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Abstract: Uncovering causal interdependencies from observational data is one of the great challenges
of a nonlinear time series analysis. In this paper, we discuss this topic with the help of an information-
theoretic concept known as Rényi’s information measure. In particular, we tackle the directional
information flow between bivariate time series in terms of Rényi’s transfer entropy. We show that
by choosing Rényi’s parameter α, we can appropriately control information that is transferred only
between selected parts of the underlying distributions. This, in turn, is a particularly potent tool for
quantifying causal interdependencies in time series, where the knowledge of “black swan” events, such
as spikes or sudden jumps, are of key importance. In this connection, we first prove that for Gaussian
variables, Granger causality and Rényi transfer entropy are entirely equivalent. Moreover, we also
partially extend these results to heavy-tailed α-Gaussian variables. These results allow establishing a
connection between autoregressive and Rényi entropy-based information-theoretic approaches to data-
driven causal inference. To aid our intuition, we employed the Leonenko et al. entropy estimator and
analyzed Rényi’s information flow between bivariate time series generated from two unidirectionally
coupled Rössler systems. Notably, we find that Rényi’s transfer entropy not only allows us to detect a
threshold of synchronization but it also provides non-trivial insight into the structure of a transient
regime that exists between the region of chaotic correlations and synchronization threshold. In
addition, from Rényi’s transfer entropy, we could reliably infer the direction of coupling and, hence,
causality, only for coupling strengths smaller than the onset value of the transient regime, i.e., when
two Rössler systems are coupled but have not yet entered synchronization.

Keywords: Rényi entropy; Rényi transfer entropy; Rössler system; multivariate time series

1. Introduction

The time evolution of a complex system is usually recorded in the form of a time
series. Time series analysis is a traditional field of mathematical statistics; however, the
development of nonlinear dynamical systems and the theory of deterministic chaos have
opened up new vistas in the analysis of nonlinear time series [1,2]. The discovery of
the synchronization of chaotic systems [3] has changed the study of interactions and
cooperative behavior of complex systems and brought new approaches to studying the
relations between nonlinear time series [4]. During the process of synchronization, two
systems can either mutually interact or only one can influence the other. In order to
distinguish these two ways, and to find which system is the driver (“master”) and which
is the response (“slave”) system, a number of approaches from the dynamical system
theory have been proposed [5–8]. The aforementioned problem of synchronization can
be seen as part of a broader framework known as causality or causal relations between
systems, processes, or phenomena. The mathematical formulation of causality, in terms
of predictability, was first proposed by Wiener [9] and formulated for the time series by
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Granger [10]. In particular, Granger introduced what is now known as Granger causality,
which is a statistical concept of causality that is based on the evaluation of predictability in
bivariate autoregressive models.

Extracting causal interdependencies from observational data is one of the key tasks in
a nonlinear time series analysis. Apart from the linear Granger causality and various nonlin-
ear extensions thereof [11–13], existing methods for this purpose include state-space-based
approaches, such as conditional probabilities of recurrence [14–16], or information-theoretic
quantities, such as conditional mutual information [17,18] and transfer entropies [2,19–21].
In particular, the latter information-theoretic quantities represent powerful instruments in
quantifying causality between time-evolving systems. This is because ensuing information-
theoretic functionals (typically based on Shannon entropy) quantify—in a non-parametric
and explicitly non-symmetric way—the flow of information between two (or more) time
series. In particular, transfer entropies (TEs) have recently received considerable attention.
The catalyst was the infusion of new (numerical and conceptional) ideas. For instance, the
performances of the Shannon entropy-based conditional entropies and conditional mutual
entropies have been, in recent years, extensively tested using numerically-generated time
series [17,22]. Sophisticated algorithms have been developed to uncover direct causal
relations in multivariate time series [23–25]. In parallel, increasing attention has been
devoted to the development of reliable estimators of entropic functionals to detect causality
from nonlinear time series [26]. At the same time, it has been recognized that information-
theoretic approaches play important roles in dealing with complex dynamical systems that
are multiscale and/or non-Gaussian [21,27–29]. The latter class includes complex systems
with heavy-tailed probability distributions epitomized, e.g., in financial and climatological
time series [30,31].

In this paper, we extend the popular Shannon entropy-based TE (STE), which repre-
sents a prominent tool for assessing directed information flow between joint processes, and
quantifies information transfer in terms of Rényi’s TE (RTE). RTE was introduced by one
of us (PJ) in reference [21] in the context of a bivariate financial time series. The original
idea was to use the RTE in order to exploit the theoretical formulation that could identify
and quantify peculiar features in multiscale bivariate processes (e.g., multiscale patterns,
generalized fractal dimensions, or multifractal cross-correlations) that are often seen in
finance. In contrast to [21], where the focus was mostly on qualitative aspects of Rényian
information flow between selected stock-market time series, in the present work, we wish to
be more quantitative by analyzing coupled time series that are numerically generated from
known dynamics. Specifically, we demonstrate how the RTE method performs in the detection
of the coupling direction and onset of synchronization between two Rössler oscillators [32] that
are unidirectionally coupled in the first variable x. The Rössler system (RS) is a paradigmatic
and well-studied low-dimensional chaotic dynamical system. When coupled, RSs allow
for synchronization as well as a subtle phenomenon known as “phase synchronization”,
i.e., when the amplitudes of both systems are not correlated while the phases are approxi-
mately equal. In this respect, the synthetic bivariate time series (generated from coupled
RSs) serves as an excellent test-bed, allowing to numerically analyze, e.g., drive–response
relationships or identify the ensuing onset (or threshold) of synchronization. In doing so,
we identify factors and influences that can lead to either decreases in the RTE sensitivity
or false detections and propose some ways to cope with them. The aforementioned issues
have not been explicitly studied in the framework of the RTE; this work presents the first
attempt in this direction.

To set the stage, we shall first, in Section 2, provide the information-theoretic back-
ground on Rényi entropy (RE), which will be needed in the main body of the text. For
self-consistency of our exposition, we briefly review Shannon’s transfer entropy of Schreiber
and motivate and derive the core quantity of this work—the Rényi transfer entropy. The
issue of causality (and its connection to RTE) is examined in Section 3. In particular, we
prove that the Granger causality is entirely equivalent to the RTE for Gaussian processes
and show how the Granger causality and the RTE are related in the case of heavy-tailed
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(namely α-Gaussian) processes. Section 4 is dedicated to derived information-theoretic
concepts, such as the balance of transfer entropy and effective transfer entropy that will be
employed in our analysis. The proposed framework is then illustrated on two unidirection-
ally coupled Rössler systems as a paradigmatic example. To cultivate our intuition about
the latter RSs, we discuss in Section 5 the inner workings of such RSs in terms of simple
numerical experiments. The ensuing numerical analysis is presented in Section 6, where
we discuss how the RTE can be used to detect causality and the onset of synchronization in
the two coupled RSs. We also demonstrate how the RTE provides non-trivial insight into
the structure of a transient regime that exists between the regions of chaotic correlations
and the onset of synchronization. Finally, Section 7 summarizes our theoretical and nu-
merical findings and discusses possible extensions of the present work. For the reader’s
convenience, we relegate some technical issues concerning the RE estimator employed and
the statistical significance of results presented to Appendices A and B.

2. Rényi Entropy

Information theory approaches based on Shannon entropy currently belong in the
portfolio of techniques and tools that are indispensable in addressing causality issues in
complex dynamical systems. At the same time, Shannon’s information theory is limited in
its scope. In fact, since Shannon’s seminal papers [33], it has been known that Shannon’s
information measure (or entropy) represents mere idealized information, appearing only
in situations when the buffer memory (or storage capacity) of a transmitting channel is
infinite. In particular, Shannon’s source coding theorem (or noiseless coding theorem),
which establishes the limits to possible data compression and, thus, provides operational
meaning to the Shannon entropy, assumes that the cost of a codeword is a linear function of
its length (so the optimal code has a minimal cost out of all codes). However, the linear
costs of codewords are not always desirable. For instance, when the storage capacity is
finite one would aim to penalize excessively lengthy codewords with a price that is, e.g.,
exponential rather than the linear function of the length.

For these reasons, information theorists have devised various remedies to deal with
such cases. This usually consists of substituting Shannon’s information measure with
information measures of other types. Consequently, numerous generalizations of Shannon’s
entropy have started to proliferate in the information-theory literature, ranging from
additive entropies [34,35] to a rich class of non-additive entropies [36–40], to more exotic
types of entropies [41]. The one-parametric class of information measures, known as Rényi
entropies, introduced by Hungarian mathematician and information theorist Alfred Rényi in
the early 1960s [42,43], is particularly prominent among such generalizations. Applications
of RE in information theory, namely its generalization to coding theorems, were carried
over by Campbel [44], Csiszár [45,46], Aczél [47], and others. In a physical setting, RE
was popularized in the context of chaotic dynamical systems by Kadanoff et al. [48] and in
connection with multifractals by Mandelbrot [49]. RE is also indispensable in the quantum
information theory where it quantifies multipartite entanglement [50].

In its essence, REs constitute a one-parametric family of information measures labeled
by parameter α, fulfilling the additivity with respect to the composition of statistically
independent systems. The special case with α = 1 corresponds to ordinary Shannon’s
entropy. REs belong to a broader class of so-called Uffink entropic functionals [51,52], i.e.,
the most general class of solutions that satisfy Shorem–Johnson axioms for the maximum
entropy principle in the statistical estimation theory. Moreover, it might be shown that
Rényi entropies belong to the class of the so-called mixing homomorphic functions [53]
and that they are analytic for α ∈ CI∪IV , cf. [34].

2.1. Definition

RE is defined as an exponentially weighted mean of the Hartley information measure
−log p (i.e., elementary measure of information) [54]. In fact, it was shown by Rényi that,
except for a linearly-weighted average (which leads to Shannon entropy), exponential
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weighting is the only possible averaging that is both compatible with the Kolmogorov–
Nagumo average prescription and leads to entropies that are additive, with respect to
independent systems [42,43]. RE, associated with a system described with a probability
distribution P , reads

Hα[P ] =
1

1− α
log2

n

∑
i=1

pα
i . (1)

RE has the following properties [34,43]:

• RE is symmetric, i.e., Hα[{p1, . . . , pn}] = Hα[{pπ(1), . . . , pπ(n)}];
• RE is non-negative, i.e., Hα ≥ 0;
• limα→1 Hα = H1, where H1 = H is the Shannon entropy;
• H0 = log2 n is the Hartley entropy and H2 = − log2 ∑n

i=1 p2
i is the Collision entropy;

• 0 ≤ Hα[P ] ≤ log2 n;
• Hα is a positive, decreasing the function of α ≥ 0.

