288) 2.7035 4.7716
10. Minimum (384 × 288) 6.8059 7.9004
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Table 7. Compression rate medical images Covid-19 Chest X-Ray.

Image Name (Dimensions) TIFF TDC

1. Normal.png (128 × 128) 0.4447 1.8100
2. Normal_64.png (128 × 128) 0.4094 1.5850

3. Normal_115.png (128 × 128) 0.3385 1.5111
4. Normal_199.png (128 × 128) 0.3684 1.5521
5. Normal_255.png (128 × 128) 0.3726 1.6125
6. Normal_459.png (128 × 128) 0.3875 1.4296
7. Normal_629.png (128 × 128) 0.3877 1.4990

8. Average (128 × 128) 0.3790 1.5994
9. Maximum (128 × 128) 0.8928 3.4762
10. Minimum (128 × 128) 0.2619 1.3074

Table 8. Compression rate medical images knee X-ray dataset (1 knee).

Image Name (Dimensions) TIFF TDC

1. Normal G0(4).png (300 × 162) 0.2113 1.2746
2. Normal G0(83).png (300 × 162) 0.1993 1.2493

3. Normal G0(120).png (300 × 162) 0.4523 3.3081
4. Normal G0(217).png (300 × 162) 0.1677 1.1702
5. Normal G0(270).png (300 × 162) 0.1974 1.1975
6. Normal G0(336).png (300 × 162) 0.1438 1.0578
7. Normal G0(441).png (300 × 162) 0.4155 1.1828

8. Average (300 × 162) 0.2471 1.3761
9. Maximum (300 × 162) 1.1087 3.2872
10. Minimum (300 × 162) 0.1283 0.9140

Table 9. Compression rate medical images knee X-ray dataset (2 knees).

Image Name (Dimensions) TIFF TDC

1. Normal G0(452).png (640 × 161) 0.1829 1.1113
2. Normal G0(452).png (640 × 161) 0.1126 1.2929
3. Normal G0(452).png (640 × 161) 0.1053 1.3063
4. Normal G0(452).png (640 × 161) 0.0986 1.2976
5. Normal G0(452).png (640 × 161) 0.0969 1.2983
6. Normal G0(452).png (640 × 161) 0.0948 1.2635

8. Average (640 × 161) 0.1213 1.3124
9. Maximum (640 × 161) 0.5260 3.2615
10. Minimum (640 × 161) 0.0921 1.0967

Concerning medical images, as mentioned above, the most used compression formats
are TIFF and PNG, so they are being compared in lossless compression rate with 2D CDT.
Figure 23 shows 9 images out of 612 that correspond to extracts from colonoscopy video
frames that make up the CVC-ClinicDB dataset. These images are in TIFF format. Table 6
shows some of the selected compression ratio results. In addition to this, Table 6 shows
the average, maximum, and minimum of the compression rate. The latter is calculated
as follows: the compression of all the images is performed, the minimum compression is
obtained, the maximum compression and the compression rates are averaged. The 2D TDC
has the best compression.
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Figure 23. Set of 24-bit color images.

Table 7 shows the compression ratio for normal (non-COVID-19) 24-bit chest X-ray
images with PNG format; taking as an example 9 images out of a total of 850 that were
compressed, we calculate the average of the compression rate, the maximum compression
and the minimum compression. Examples of such images are presented in Figure 24. In
this table, also, it is observed that the 2D CDT has the best compression.

Figure 24. COVID-19 Chest images dataset X-ray (examples).

Figures 25 and 26 correspond to examples of knee X-ray images; of a total of 517 there
are 2 subsets of 452 and 65 elements, for 1 and 2 knees respectively. They are presented
in 24-bit PNG format. Table 8 presents some examples of the average compression, the
maximum compression, and the minimum compression ratio for this image dataset. Also,
in this medical image dataset, we can observe that the 2D TDC has the best lossless compression.
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Figure 25. Knee X-ray dataset (1 knee).

Figure 26. Knee X-ray dataset (2 knee).

5. Discussion

The experiments and the results carried out and shown in this paper reveal that the
2D TDC has outstanding advantages over commercial algorithms such as JPEG, TIFF, and
PNG, which makes it a very advantageous option for use in medical imaging and also
for other types of images. Despite the fact that it was not the best lossless compression
algorithm for grayscale images, it should not necessarily be discarded for use in these
images. As mentioned above, 8-bit grayscale images by nature do not have many bits to
define the gray tone; that is, they are light images in terms of bit size. For this reason, the
2D TDC can be utilized to compress grayscale images. The way in which the 2D TDC is
designed guarantees that the more information there is, the greater the compression will
be, asl confirmed by the tables and figures that refer to 16- and 24-bit images. We believe
that 2D TDC is an excellent lossless compression option for 16-bit and 24-bit images.

When performing a transformation on the pixels in a digital image, it can produce
scattered values between a known range, even though the total of possible values is
unknown, which is a problem. The 2D TDC manages to identify the values that are obtained.
This is an advantage offered by the 2D TDC. For example, for the 8-bit representation, the
result of the 2D TDC corresponds only to 2N+1 + 1 possible values within an interval of
[−2N , 2N ] where N is the number of bits used to represent each pixel.