Let us mention that Hα[P ] with different αs complement each other. This is because
for each specific α, the ensuing Hα[P ] carries extra information that is not present in any
other Hβ[P ] with β 6= α. In information theory, this fact is known as the reconstruction
theorem, namely, the underlying distribution P can be uniquely reconstructed only if all
Hα[P ] are known, [21,34,55]. In chaotic dynamical systems, the reconstruction theorem
goes under the name complementary generalized dimensions [56] (cf. also next subsection).

2.2. Multifractals, Chaotic Systems, and Rényi Entropy

Another appealing property of the Rényi entropy is its close connection to multifractals,
i.e., the mathematical paradigm that is often encountered in complex dynamical systems
with examples ranging from turbulence and strange attractors to meteorology and finance,
see, e.g., [57]. The aforementioned connection is established through the so-called generalized
dimensions, which are defined as [2,48]

Dα = − lim
δ→0

Hα(δ)

log δ
(2)

where δ is a size of a δ−mesh covering of a configuration space of a system. General-
ized dimensions Dα are conjugate to the multifractal spectrum f (β) through the Legendre
transform [48]

(α− 1)Dα = αβ − f (β). (3)

The function f (β) is called the multifractal spectrum because β plays the role of the scaling
exponent in the local probability distribution, e.g., distribution with support on the i-th
hypercube of a mesh size δ scale, as pi(δ) ∼ δβi . The key assumption in the multifractal
analysis is that in the small δ− limit, the local probability distribution depends smoothly
on β. It can be argued that f (β) corresponds to the (box-counting) fractal dimension of the
portion of the configuration space where local probability distributions have the scaling
exponent β, cf., e.g., reference [34]. In this way, the multifractal can be viewed as an
ensemble of intertwined (uni)fractals, each with its own fractal dimension f (β).

The multifractal paradigm is particularly pertinent in the theory of chaotic systems. For
instance, chaotic dynamics and strange attractors, in particular, are uniquely characterized
by the infinite sequences of generalized dimensions Dα, cf. reference [56]. In particular, the
generalized dimensions can help to recognize (in a quantitative way) the main geometric
features of chaotic systems. For instance, they may help to distinguish chaotic behavior
from noisy behavior, determine the number of variables that are needed to model the
dynamics of the system or classify systems into universality classes. On the other hand,
dynamical features of chaotic systems are often analyzed through such quantifiers as
Lyapunov exponent, which is a measure of the divergence of nearby trajectories, or ensuing
Kolmogorov-Sinai entropy rate (KSE), which quantifies the change of entropy as the system
evolves and is given by the sum of all positive Lyapunov exponents. The connection
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between KSE and the time evolution of the information-theoretic or statistical entropy is
quite delicate, see, e.g., the discussion in reference [58], though the upshot is clear, in order
to describe the dynamics of a (complex) system, the temporal change or the difference
in entropy is more relevant than the entropy itself. Consequently, while RE (alongside
with Dα) is a suitable quantifier of geometric properties of chaotic systems, its temporal
differences or temporal rates are useful for the description of the dynamics of such systems.
Rényi’s transfer entropy follows the latter route.

2.3. Shannon Transfer Entropy

In order to understand the concept of Rényi transfer entropy, we recall first its Shan-
non’s counterpart.

Let X = {xi}N
i=1 be a discrete random variable with ensuing probability distribution

PX , then the Shannon entropy of this process is

H(X) ≡ H(PX) = − ∑
x∈X

p(x) log2 p(x) . (4)

Let Y = {yi}N
i=1 be another random variable, then mutual information between X and Y is

I(X :Y) = ∑
x∈X, y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)

= H(X) − H(X|Y) = H(Y) − H(Y|X) , (5)

where quantity H(X|Y) is the conditional entropy, defined as

H(X|Y) = − ∑
x∈X, y∈Y

p(x, y) log2 p(x|y) . (6)

Mutual information quantifies an average reduction in uncertainty (i.e., gain in information)
about X resulting from the observation of Y, or vice versa. Since I(X : Y) = I(Y : X), it
cannot be used as a measure of directional information flow. Note also that the amount of
information contained in X about itself is just the Shannon entropy, i.e., I(X : X) = H(X).

The mutual information between two processes X and Y conditioned on the third
process Z is called conditional mutual information and is defined as

I(X : Y|Z) = H(X|Z) − H(X|Y, Z) = I(X : (Y, Z)) − I(X : Y) . (7)

Let us now consider two time sequences (e.g., two stock market time series) described by
stochastic (possibly vector-type) random variables Xt and Yt. Let us assume further that the
time steps (e.g., data ticks) are discrete with the time step τ and with tn = t0 + nτ where t0
is some reference time. For practical purposes, it is also useful to assume that Xt and Yt
represent discrete-time stochastic Markov processes of order k and l, respectively.

We wish to know what information will be gained on Xtn+1 by observing Yt up to time
tn. To this end, we introduce the joint process Xtn , Xtn−1 , . . . , Xtn−k+1 , which we denote as

X(k)
n , and similarly, we define the joint process Y(l)

n ≡ Ytn , Ytn−1 , . . . , Ytn−l+1 . By replacing

X in (7) by Xtn+1 , Y by Y(l)
n , and Z by X(k)

n , we obtain the desired conditional mutual
information

I(Xtn+1 : Y(l)
n |X

(k)
n ) = H(Xtn+1 |X

(k)
n ) − H(Xtn+1 |Y

(l)
n , X(k)

n )

= ∑
x(k)n ∈X(k)

n+1, y(l)n ∈Y(l)
n

p(xn+1, x(k)n , y(l)n ) log2

(
p(xn+1|x

(k)
n , y(l)n )

p(xn+1|x
(k)
n )

)
. (8)

The conditional mutual information (8) is also known as Shannon transfer entropy from
Yt to Xt (or simply from Y to X) and as a measure of the directed (time asymmetric) infor-
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mation transfer between joint processes, it was introduced by Schreiber in reference [19].
The latter is typically denoted as

TY→X(k, l) ≡ I(Xtn+1 : Y(l)
n |X

(k)
n ) . (9)

As already mentioned, for independent processes, TE is equal to zero. For a non-zero
case transfer, entropy measures the deviation from the independence of the two processes.
An important property of the transfer entropy is that it is directional, i.e., in general,
TY→X 6= TX→Y.

2.4. Rényi Transfer Entropy

In the same manner as in (7), we can introduce the Rényi transfer entropy of order α from
Y to X (see also reference [21]) as

TR
α,Y→X(k, l) = Hα(Xtn+1 |X

(k)
n ) − Hα(Xtn+1 |X

(k)
n , Y(l)

n )

= Iα(Xtn+1 : Y(l)
n |X

(k)
n ) , (10)

where Hα(X|Y) is the conditional entropy of order α and Iα(X : Y) is the mutual information of
order α. These can be explicitly written as [21,43]

Hα(X|Y) =
1

1− α
log2

∑x∈X,y∈Y pα(x, y)

∑y∈Y pα(y)
,

Iα(X : Y) =
1

1− α
log2

∑x∈X,y∈Y pα(x)pα(y)

∑x∈X,y∈Y pα(x, y)
. (11)

It can be checked (via L’Hospital’s rule) that Rényi’s transfer α-entropy reduces to Shannon
TE in the α→ 1 limit, i.e.,

lim
α→1

TR
α,Y→X = TY→X . (12)

From (10), we see that TR
α,Y→X(k, l) may be intuitively interpreted as the degree of ignorance

(or uncertainty) about Xtn+1 resolved by the past states Y(l)
n and X(k)

n , over and above the
degree of ignorance about Xtn+1 already resolved by its own past state alone. Here, the
ignorance is quantified by the Rényi information measure (i.e., RE) of order α.

Rényi TE can also be negative (unlike the Shannon TE). This means that the uncer-
tainty of the process Xt becomes bigger knowing the past of Yt, i.e., Hα(Xtn+1 |X

(k)
n ) ≤

Hα(Xtn+1 |X
(k)
n , Y(l)

n ). If Xt and Yt are independent, then TR
α,Y→X = TR

α,X→Y = 0. However,
in contrast to Shannon’s case, the fact that TR

α,Y→X = 0 does necessarily imply the indepen-
dence of the two underlying stochastic processes. Nonetheless, in Section 3, we prove that
in case of Gaussian (Wiener) processes, 0-valued RTE is a clear signature of independence.

Due to the reconstruction theorem mentioned in Section 2.1, RTE TR
α,Y→X conveys for

each α a different type of directional information from Y to X. The essence of this statement
can be understood qualitatively by introducing the so-called escort distribution.

2.5. Escort Distribution

Because of the nonlinear way in which probability distributions enter in the definition
of RE, cf. Equation (1), the RTE represents a useful measure of transmitted information that
quantifies the dominant information flow between certain parts of underlying distributions.
In fact, for 0 < α < 1, the corresponding information flow accentuates marginal events,
while for α > 1, more probable (close-to-average) events are emphasized [21]. In this
respect, one can zoom or amplify different parts of probability density functions involved
by merely choosing appropriate values of α. This is particularly useful in studies of time
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sequences, where marginal events are of crucial importance, for instance, in financial
time series.

In order to better understand the aforementioned “zooming” property of RTE, we
rewrite (10) in the form

TR
α,Y→X(k, l) =

1
1− α

log2

 ∑ pα(x(k)n )

∑ pα(x(k)n )
pα(xn+1|x

(k)
n )

∑ pα(x(k)n ,y(l)n )

∑ pα(x(k)n ,y(l)n )
pα(xn+1|x

(k)
n , y(l)n )

 . (13)

This particular representation shows how the underlying distribution changes (or deforms)
with the change of parameter α. The numerator and denominator inside the log-function
contain the so-called escort (or zooming) distributions ρα

ρα(x) ≡ pα(x)
∑x∈X pα(x)

, (14)

which emphasize less probable events for 0 < α < 1 and more probable events when α > 1,
see Figure 1.

Figure 1. Illustration of the concept of escort distribution ρα on histograms. The left figure depicts
log-scaled normal distribution N (0, 1), while in the right figure, we show the log-scaled histogram
for x1−projection increments from the Rössler system (51). Both figures demonstrate that the escort
distribution deforms the original distribution (α = 1) so that 0 < α < 1 less probable events
are emphasized (the smaller, α the greater emphasis) while high probable events are accordingly
suppressed. For α > 1, the situation is reversed.

Note also that ρα(x(k)n , y(l)n ) is not the joint probability distribution of X(k)
n and Y(l)

n as
it does not satisfy the Kolmogorov–de Finetti relation for conditional probabilities [59].

In connection with (13), we may note that for 0 < α < 1 the multiplicative factor is
positive, and so the RTE is negative if, by learning Y(l)

n , the rare events are (on average)
more emphasized than in the case when only X(k)

n alone is known. Analogically, for α > 1
the RTE can be negative when—by learning Y(l)

n —the more probable events are (on average)
more accentuated in comparison with the situation when Y(l)

n is not known. It should be
stressed that the analogous situation does not hold for Shannon’s TE. This is because in
the limit α → 1 we regain expression (8), which is nothing but relative entropy, and as
such, it is always non-negative due to Gibbs inequality. At the same time, Shannon’s TE is,
by its very definition, also mutual information. While RTE is also defined to be a mutual
information, it is not relative entropy (in the RE case, those two concepts do not coincide).
It can be shown (basically via Jensen’s inequality) [34] that the relative entropy based on
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RE is also non-negative but this is not true for ensuing mutual information, which serves
as a conceptual basis for the definition of RTE.

3. Rényi Transfer Entropy and Causality

As already seen, Rényi TE (analogously to Shannon TE) is a directional measure
of information transfer. Let us now comment on the connection of the RTE with the
causality concept.

3.1. Granger Causality—Gaussian Variables

The first general definition of causality, which could be quantified and measured
computationally was given by Wiener in 1956, namely “. . . For two simultaneously measured
signals, if we can predict the first signal better by using the past information from the second
one than by using the information without it, then we call the second signal causal to the first
one. . . ” [9].

The introduction of the concept of causality into the experimental practice, namely into
analyses of data observed in consecutive time instants (i.e., time series), is due to the Nobel
prize winner (economy, 2003) C.W.J. Granger. The so-called Granger causality is defined so
that the process Yt Granger causes another process Xt if, in an appropriate statistical sense,
Yt assists in predicting the future of Xt beyond the degree to which Xt already predicts its
own future.

The standard test of the Granger causality was developed by Granger himself [10] and
it is based on a linear regression model, namely

Xt = a0t +
k

∑
`=1

a1`Xt−` +
l

∑
`=1

a2`Yt−` + et , (15)

where a0, a1`, a2` are (constant) regression coefficients, l and k represent the maximum
number of lagged observations included in the model (i.e., memory indices), t is a discrete
time with the time step τ (` is also quantified in units of τ) and et is the uncorrelated
random variable (residual) with zero mean and variance σ2. The null hypothesis that Yt does
not cause Xt (in the sense of Granger) is not rejected if and only if a2` = 0 for ` = 1, . . . , l.
In the latter case, we will call the ensuing regression model the reduced regression model.

It is not difficult to show that for Gaussian variables, the RTE and Granger causality
are entirely equivalent. To see this, we use the standard measure of the Granger causality,
which is defined as [60]

F (k,l)
Y→X = log2

|Σ(e′t)|
|Σ(et)|

, (16)

where Σ(. . .) is the covariance matrix, | . . . | denotes the matrix determinant, and et, e′t are
residuals in the full and reduced regression model, respectively. We chose the logarithm to
the base 2, rather than e for technical convenience. We now prove the following theorem:

Theorem 1. If the joint process Xt, Yt is Gaussian, then there is an exact equivalence between the
Granger causality and RTE, namely

F (k,l)
Y→X = 2TR

α,Y→X(k, l) . (17)

This can be proved in the following way (for an analogous proof for Shannon’s TE,
see [61]). We first define the partial covariance as

Σ(X|Y) = Σ(X) − Σ(X, Y)Σ(Y)−1Σ(X, Y)> , (18)

where Σ(X)ij = cov(Xi, Xj) and Σ(X, Y)ij = cov(Xi, Yj) with X and Y being random vector
(or multivariate) variables. Let X and Y be jointly distributed random vectors in the linear
regression model
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X = a + YA + e . (19)

Here, a is a constant vector, A contains regression coefficients, and e is a residual random
vector with zero mean. In the subsequent, we will identify both X and Y with stochastic
vectors (see text after Equation (28)). In such a case, one can always choose a specified
number of time lags, so that system (19) (or better (23) and, consequently, (22)) is uniquely
solvable, as neither vector a nor matrix A are time-dependent.

We now apply the least square method to the mean square error

E2 ≡ ∑
i
E(e2

i ) = ∑
i
E
[
(X− YA− a)2

i

]
, (20)

Here, E(. . .) denotes the average value. The ensuing least square equations

∂E2

∂Aij
= 0 and

∂E2

∂ak
= 0 , (21)

yield

al = E(Xl) − ∑
k
E(Yk)Akl , (22)

Ali = ∑
j
[Σ(X)]−1

l j Σ(Y, X)ji . (23)

From (19) follows that

E(XiXj) = E
[
(a + YA + e)i(a + YA + e)j

]
, (24)

which after employing (22) can be equivalently rewritten as

cov(Xi, Xj) = ∑
l,k

cov(Yl , Yk)AliAkj + cov(ei, ej) , (25)

or equivalently

Σ(X) = A>Σ(Y)A + Σ(e) . (26)

If we now insert (23)–(26), we obtain

cov(ei, ej) = cov(Xi, Xj) − cov(Xi, Yk)[cov(Yk, Yi)]
−1[cov(Xi, Yj)]

> , (27)

which might be equivalently written as

Σ(e) = Σ(X|Y) . (28)

If we now take X = (Xtn+1), a = (a0), Y = (X(k), Y(l)), A = diag(a(k)1n , a(l)2n ) for the full

regression model and Y = (X(k)
n ), A = diag(a(k)1 ) for the reduced regression model, we

might write that

F (k,l)
Y→X = log2

|Σ(e′t)|
|Σ(et)|

= log2

(
|Σ(Xtn+1 |X

(k)
n )|

|Σ(Xtn+1 |X
(k)
n , Y(l)

n )|

)
. (29)

At this stage, we can use the fact that RE of the multivariate Gaussian variable X is [62]

Hα(X) =
1
2

log2 |Σ(X)| +
DX

2
log2

(
2παα′/α

)
. (30)
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Here, DX is the dimension of X and α′ is a Hölder dual variable to α (i.e., 1/α + 1/α′ = 1).
In particular, for jointly multivariate Gaussian variables X and Y, we can use (11) to write

Hα(X|Y) =

[
1
2

log2 |Σ(X⊕ Y)|+ DX + DY

2
log2

(
2παα′/α

)]
−

[
1
2

log2 |Σ(Y)|+
DY

2
log2

(
2παα′/α

)]
=

1
2

log2 |Σ(X|Y)| +
DX

2
log2

(
2παα′/α

)
. (31)

Here, ⊕ denotes the direct sum. Employing finally the defining relation (10), we obtain

TR
α,Y→X(k, l) = Hα(Xtn+1 |X

(k)
n ) − Hα(Xtn+1 |X

(k)
n , Y(l)

n )

=
1
2

log2

(
|Σ(Xtn+1 |X

(k)
n )|

|Σ(Xtn+1 |X
(k)
n , Y(l)

n )|

)
. (32)

This confirms the statement of Theorem 1. In addition, since the standard measure of
Granger causality (16) is typically defined only for the univariate target and source variables
Xt and Yt, we can omit | . . . | in (29) and (32).

Theorem 1 deserves two comments. First, the theorem is clearly true for any α. In fact,
it is α independent, which means that for Gaussian processes we can employ any RTE to test
the Granger causality. This naturally generalizes the classical result of Barnett et al. [61] (see
also [1]) that is valid for Shannon’s TE. When TE is phrased in terms of the Shannon entropy,
it is typically easier to use various multivariate autoregressive model fitting techniques
(e.g., the Lewinson–Wiggins–Robinson algorithm or the least-squares linear regression
approach [63]) to derive F (k,l)

Y→X more efficiently than by employing direct entropy/mutual
information-based estimators. On the other hand, since the efficiency and robustness of
RTE estimators crucially hinge on the parameter α employed [64] (see also our discussion
in Section 4), it might be, in many cases, easier to follow the information-theoretic route to
the Granger causality (provided the Gaussian framework is justified). One can even test
the Gaussian assumption in the actual time series by determining the RTE for various α
parameters and checking if the results are α independent.

Second, the exact equivalence between the Granger causality and RTE can be (in
the Gaussian case) retraced to the fact that in Equation (30) the second additive term
on the RHS is proportional to DX. It is not difficult to see (by a direct inspection) that
this proportionality will be preserved in many other exponential distributions that satisfy
the Markov factorization property. In these cases, the equivalence between the Granger
causality and RTE statistics will also be preserved. However, for generic distributions, the
additive term in (30) will no longer be a linear function of DX and, hence, it will not be
canceled. This, in turn, spoils the desired equivalence. In the following section, we will
discuss one possible generalization of Theorem 1 in the context of heavy-tailed distributions.

3.2. Granger Causality—Heavy-Tailed Variables

It is not difficult to find relations analogous to (32) in a more general setting. Here, we
will illustrate this point with heavy-tailed (namely α-Gaussian) random variables, where
computations can be conducted analytically.

It is well known that if variance and mean are the only statistical observables, then
the conventional maximum entropy principle (MaxEnt) based on Shannon entropy yields
Gaussian distribution. Similarly, if the very same MaxEnt is applied to Rényi entropy Hα,
one obtains the so-called α-Gaussian distribution [34] (cf. also Figure 2)

pi =
1
Zα

[
1− β(α− 1)x2

i

]1/(α−1)

+
, (33)
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that decays asymptotically following power law. Here, β ∈ R+ and [z]+ = z if z ≥ 0 and 0,
otherwise, Zα is the normalization factor. It is more conventional to write (33) as

pi = Z−1
α exp{2−α} (−βx2

i ) , (34)

where

ex
{α} = [1 + (1− α)x]1/(1−α)

+ , (35)

is the Box–Cox α-exponential [30].