In Figures 13 and 14, the TDC can be visually observed as an image in which the
grayscale areas are very similar, and the greatest compression is generated. On the other
hand, the compression is more minute where there are gradients or contours. In Figure 14, it
can be seen that 2D TDC can be applied to the compressed image and further compression
is achieved. With the proposed algorithm, we achieve the decorrelation of the information
in a simple and fast way compared to commercial algorithms.

The algorithms compared with the 2D TDC, are considered as standard formats, so
they are fully developed and optimized. The above gives the TDC an edge because it is
not optimized. For TDC, in this research, only Huffman coding was used initially to test
its behavior and still obtained excellent results, beating PNG and TIFF. We propose, as a
future work, to investigate and apply other coding methods to optimize the algorithm and
significantly improve the results obtained in this paper. The latter allows us to propose the
following hypothesis: Because the TDC generates values only within a specific interval
and uses optimal coding methods, it is possible to create an efficient coding model that
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contains only the values obtained and not an undefined range of values as happens with
other transformations.

There are recent algorithms that are efficient in lossless compression as is the case
of Kabir [61]. They perform lossless compression through axis-based transformations
and predictions along with entropy coding, achieving average compression ratios of 2.06.
Another algorithm is the one registered in [62], where they proposed a joint compression
and encryption scheme based on adaptive lossless image codec (CALIC) and hyperchaos,
indicating that it achieves compression ratios of up to 15.87. On the other hand, in [63]
they use the Golomb–Rice prediction and coding techniques applied to a chip specifically
designed to achieve compression obtaining an average compression ratio of 1.53. On our
part, the highest lossless compression obtained was 7756 as can be seen in Table 3. When
compared to the three algorithms mentioned above, it is clear that our algorithm does
not compress the most, but does commpress the second most. This may be due to other
situations; for example, [61] makes the tests with a set of pixelated images, whereas we use
datasets with large images—on average 4000 × 2000 pixels as shown in Figures 15 and 16.
It would be ideal to compare the Difference Transform with state-of-the-art algorithms
under the same computing conditions and with the same image sets to determine which
would be the best compressor.

One of the contributions we present in this study is that we propose an algorithm that
differs from the existing ones because we show a transform that is simple to implement,
fast in its execution, and capable of compressing more than the standard compression
algorithms (which are the algorithms against which all new compression algorithms are
compared). Another aspect that differentiates our algorithm from others is that it can
replace the Wavelets Transform and the Cosine Transform, which are widely used for new
compression methods such as those mentioned in the related works section. That is the
hallmark of this paper—to present a new, lossless compression algorithm that can be useful
in areas such as medicine where data sensitivity matters.

6. Conclusions

In this paper, a new transformation algorithm for digital images was presented: the
Difference Transform for 1 and 2 dimensions applied to lossless compression, where medical
image datasets were used. Moreover, non-medical images were also used to demonstrate
that the TDC is competitive with image algorithms such as the JPEG-LS. Medical datasets
are in PNG and TIFF formats. Through the results shown, the TDC proved to have higher
lossless compression than the commercial algorithms (JPEG-LS, TIFF, and PNG). The results
confirm that 2D TDC is recommended for use in medical images, where the images contain
a lot of information and need to occupy as little space as possible for their processing,
display, and transmission.

Further research for the application of the Difference Transform concerns the content
of 360° images. This issue is novel because it allows the conversion of 360° images into
metric products [64]. These 360° images have ultra-high resolution that maps to the two-
dimensional plane and conforms to existing encoding standards for higher transmission
speed. For example, [65] shows an evaluation framework for the coding performance of
various projection formats including graphic formats such as JPEG and JPEG2000, present-
ing quality 2D metrics for measuring distortion in 360° images. Reference [66] presents
an international JPEG 360° development that proposes a compatibility standardization be-
tween cameras and software. For this proposal, Huffman coding and the Cosine Transform
are used. In [67], an effective algorithm is proposed to evaluate 360° omnidirectional image
quality without reference using multifrequency and local information. They decompose
the projected equirectangular projection maps into Wavelet subbands; with the proposed
multifrequency information measurement and the local–global naturalness measurement,
a support vector regression is used as the final image quality regressor. Because the Differ-
ence Transform outperforms formats like JPEG2000 and can replace the Cosine Transform
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and the Wavelet Transform, it would be an excellent opportunity to apply it to 360° images
under the same metrics to determine the quality of the image.

Another investigation would involve image quality. There is one study by Wei Zhou et
al. which proposes a method to evaluate image quality through super-resolution algorithms.
This involves examining a unique image in a two-dimensional space of structural fidelity
versus statistical naturalness [68]. Moreover, to improve perception and image quality,
Xin Deng and et al. propose a method based on Wavelet domain-style transfer, which
manages to improve the compensation of perception distortion. They propose the use of
the 2D stationary Wavelet Transform to decompose an image into low- and high-frequency
subbands, achieving interesting results [69]. This gives us the opportunity to apply the
Difference Transform to 360° image standards and test the effectiveness of the image quality.
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