Figure 2. Comparison of the escort distributions ρα of the Gaussian (normal) distributionN (0, 1) and
α-Gaussian distributions (in log-linear plots) with a choice of β in (33), such that variances are the
same for equal αs. For α = 1, the two distributions correspond to the Gaussian distribution N (0, 1).
Even though ρα and α-Gaussian distributions deform the same underlying Gaussian distribution
N (0, 1), α-Gaussian is (save for α = 1) heavy-tailed, while ρα remains Gaussian.

α-Gaussian distribution (33) has finite variance (and, more generally, the covariance
matrix) for D

2+D < α ≤ 1. Let us now assume that Granger’s linear (full/reduced) regression
model is described by joint processes Xt and Yt that are α-Gaussian. We now prove the
following theorem:

Theorem 2. If the joint process Xt, Yt is α-Gaussian with α ∈
(

1+k+l
3+k+l , 1

]
(i.e., a finite covariance

matrix region) then F (k,l)
Y→X − 2TR

α,Y→X(k, l) is a monotonically decreasing function of α (at fixed k
and l) with zero reached at a stationary point α = 1. The leading-order correction to the Granger
causality is “k”-independent and has the form

F (k,l)
Y→X = 2TR

α,Y→X(k, l) +
l(α− 1)2

4
+ O((α− 1)3) . (36)

This result explicitly illustrates how certain “soft” heavy-tailed processes can be related
to the concept of the Granger causality via universal types of corrections that are principally
discernible in data analysis.

Theorem 2 can be proved in close analogy with our proof of Theorem 1. In fact, all
steps in the proof are identical up to Equation (29). For the D-dimensional α-Gaussian
process, the scaling property (30) reads

Hα(X) =
1
2

log2 |Σ(X)| + Hα(Z1,D
α ) . (37)
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Here, Z1,D
α represents an α-Gaussian random vector with zero mean and unit (D × D)

covariance matrix. Relation (37) results from the following chain of identities

Hα(X) = Hα(
√

Σ(X)Z1,D
α )

=
1

1− α
log2

∫
RD

dDy
(∫

RD
dDz δ

(
y−

√
Σ(X)z

)
F (z)

)α

=
1

1− α
log2

[
|Σ(X)|(1−α)/2

∫
RD

dDyF α(y)
]

(38)

=
1
2

log2 |Σ(X)| + Hα(Z1,D
α ) ,

which is clearly valid for any non-singular covariance matrix. The derivation F (. . .)
denoted the α-Gaussian probability density function with the unit covariance matrix and
zero mean. We can now use the simple fact that

Hα(Z1,D
α ) = log2

( π

b(1− α)

)D/2 Γ
(

1
1−α −

D
2

)
Γ
(

1
1−α

) (
1− D

2α
(1− α)

)1/(α−1)


=
D
2

log2[2πα] + log2

 Γ
(

1
1−α −

D
2

)
(1− α)D/2Γ

(
1

1−α

)
 + log2

[(
1− D

2α
(1− α)

) D
2 −

1
1−α

]
, (39)

(where b = [2α− D(1− α)]−1), to write

Hα(X|Y) =
1
2

log2 |Σ(X|Y)| + Hα(Z
1,DX+DY
α ) − Hα(Z

1,DY
α ) . (40)

At this stage, we note that

Hα(Z
1,DX+DY
α ) − Hα(Z

1,DY
α ) − Hα(Z

1,DX
α )

= Hα(Z
1,DX
α |Z1,DY

α ) − Hα(Z
1,DX
α ) , (41)

which is not zero as it was in the case of the Gaussian distribution. In fact, from the
foregoing discussion, it is clear that for the α-Gaussian random variables, we can write the
RTE in the form

TR
α,Y→X(k, l) = Hα(Xtn+1 |X

(k)
n ) − Hα(Xtn+1 |X

(k)
n , Y(l)

n )

=
1
2

log2

(
Σ(Xtn+1 |X

(k)
n )

Σ(Xtn+1 |X
(k)
n , Y(l)

n )

)
+ Hα(Z1,1

α |Z1,k
α ) − Hα(Z1,1

α |Z1,k+l
α ) (42)

=
1
2
F (k,l)

Y→X + Iα(Z1,1
α : Z1,l

α |Z1,k
α ) .

Here, we have set Z1,1
α to correspond to the random variable Xtn+1 with unit variance. Simi-

larly, Z1,k
α and Z1,l

α correspond to unit covariance random variables X(k)
n and Y(l)

n , respectively.
Clearly, when Yt and Xt processes are independent (and, hence, not causal in the

Granger sense), their joint distribution factorizes and, thus, Hα(Z
1,DX+DY
α ) 7→ Hα(Z

1,DX
α ×

Z
1,DY
α ). Additivity of the RE then ensures that Hα(Z1,1

α |Z1,k
α )=Hα(Z1,1

α |Z1,k+l
α ) and, hence,

Iα(Z1,1
α : Z1,l

α |Z1,k
α ) is zero. In other words, when two processes are not Granger causal, their

RTEs are zero. Actually, it is not difficult to see that this is true irrespective of a specific
form of the distribution involved. However, the opposite is not true since Iα(Z1,1

α : Z1,l
α |Z1,k

α )
might be (unlike in Shannon’s case) negative; consequently, TR

α,Y→X(k, l) can be zero even if
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F (k,l)
Y→X is not. To understand this point better, we explicitly evaluate Iα(Z1,1

α : Z1,l
α |Z1,k

α ) for
our α-Gaussian random variables. Using (39), we can write

Iα(Z1,1
α : Z1,l

α |Z1,k
α ) = log2

Γ
(

1
1−α −

1+k
2

)
Γ
(

1
1−α −

k
2

) Γ
(

1
1−α −

k+l
2

)
)

Γ
(

1
1−α −

1+k+l
2

)


+ log2


(

α
1−α −

1+k
2

) 1+k
2 −

1
1−α

(
α

1−α −
k
2

) k
2−

1
1−α

(
α

1−α −
k+l

2

) k+l
2 −

1
1−α

(
α

1−α −
1+k+l

2

) 1+k+l
2 − 1

1−α

. (43)

By setting ζ = 1
1−α −

k
2 and ξ = 1

1−α −
k+l

2 , we can rewrite (43) as

Iα(Z1,1
α : Z1,l

α |Z1,k
α ) = log2

Γ
(

ζ − 1
2

)
Γ(ζ)

(ζ − 1)ζ(
ζ − 3

2
)ζ− 1

2

Γ(ξ)

Γ
(

ξ − 1
2

) (ξ − 3
2
)ξ− 1

2

(ξ − 1)ξ


= log2

Γ
(
ζ − 3

2
)

Γ(ζ − 1)
(ζ − 1)ζ−1(
ζ − 3

2
)ζ− 3

2

Γ(ξ − 1)
Γ
(
ξ − 3

2
) (ξ − 3

2
)ξ− 3

2

(ξ − 1)ξ−1

 (44)

≤ −1
2

log2

[
(ξ − 1)(
ξ − 3

2
)] ≤ 0 ,

where on the last line we use the Kečkić–Vasić inequality [65]

(x + 1)x+1

(x + s)x+s es−1 ≤ Γ(x + 1)
Γ(x + s)

≤ (x + 1)x+ 1
2

(x + s)x+s− 1
2

es−1 , (45)

valid for s ∈ (0, 1). In addition, it can be numerically checked that dIα(Z1,1
α :Z1,l

α |Z1,k
α )

dα > 0, for
all l, k from the definition, so the maximum of Iα(Z1,1

α : Z1,l
α |Z1,k

α ) is attained at α = 1, see
Figure 3. When α is close to 1, then one can employ the asymptotic relation Γ[x + γ] ∼
Γ[x]xγ valid for x � 1, γ ∈ C, and rewrite (39) in the form (D/2) log2[2παeα]. In this
case, (43) tends to zero and we obtain equivalence between TE and the Granger causality.
This result should not be so surprising because in the limit α→ 1, RE tends to Shannon’s
entropy and the α-Gaussian distribution tends to the Gaussian distribution.

The leading order behavior near α = 1 can be obtained directly from (43). The ensuing
Taylor expansion gives

Iα(Z1,1
α : Z1,l

α |Z1,k
α ) = − l(α− 1)2

8
+ O((α− 1)3) , (46)

so, the point α = 1 is a stationary point of Iα(Z1,1
α : Z1,l

α |Z1,k
α ). This closes the proof.
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Figure 3. Example of Iα(Z1,1
α : Z1,l

α |Z1,k
α ) for l = 2 and k = 1, 2, . . . , 10. Range validity of α is thus

between 3+k
5+k and 1.

4. Estimation of Rényi Entropy
4.1. RTE and Derived Concepts

From a data analysis point of view, it is not very practical to use the full joint processes
X(k)

n and Y(l)
n (cf. the defining relation (10)) because (possibly) high values of k and l

negatively influence the accuracy of estimation of RTE. In the following sections, we will
thus switch to a more expedient definition of RTE given by

TR
α,Y→X({k}, {m}, {l}) = Hα(X{m},+n |X{k},−n ) − Hα(X{m},+n |X{k},−n , Y{l},−n )

= Iα(X{m},+n : Y{l},−n |X{k},−n ) , (47)

where X{k},Ωn is a subset of past (Ω = −) or future (Ω = +) values of Xtn with the
number of elements equal to k, such that {k} = {κ1, ..., κk} is a set of indices and X{k},Ωn ≡
XtnΩκ1

, XtnΩκ2
, . . . , XtnΩκk

is a selected subsequence of Xtn , i.e., nX-dimensional vectors. The

same notational convention applies to Y{l},Ωn as a subsequence of Ytn , i.e., nY-dimensional
vectors. In definition (47), we added a third parameter, m—the so-called future step. Though
such a parametrization is often used in the literature on Shannon’s TE, cf., e.g., reference [17],
we will (in the following) only employ m = {1} so as to conform with the definition (10).
In such a case, we will often omit the middle index in TR

α,Y→X({k}, {1}, {l}).

4.1.1. Balance of Transfer Entropy

In order to compare RTE that flows in the direction from Y → X with the RTE that
flows in the opposite direction X → Y, we define the balance of transfer entropy

TR, balance
α,Y→X ({k}, {l}) = TR

α,Y→X({k}, {l}) − TR
α,X→Y({k}, {l}) . (48)

4.1.2. Effective Transfer Entropy

To mitigate the finite size effects, we employ the idea of a surrogate time series. To this
end, we define the effective transfer entropy

TR, effective
α,Y→X ({k}, {l}) = TR

α,Y→X({k}, {l}) − TR
α,Y(sur)→X({k}, {l}) , (49)

where Y(sur) stands for the randomized (reordered) time series—the surrogate data se-
quence. Such a series has the same mean, the same variance, the same autocorrelation
function and, therefore, the same power spectrum as the original sequence, but (nonlinear)
phase relations are destroyed. In effect, all the potential correlations between X{k}n and Y{l}n
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are removed, which means that TR
α,Y(sur)→X

({k}, {l}) should be zero. In practice, this is not
the case, despite the fact that there are no obvious structures in the data. The non-zero value
of TR

α,Y(sur)→X
({k}, {l}) must then be a byproduct of the finite data set. Definition (49) then

ensures that spurious effects caused by finite k and l are removed. In our computations, we
used the Fisher–Yates algorithm [66] together with Mersenne twister random generation
algorithm [67] for the randomized surrogates. For a more technical exposition, see, e.g.,
refs. [68–70].

4.1.3. Balance of Effective Transfer Entropy

Finally, we combined both previous definitions to form the balance effective transfer
entropy

TR, balance, effective
α,Y→X ({k}, {l}) = TR, effective

α,Y→X ({k}, {l}) − TR, effective
α,X→Y ({k}, {l})

= TR
α,Y→X({k}, {l}) − TR

α,Y(sur)→X({k}, {l}) (50)

− TR
α,X→Y({k}, {l}) + TR

α,X(sur)→Y({k}, {l}) ,

to quantify the direction of flow of transfer entropy without finite size effects.

4.1.4. Choice of Parameters k and l

The choice of the parameters k and l is essential to reliably analyze the information
transfer between variables in a system. So, a natural question arises as to how one should
choose such parameters.

The order of k and l, both in the RTE and Shannon’s TE, but also in approximating
autoregression in the Granger case, is often (in practice) set rather arbitrarily at some
moderately high number. In the literature, there are theoretical criteria for optimal choices
of k and l—with no unique answer. In our numerical simulations, we employed two
pragmatic criteria: (a) results should be stable under the increase of k and l and, additionally,
(b) k, and l should be equal to—or higher than—those used in the literature for the analysis
of Shannon’s TE in Rössler systems, e.g., references [18,22], so that we could make a
comparison with the existence results. The chosen values ({k}, {l}) ≡ ({k}, {1}, {l}) =
({0, 1}, {1}, {0}) often well-satisfied both aforementioned conditions. In Section 6.3, it was
sufficient to set {k} = {0} and {l} = {0}, in agreement with [18]. When a need has arisen
to emphasize some finer details in the behavior of the RTE (cf. Figures 6 and 10), {k} was
chosen to be {0, 1, 2, 3, 4} or even {0, 1, 2, 3, 4, 5, 6}.

5. Rössler System
5.1. Equations for Master System

In order to illustrate the use of RTE, we considered two unidirectionally coupled
Rössler systems (oscillators). These often serve as testbeds for various measures of syn-
chronization, including Shannon’s TE [71–73]. Rössler’s system is described by three
non-linearly coupled partial differential equations

ẋ1 = −ω1 x2 − x3 ,

ẋ2 = ω1 x1 + ax2 , (51)

ẋ3 = b + x3(x1 − c) ,

with four coefficients ω1, a, b, and c. Strictly speaking, only three coefficients are indepen-
dent, as ω1 can be set to one by appropriately rescaling x2. RS was invented in 1976 by
O.E. Rössler [32] and it likely represents the most elementary geometric construction of
chaos in the continuous systems. In fact, since the Poincaré–Bendixson theorem precludes
the existence of (other than) steady, periodic, or quasi-periodic attractors in autonomous
systems, defined in one- or two-dimensional manifolds, the minimal dimension for chaos
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is three [74]. The simplicity of the RS is bolstered by the fact that it only has one nonlinear
(quadratic) coupling.

RS classifies as the continuous (deterministic) chaotic system, and more specifically as
the chaotic attractor. The word “attractor” refers to the fact that whatever is the initial
condition for the solution of the differential Equation (52), the trajectory x(t) ends up
(after a short transient period) at the same geometrical structure (see Figure 5), which is
neither a fixed point nor a limit cycle. This attractive geometrical structure is known as the
Rössler attractor.

For future convenience, we will call the RS (51) as driving or master system and denote
it as {X}.

5.2. Equations for the Slave System

In the following, we investigate RTE between two Rössler systems that are unidirec-
tionally coupled in the variable x1 via a small adjustable parameter ε. The corresponding
second RS—driven or slave system, is defined as

ẏ1 = −ω2 y2 − y3 + ε(x1 − y2) ,

ẏ2 = ω2 y1 + ay2 , (52)

ẏ3 = b + y3(y1 − c) .

Here, we fix the coefficients so that a = 0.15, b = 0.2, c = 10.0, and frequencies ω1 = 1.015 and
ω2 = 0.985, and initial conditions (x1(0), x2(0), x3(0)) = (0, 0, 0) and (y1(0), y2(0), y3(0)) =
(0, 0, 1). This parametrization is adopted from reference [18] where Shannon’s TE between
systems (51) and (52) was studied. In the following, we will denote the slave system also
as {Y}.

5.3. Numerical Experiments with Coupled RSs

Before we embark on the RTE analysis, let us first take a look at the phenomenology
of the coupled RSs (51) and (52) by means of simple numerical experiments. In our
numerical treatment, we simulate coupled RSs by using the integration method, which is
implemented in a package SciPy named solve_ivp with the LSODA option that exploits
the Addams/BDF method, see, e.g., reference [75]. Projections of the ε-dependent RSs
dynamics to various planes are presented in Figure 5. For visualization purposes, we
used the toolkit Matplotlib [76] that exploits toolkit NumPy [77]. The sources are part
of the Pyclits project [78]. In the future, the work can be rebased. The resulting data set
analyzed consisted of 100,000 data points. To gain insight into the transient region, we
chose shorter time lags in the data set generated from RS with 0.1 ≤ ε ≤ 0.15, namely, we
reduced the time steps from 0.01 to 0.001. In parallel, we display in Figure 4 the behaviors
of the corresponding Lyapunov exponents, as adapted from [22], which help to elucidate
our discussion.
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Figure 4. The two largest Lyapunov exponents of the master system (constant—violet and green)
and the slave system (decreasing—red and yellow). So, for small ε, the signature of LE is ++ 00−−,
while after synchronization, we end up with the signature +0−−−−. After synchronization, there is
a “collaps” of the dimension, in the sense that the slave system is completely dependent on the master
system, so that there is only one dimension (direction) in which there is an expansion. Accordingly,
there is only one LE with a positive sign. The LEs are measured in nats per time unit.

Projections

Instead of a conventional stereoscopic plotting, we found it more convenient (and
illuminating) to focus on various plane projections of the coupled RSs. First, we noticed that,
in Figure 5, the projections of RSs on the x2- x1, x3-x2, and x1-x3 planes do not depend on
the coupling between systems (i.e., they are ε-independent), as expected, because the slave
system (52) does not influence dynamics of the master system (51), which is autonomous
(irrespective of ε). However, it is clear that signatures of the interaction between non-
symmetrically coupled RSs (51) and (52) will show up in projections on the xi-yj and
yi-yj planes.

Secondly, when the RSs are not coupled (i.e., when ε = 0), we have two autonomous
RSs—in fact, two strange attractors that differ only by values of their frequency coefficients
and initial values. The autonomies of the respective RSs are clearly seen in projections
on the xi-xj and yi-yj planes (cf. Figure 5). A different density of trajectories (in a given
time window t = 100,000) can be ascribed to the frequency mismatch. Projections on the
x1-y1 and x2-y2 planes show how the ensuing chaotic and (component-wise) uncorrelated
trajectories fill their support regions. In particular, we can observe that on the background
of densely packed chaotic trajectories, clear vertical stripes of dominantly-visited regions
appear in the slave system. Vertical stripes are clearly visible because limit cycles in the
autonomous slave system are far more localized than in the master system. The projection
on the x3-y3 plane indicates that (most of the time) the master system orbits venture to the
x3 direction, the slave system orbits are in the vicinity of the y1-y2 plane, and vice versa.

By continuously increasing the coupling strength ε from the zero value, we can observe
that, already, a small interaction significantly changes the evolution of the slave system.
For instance, in Figure 5, we see that when ε = 0.01 , then the diffusive term ε(x1 − y2)
significantly disperses the limit cycles in the slave system. This is reflected not only in
all projections on the yi-yj planes but also in projections on the x1-y1 and x2-y2 planes. In
the latter two cases, the diffusion causes that horizontal stripes to completely disappear.
Finally, the projection on the x3-y3 plane does not change significantly from the ε = 0 case.
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Figure 5. Projections of the RSs (51) and (52) on various planes. For each fixed ε, we depict nine
figures that correspond (from top to bottom and left to right) to projections on the x2-x1, x3-x2, x1-x3,
x1-y1, x2-y2, x3-y3, y2-y1, y3-y2, and y1-y3 planes. In the figure, we display, altogether, nine values of
ε corresponding (from left to right and top to bottom) to ε = 0, 0.01, 0.1, 0.14, 0.16 and 0.5. The initial
values are chosen as x1(0), x2(0), x3(0) = 0, y1(0), y2(0) = 0, and y3(0) = 1. Further projections for
the transient region 0.12 . ε . 0.15 are shown in Figure 8. All RSs are depicted in the time window
t = 10,000.

When we further increase ε, we see that the behavior of the slave system starts to
qualitatively depart from that of the master system. For ε, around 0.1, the slave system orbit
diffuses to the region around the origin that is basically not visited (apart from an initial
transient orbit) by the master system orbit (cf. projections on the yi-yj planes). In addition,
projections on the x1-y1 and x2-y2 planes disclose that the ensuing support areas are not
filled anymore. In fact, we can see a development of a slant stripe structure. On the other
hand, the projection on the y3-x3 plane reveals that the slave system orbits stop visiting
regions further from y3 = 0. A yet higher ε (around 0.14) orbit of the system {Y} first
converges to a single limit cycle before it makes (again) a transition into a chaotic regime.
Finally, we can observe that at ε∼0.14, the slave system rarely deviates far from y3 = 0 and
spends most of its time in the close vicinity of the y1-y2 plane—its evolution is “flattened”.

Moreover, at ε∼0.14 , we can also notice that projections on the y1-x1 and y2-x2 planes
underwent a change in topology (in fact, this happened already at around ε ∼ 0.12). The
onset of this “topological phase transition” is closely correlated with the behavior of the
largest Lyapunov exponent (LE) of the slave system. In fact, coupled RSs altogether have
six Lyapunov exponents. The ε = 0 one has two autonomous RSs each with three LEs—one
positive, one zero, and one negative (signature +0− is a typical hallmark of a strange



Entropy 2022, 24, 855 19 of 32

attractor in three dimensions). While at ε = 0, the signature of LEs is ++ 00−−, increasing
ε all three LEs associated with {Y} decreasing (initially) monotonically, cf. Figure 4. After a
transient negativity and a return to zero (red curve in Figure 4), the originally positive LE
of the slave system monotonically decreases and the negative for ε & 0.15. In particular,
we see that the critical value ε∼ 0.12 at which the “topological phase transition” occurs
coincides with the value at which the largest LE of the system {Y} crosses zero.

What is particularly noteworthy is an abrupt (non-analytic) change in the behavior of
LEs at the value ε∼0.145. At this value, the LE changes direction and starts to increase with
increasing ε. The increase stops at ε∼0.15 when the yellow-colored LE in Figure 4 reaches
(approximately) value zero, after which it monotonically decreases. Such a decrease also
starts for the second red-colored LE, but at a slightly different value of ε.

For stronger interactions with 0.15 . ε . 0.2, we see (cf. Figure 5 with ε = 0.16) that
the slave system starts to approach the structure of the master system strange attractor (cf.
xi-xj and yi-yj projections). From the tilt and thinning of projections on the x1-y1 and x2-y2
planes, one may deduce that the amplitude synchronizations in the x1 and y1 (as well as x2
and y2) directions increase. Projection on the x3-y3 plane shows that amplitudes in the x3
and y3 directions are also synchronized (being roughly a half-cycle behind each other).

Finally, for very strong interactions, e.g., for ε ∼ 0.5, the synchronization is almost
complete: the system {Y} basically fully emulates the master system’s behavior with both
systems now being structurally identical (cf. xi-xj and yi-yj projections). Full synchroniza-
tion is nicely seen in projections on the x1-y1 and x2-y2 planes. Note that the amplitudes in
the x3 and y3 directions start to synchronize.

6. Numerical Analysis of RTE for Coupled RSs

In the previous section, we learned some essentials about the coupled RS (51) and (52).
In order to demonstrate the inner workings of the RTE and to gain further insight into
how the two RSs approach synchronization, we compute here the RTE for various salient
situations, such as the RTE between the x1- and y1-component, between the x1- and y3-
component, or RTE between the full master and slave system. In our numerical analysis,
we employed the RE estimator introduced by Leonenko et al. [26]. Some fundamentals
associated with this estimator are relegated to Appendix A.

6.1. Effective RTE between x1 and y1 Directions

In order to understand the dynamics of the two coupled nonlinear dynamical systems
(51) and (52) on their routes to synchronization, we first analyzed the effective RTE between
the x1 and y1 components. Corresponding plots for different coupling strengths ε and
different orders α are depicted in Figure 6. We can observe first that the effective RTE from
x1 to y1 gradually increases with the increasing coupling strength until ε∼0.12. The regime
between ε∼0.12 and ε∼0.15, as seen from Figure 5, corresponds to a transient synchroniza-
tion behavior, which stabilizes only after ε∼0.15. This can also be seen from the behavior
of the LEs at Figure 4. It should also be noted that the behavior of effective RTEs in the
transient regime is apparently almost identical for all α in both TR, effective

α,x1→y1 ({0, 1}, {1}, {0})
and TR, effective

α,y1→x1 ({0, 1}, {1}, {0}). This would, in turn, indicate that the information transfer
is the same across all sectors of the underlying probability distributions. Upon closer
inspection though, such a highly correlated behavior will disappear when more his-
toric data on {X} and {Y} are included (cf. TR, effective

α,x1→y1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}) and
TR, effective

α,y1→x1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}) in Figure 6).
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Figure 6. Effective RTE between x1 and y1 for two different histories of x1, i.e.,
TR, effective

α,x1→y1 ({0, 1}, {1}, {0}), TR, effective
α,x1→y1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}), TR, effective

α,y1→x1 ({0, 1}, {1}, {0}),
TR, effective

α,y1→x1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}), respectively, from left to right and top to bottom. RTE is
measured in nats.

The same conclusion can be reached when the effective RTEs for the full six-dimensional
systems are considered, cf. Figure 7.

Figure 7. Effective transfer entropy for the full system (nX = 3 and nY = 3) and for differ-
ent values of α as functions of the coupling ε. We depict TR, effective

α,X→Y ({0}, {1}, {0}) (left) and

TR, effective
α,Y→X ({0}, {1}, {0}) (right). RTE is measured in nats.

Nevertheless, from Figure 6, it can clearly be inferred that—in the transient region—
strong correlations do exist, albeit not for all αs. In particular, one starts with the correlated
flow for α & 1.2, which becomes stronger as ε increases. On the other hand, as ε ap-
proaches 0.15, the information flow decreases for α . 1. This can be seen clearly in both
Figures 6 and 7. At ε = 0.15, the information flow abruptly increases for all αs. This is
similar to a first order phase transition in statistical physics. In this respect, our “topological
phase transition” would be more similar to a second order phase transition due to a smooth
change in the entropic flow across the critical point ε = 0.12. This scenario is also supported
by Figure 8, where the actual behavior of the RS between the two critical points for four
selected values of ε’s is depicted. Note, in particular, how the increase in the RTE for
α & 1.2 (as well as the decrease of RTE for α . 1) are reflected in the contractions (measure
concentrations) of the regions with denser orbit populations in the slave system. This, in
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turn, reinforces the picture that RTEs with higher αs describe the transfer of information
between more central parts of underlying distributions, which, in this case, relate to higher
occupation densities of the {Y} system orbit. From Figure 8, we can also note that, at the
critical point ε = 0.15, the contracted orbit regions abruptly expand and the slave system
starts its way toward full synchronization with the master system. This is again compatible
with the fact that the RTE abruptly increases for all αs at this point—i.e., all parts of under-
lying distributions participate in this transition and, consequently, the occupation density
of the {Y} system orbit spreads. In this respect, point ε = 0.15 represents the threshold to
full synchronization while point ε = 0.12 denotes the threshold to transient behavior prior to full
synchronization. The latter can be identified with a phase synchronization threshold, which
should be at (or very close to) this point [22].

Figure 8. Four projections of the RSs (51) and (52) in the transient region 0.12 . ε . 0.15. Depicted
are projections (from left to right, from top to bottom) with ε = 0.12, 0.13, 0.14, and 0.15. With
increasing ε, one can observe the contractions (measure concentrations) of the regions with denser
orbit populations in the slave system. At the critical point ε = 0.15, the contracted orbit regions
abruptly expand and the slave system starts its way toward full synchronization with the master
system (cf. also Figure 5). All RSs are depicted in the time window t = 10,000.

After the critical point ε ∼ 0.15, both RSs enter full synchronization. In fact, the full
synchronization starts when the information flow from all sectors of underlying distri-
butions (i.e., for all αs) starts to be (almost) ε-independent and when TR, balance, effective

α,X→Y
approach zero—so there is a one-to-one relation between the states of the systems, and the
time series of the {X} system can be predicted from the time series {Y} system, and vice
versa. Indeed, from Figure 6 (cf. also Figures 7 and 9), we see that all TR, effective

α,Y→X proceed in
a slow increase toward their asymptotic values in the fully-synchronized state.
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Figure 9. Balance of effective RTEs from x1 to y1 TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}) (left, nx1 = 1 and

ny1 = 1) and the balance of effective RTEs for the full system TR, balance, effective
α,X→Y ({0}, {1}, {0}) (right,

nX = 3 and nY = 1) with Y being y1.

6.2. Effective RTE between x3 and y3 Directions

As already seen from Figures 5 and 8, projections in the x3-y3 plane are particularly
distinct. In Figure 10, we see the ensuing effective RTE between x3 and y3 directions.

Figure 10. Effective RTE between x3 and y3 directions. From left to right:
TR,effective

α,x3→y3 ({0, 1, 2, 3, 4}, {1}, {0}) and TR,effective
α,y3→x3 ({0, 1, 2, 3, 4}, {1}, {0}). Note a sudden in-

crease in entropy transfer from the master to slave system at ε = 0.12 (i.e., threshold to transient
behavior) for α < 1. RTE is measured in nats.

What is particularly noticeable is a sudden increase in entropy transfer from the
master to slave system at ε = 0.12 (i.e., at the threshold to transient behavior) for α < 1.
No comparable increase is observed from slave to master. This, might be explained as
an influx of information needed to organize the chaotically correlated regime that exists
prior the (correlated) transient regime (cf. xi–yi projections in Figures 5 and 8). It should
also be noticed that ordinary Shannonian TE (α = 1) is completely blind to such an
information transfer.

As for the transient region, we can observe that the effective RTE has qualitatively
very similar behavior to the effective RTE between x1 and y1, namely a distinct decrease in
the information transfer for α < 1 and an increase for α > 1. This again reveals a measure
concentration. In this case, the orbit occupation density concentrates around the y1-y2 plane
of the slave systems, cf. projections depicted in Figure 8. The situation abruptly changes at
the synchronization threshold ε = 0.15 after which the effective RTE approaches for each α

a fixed asymptotic value that turns out to be the same for both TR,effective
α,x3→y3 and TR,effective

α,y3→x3 .

6.3. Effective RTE for the Full System

In general, for a reliable inference, it is desirable that the conditioning variable in
the definition or RTE (10) contains all relevant information about future values of the
system or processes generating this variable in the uncoupled case. So, it should be a full
three-dimensional vector X or Y in the case of RS. To this end, we display in Figure 7 the
effective RTE for the full six-dimensional RS with information transfers in both X → Y
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and Y → X directions. Corresponding plots are depicted for different coupling strengths ε,
different order αs, and different memories.

In particular, we can see that the information flow in the transient region starts after
a brief decrease at around ε∼ 0.12 and sharply increases (in both directions) for α & 1.2.
This implies that there is an increase in the correlating activity in between regions with
higher occupation densities in both REs. The behavior depicted in Figure 8 can help us
to better understand this situation. In particular, we see that in the transient region the
{Y} system reshapes its orbit occupation density so that the ensuing measure concentrates
more around its peak while its tail parts are thinner. In fact, Figure 8 also shows that this
measure concentration increases until almost ε ∼ 0.15. The measure concentration behavior
is reflected by the decrease of the RTE for α . 1, i.e., decreasing information transfers
between tail parts. This situation is even more pronounced when more memory is included
in the effective RTEs, cf. both right pictures in Figure 7.

At the synchronization threshold ε = 0.15, the information flow abruptly changes for
all αs, with a particularly strong increase for α . 1. This indicates that the orbit occupa-
tion density of the {Y} system abruptly reshapes by lowering the measure concentrated
around its peak and broadening it in tails, so that the tail parts may also enter the full
synchronization regime.

Let us finally comment on the issue of bidirectional information flown for single-
component RTEs. By envisioning the discretized versions of RSs, (51) and (52), one can
see that RTE from the slave to the master system (e.g., between the x3 and y3 direction)
cannot easily be zero. This is because Hα(X3,tn+1 |X

(k)
3,n , Y(l)

3,n) in the relation (10) is not simply

Hα(X3,tn+1 |X
(k)
3,n). Note that due to the nonlinear nature of the coupled RSs, y3(tn) depends

both on y1(tn) and y1(tn−1) (via the third equation in (52)), while y1(tn) depends on x1(tn)
and x1(tn−1) (via the first equation in (52)); finally, x1(tn) depends on x3(tn) and x3(tn−1)
and also x2(tn) and x2(tn−1) (via the first equation in (51)); hence, y3(tn) depends not only
on x3(tn), x3(tn−1), x3(tn−2) and x3(tn−3) but also on historical values of x2. In this way,
Hα(X3,tn+1 |X

(k)
3,n , Y(l)

3,n(X)) is not simply Hα(X3,tn+1 |X
(k)
3,n), as other components beyond X3,n

are also needed. Consequently, when single-component RTEs for RS are computed, we
inevitably find a non-zero information transfer from the slave to the master system. The
latter is not so much a problem of k and l but rather the fact that we did not account for all
relevant components (we simply missed some information).

It is true that for a reliable inference, in general, it would be desirable to obtain
a zero value in the uncoupled direction Y → X. This should be attained by proper
conditioning—the conditioning variable should contain full information about future
values of the system or processes generating this variable in the uncoupled case. So, it
should be a three-dimensional vector X or Y for RS. Here, we computed effective RTE for
the full six-dimensional system (vectors X and Y). From Figure 7, we can see that TR, effective

α,Y→X
in the uncoupled direction stays at the zero value (particularly for larger values of α) up
to close to the synchronization threshold (ε = 0.12), while TR, effective

α,X→Y is distinctly positive
there. So, RTE is a good causal measure only if the conditioning has a sufficient dimension
(in our case, 3); otherwise, it can be viewed only as a measure of dependence.

6.4. Balance of Effective RTE

In order to quantify the difference between coupled (X→Y) and uncoupled (Y→X)
information flow directions, we depict in Figure 9 the balance of effective RTEs between
TR, effective

α,X→Y and TR, effective
α,Y→X for two different situations. Let us first concentrate on the

balance of effective RTE TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}). There, we can clearly see that

before the synchronization threshold (“topological phase transition”), i.e., for ε . 0.12,
we have TR, effective

α,x1→y1 > TR, effective
α,y1→x1 , which indicates the correct direction of coupling. The

fact that for α > 1.6 and ε . 0.04 one has TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}) < 0 can be

attributed to smaller reliability of the estimator in this region, cf. Figure 11 for estimation of
ensuing the standard deviations. We can also observe that the synchronization threshold
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TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}) changes sign and slowly return back to positive values

in the fully synchronized regime. Similar behavior was reported in [22] for Shannon’s TE.
Moreover, in this transient region, the effective RTEs have the same values irrespective of
α, or, in other words, information transfer is the same across all sectors of the underlying
probability distributions. This is akin to the behavior, which, in statistical physics, is
typically associated with phase transitions—except for the fact that now we have a critical
line rather than a critical point. However, as we already mentioned in the previous two
paragraphs, this degeneracy is only spurious and will be removed by considering either
the effective RTE for the full (six-dimensional) RS or longer memory.

After ε∼ 0.15, the approach to full synchronization proceeds at slightly different
rates for different αs. This can equivalently be restated as saying that different parts of
the underlying distributions enter synchronization differently. The dependence of the
balance of effective RTE for the full (six-dimensional) system is shown on the right in
Figure 9. Here, the behavior is less reliable for larger values of α (α & 1.2) and for smaller
αs (α . 0.8), cf. Figure 11. In the region of reliable αs, the behavior is qualitatively
similar to that of TR, balance, effective

α,x1→y1 ({0, 1}, {1}, {0}). On the other hand, apart from the
region of a transient synchronization, we clearly have TR, effective

α,X→Y > TR, effective
α,Y→X , which

implies the correct direction of coupling. The approach to full synchronization is also
easily recognized—the RTEs saturate to constant values (i.e., information transfer is ε-
independent) and both TR, effective

α,X→Y and TR, effective
α,Y→X start to approach each other. In this

respect, RTEs with lower αs enter the synchronization regime slower than RTEs with larger
αs. In other words, events described by the tail parts of the distributions p(xn+1|x

(k)
n ) and

p(xn+1|x
(k)
n , y(l)n ) (corresponding to α < 1) will fully synchronize at higher values of ε than

corresponding events described by central parts (α > 1).
In passing, we might notice that since both TR, effective

α,X→Y and TR, effective
α,Y→X approach each

other in the fully synchronized state, both the {X} and {Y} systems have to have the same
underlying distributions (due to the reconstruction theorem for REs [21,34]) and, hence,
they are indistinguishable, as one would expect.

Figure 11. Dependence of standard deviation of the balance of effective RTEs
TR, balance, effective

α,x1→y1 ({0, 1}, {1}, {0}) (left) and TR, balance, effective
α,X→Y ({0}, {1}, {0}) (right).

7. Discussion and Conclusions
7.1. Theoretical Results

How one discerns ‘cause’ from ‘effect’ is the main question in many scientific areas.
The seminal contribution of Wiener and Granger led to the so-called Granger causality
principle and time series analysis method for inference of causality from experimental
data. The traditional Granger causality method is based on linear autoregressive processes.
However, nonlinear complex systems cannot be well-described by linear autoregressive
models and require appropriate generalizations of the Granger causality method. One
successful generalization stems from information theory, using a form of conditional mutual
information, also known as transfer entropy. Shannon entropy-based TE has become a
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standard tool used for inferring causality from time series in all areas of science (including
finance, climatology, neuroscience, etc.).

In this paper, instead of the Shannon entropy, we employed yet another information
quantity, namely Rényi entropy. The ensuing RTE has the principal advantage that it is
based on a bona fide information measure. In this way, one has a clear quantifier of the
conveyed directional information (measured in bits or nats). Consequently, statements,
such as: “the conveyed directional information from a tail part of the distribution is
comparable with information from central part of distribution” or “information transfer
is small/large (or good/bad)” are meaningful. RE is a measurable quantity; in principle,
it can be measured directly (similar to Clausius entropy or Shannon entropy) without
invoking the concept of the underlying distribution. This is because RE has an operational
meaning given by various coding theorems. In practice, this is how RE is measured, e.g., in
quantum optics (or more generally quantum information theory) [50,55]. In a conventional
time series, one does not proceed this way because coding theorems (such as the Campbell
coding theorem [44]) are difficult to implement for a large number of data.

As a proof of principle, we tested the concept of RTE on two unidirectionally coupled
Rössler systems. The idea was to illustrate how the RTE can deal with such issues as
synchronization and, more generally, causality in systems that are complex enough and
yet amenable to a numerical analysis. Coupled RS is one of a handful of (simple) coupled
chaotic systems that have been studied in the literature by means of Shannon’s TE. This
point is particularly important because we needed a gauge to which we could compare our
results (and to which our results should reduce for α = 1). Despite the earlier applications
of the RTE in bivariate (mostly financial) time series, many questions remained unanswered
about how to properly qualify and quantify the results obtained. Here, we went ‘some way’
toward this goal.

First, we showed that the concept of the Granger causality is exactly equivalent to the
RTE for Gaussian processes, which may, in turn, be used as a test of Gaussianity. This is
because RTEs are in the Gaussian framework all the same, and, hence, the results should be
α-independent. On the other hand, since the efficiency and robustness of RTE estimators
crucially hinge on the parameter α employed, it might be (in many cases) easier to follow
the information-theoretic route to Granger causality (provided the Gaussian framework
is justified).

Second, we demonstrated that the equivalence between the Granger causality and RTE
can also be established for certain heavy-tailed processes—for instance, for soft α-Gaussian
processes. In particular, in this latter case, one could clearly see the connection between
Granger causality, Rényi’s parameter α, and the heavy-tail power.

7.2. Numerical Analysis of RTE for Rössler Systems

In order to estimate the RTE, we employed the `-nearest-neighbor entropy estimator
of Leonenko et al. [26]. The latter is not only suitable for RE evaluation but it can also be
easily numerically implemented to RTEs so that these can be computed almost in real
time, which is relevant, e.g., in finance, regarding various risk-aversion decisions. Spurious
effects caused by the finite size of the data set were taken into account by working with
effective RTEs.

In order to gain further insight into the practical applicability and efficiency of the RTE,
we tested it on two unidirectionally coupled Rössler systems—the master and slave system.
To have a clear idea about what to expect, we first looked at the phenomenology of the cou-
pled RSs by means of simple numerical simulations (presented in Figure 5). This was also
accompanied by comparisons with Lyapunov exponents computed in references [18,22]
and reproduced in Figure 4. In particular, we could clearly observe how the RSs syn-
chronized with the increasing value of coupling strength. In this connection, we also
identified critical values of coupling strengths at which thresholds to transient behavior (or
the “topological phase transition”) and the threshold to full synchronization occurred.
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More specifically, we were particularly interested in the transient region between
chaotic correlation regimes and full synchronization, which had not as yet been discussed
in the literature. To gain a better understanding of this region, we employed in the range
ε ∈ [0.1, 0.15] a higher frequency sampling, namely 0.001, in contrast to the standard 0.01
one used for other εs. The threshold to transient behavior was identified at the scale ε = 0.12
where the positive LE crossed to negative values and where the projection on the x1-y1
and x2-y2 planes underwent topology changes (cf. Figure 5). From the point of view of
RTEs, this threshold behavior was reflected in peaking the information flow in various
directions. The increase in the effective RTE between x1 and y1 (in both directions) for
α > 1 was pronounced, in particular, which reflected the increase in orbit occupation
density around the peak in the y1-y2 plane in the slave system. Even more marked was the
high peak in information flow from x3 to y3 for α < 1 (see Figure 10), which described an
influx of information needed to “organize” chaotic correlations that existed between the x3
and y3 directions prior to ε . 0.12. Furthermore, the RTE was especially instrumental in
understanding the measure concentration phenomenon in the transient regime. Finally,
after a sharp “first-order-type” transition at the threshold of synchronization, the effective
RTEs slowly approached their asymptotic values (distinct for each α) in the synchronized
state. In addition, in the synchronized state, both TR, effective

α,X→Y and TR, effective
α,Y→X approached

each other, which reveals that both {X} and {Y} systems have the same underlying
distributions and, hence, they are indistinguishable.

As for the causality issue, we observed that the RTE is a good causal measure only if
the conditioning has a sufficient dimension (in our case 3); otherwise, it is merely a measure
of dependence. By employing effective RTE for the full system, we could reliably infer the
coupling direction but only until ε . 0.12, i.e., until the threshold to transient behavior.
After this value, the RSs started to synchronize, first partially (in the transient regime)
and then fully ε = 0.15. In fact, the full synchronization started when the information
flows from all sectors of underlying distributions (i.e., for all αs) began to be (almost) ε

independent and when TR, balance, effective
α,X→Y approached zero— so there was a one-to-one

relation between the states of the systems and the time series of the {X} system could be
predicted from the time series {Y} system, and vice versa; hence, one could not make any
statement about the coupling direction.

We should also reemphasize that the standard deviation of the RTE importantly
depends on α, cf. Equation (11). For instance, the balance effective RTE for the full system is
around the transient region quite reliably described by 0.8 . α . 1.25, though the minimal
noise value is not attained at α = 1 (Shannon transfer entropy) but at α = 1.16. Clearly, the
α-dependence of fluctuations is generally dynamics-dependent, and in many interesting
real-world processes, it is simply more reliable to utilize non-Shannonian TEs.

7.3. Conclusions

In this paper, we discussed the Rényi transfer entropy and its role in the inference of
causal relations between two systems, i.e., in the identification of the driving and driven
systems from the experimental time series. On the theoretical side, our focus was on
understanding the connection between RTE and Granger causality. In particular, we
proved that the Granger causality is entirely equivalent to the RTE for Gaussian processes.
This generalizes the classic result of Barnett et al. [61] that is valid for Shannon’s TE.
Furthermore, we have also shown how the Granger causality and the RTE are related in the
case of heavy-tailed (namely α-Gaussian) processes. These results allow one to bridge the
gap between autoregressive and Rényi entropy-based information-theoretic approaches.

On the experimental side, we illustrated the inner workings of the RTE by analyzing
RTE between the synthetic time series generated from two unidirectionally coupled Rössler
systems that are known to undergo synchronization. The route to synchronization was
scrutinized by considering the effective RTE (and other derived concepts) between various
master–slave components as well as between the full master and slave systems. We
observed that with the effective RTE one could clearly identify a transient synchronization
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region (in the coupling strength), i.e., the regime between chaotic (master–slave) correlations
and the synchronization threshold. In the transient region, the effective RTE allowed
inferring the measure concentration for the orbit occupation density. It is noteworthy to
mention that the latter cannot be deduced from Shannon’s TE alone.

We also saw that the direction of coupling and, hence, causality, could be reliably
inferred only for coupling strengths ε < 0.12 (the onset of the transient regime), i.e., when
two RSs were coupled, but not yet fully. This is in agreement with earlier observations,
cf., e.g., reference [22]. As soon as the RSs were synchronized, they produced identical
time series; hence, there is no way to infer the correct causality relation solely from the
measured data.

We conclude with a general observation—a clear conceptual advantage of information-
theoretic measures in general, and RTE in particular, as compared to the standard Granger
causality, are sensitive to nonlinear signal properties, as they do not rely on linear regression
models. On the other hand, a clear limitation of RTEs, in comparison to the Granger
causality, is that they are—by their very formulation—restricted to bivariate situations
(though multivariate generalization is possible, it substantially increases dimensionality in
the estimation problem, which might be hard to solve with a limited amount of available
data). In addition, the RTEs often require substantially more data than regression methods.
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Abbreviations

The following abbreviations are used in this manuscript:

RE Rényi entropy
TE transfer entropy
RTE Rényi transfer entropy
PDF probability density function
ITE information-theoretic entropy
RS Rössler system
KSE Kolmogorov–Sinai entropy rate
LE Lyapunov exponent

Appendix A

Here, we provide a brief technical exposition of the RE estimator employed.
Finding good estimators for the RE is an open research area. The estimators for the

Shannon entropy based on `-nearest-neighbor in one-dimensional spaces were studied in
statistics almost 60 years ago by Dobrushin [79] and Vašíček [80]. One disadvantage of these
estimators is that they cannot easily be generalized to higher-dimensional spaces, so they
are inapplicable to the TE calculations. Nowadays, there are many usable frameworks—
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most of them, of course, in the Shannonian setting (see reference [2] for a recent review).
However, it is important to stress that the naive estimation of TE by partitioning of the state
space is problematic [19] and that such estimators frequently fail to converge to the correct
result [81]. In practice, more sophisticated techniques, such as kernel [82] or `–nearest-
neighbor estimators [83,84], need to be utilized. However, the latter techniques may bring
about their own assumptions about the empirical distributions of the data (see [81] for a
discussion about the issues involved).

In our work, we used the `-nearest-neighbor entropy estimator for higher-dimensional
spaces introduced by Leonenko et al. [26]. This estimator is suitable for RE and it can be
effectively adapted and implemented by using formulas from the above-mentioned papers.
In particular, the approach is based on an estimator of the RE from a finite sequence of N
points that is defined as

ĤN,`,α =



α 6= 1 logB((N − 1) ·Vm) +
1

1−α

[
logB

Γ(`)
Γ(`+1−α)

+ logB

(
1
N ∑N

i=1

(
ρ
(i)
`

)m(1−α)
)]

α = 1 logB((N − 1) · exp(−ψ(`)) ·Vm)

+ m
N ∑N

i=1 logB

(
ρ
(i)
`

) . (A1)

Here, Γ(x) is Euler’s gamma function, ψ(x) = −Γ′(x)/Γ(x) is the (negative) digamma
function, m = dim Xt is the dimension of the data set space Xt, and ρ

(i)
` is the distance from

the data i to the `-th nearest data counterpart using a metric in the space Xt. Moreover, Vm
is the size of the ball in space Xt defined via the same metric. Finally, logB is the logarithm
with base B (we typically use B = e). In our computations, we employed the Euclidean
metric, which has Vm = π

m
2 /Γ

(m
2 + 1

)
. Note that the estimator basically depends on N,

i.e., the number of data in a data set and on `, i.e., the rank of the nearest-neighbor used.
The advantages of the estimator (A1) in contrast to the standard histogram method are:

• It has relative accuracy for a small data set;
• It has applicability for high-dimensional data;
• The set estimators provide statistics for the estimation.

We should also note that, in contrast to other RE estimators, such as fixed-ball estima-
tor [2], the estimator (A1) is not confined to any specific ranges of α values, though the
efficiency of the estimator is, of course, α-dependent. We comment more on this point in
Section 6. On the other hand, the disadvantage of this method involves the computational
complexity of the algorithm and the complicated data container.

To calculate RTE and the related quantities (48)–(50), we apply the estimator
Equation (A1). Ensuing estimators to (47)–(50)—let us call them generically X—become
dependent on ` (i.e., the nearest-neighbor rank). We exploit this feature and define the
mean value X and standard deviation σX with the Bessel correction, respectively, as

X =
∑nmax
`=nmin

X`

nmax − nmin + 1
, (A2)

σX =

√
∑n
`=1
(
X` − X

)2

nmax − nmin
. (A3)

Here, nmax and nmin are the highest and the lowest orders of the nearest data counterparts,
respectively. Theoretically, we should use nmax = M, where M stands for the number of
samples, but such a setup would require an enormous amount of computer memory to
hold the distances.

In our calculations, we used nmax = 50, which turned out to be a good compromise
between accuracy and computer time. On the other hand, for nmin, we were a little bit
restricted by the fact that nmin influenced the interval of convergence of the estimator for
various α (cf. discussion and proof in [26]). For instance, for ` = 1, the estimator converged
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in the interval α ∈ [0, 1 + 1
2 dim (Xt)

], while for ` > 1, one had α ∈ [0, `+1
2 ]. For our particular

purpose, it will suffice to set nmin = 5, so that the interval of convergence will be α ∈ [0, 3].
This will fully suit our needs.

Appendix B

Here, we provide the heat maps for the relevant figures from the main text. These
depict standard deviations (A2) and their dependencies on both α and ε.

Figure A1. Standard deviation of the effective RTE between x1 and y1

TR, effective
α,x1→y1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}), and TR, effective

α,y1→x1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}).
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Figure A2. Standard deviation of the effective RTE between x3 and y3 for
TR,effective

α,x3→y3 ({0, 1, 2, 3, 4}, {1}, {0}), and TR,effective
α,y3→x3 ({0, 1, 2, 3, 4}, {1}, {0}).
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