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Abstract: This paper introduces a closed-form expression for the Kullback-Leibler divergence (KLD)
between two central multivariate Cauchy distributions (MCDs) which have been recently used in
different signal and image processing applications where non-Gaussian models are needed. In this
overview, the MCDs are surveyed and some new results and properties are derived and discussed
for the KLD. In addition, the KLD for MCDs is showed to be written as a function of Lauricella
D-hypergeometric series F(Dp). Finally, a comparison is made between the Monte Carlo sampling
method to approximate the KLD and the numerical value of the closed-form expression of the latter.
The approximation of the KLD by Monte Carlo sampling method are shown to converge to its

theoretical value when the number of samples goes to the infinity.

Keywords: Multivariate Cauchy distribution (MCD); Kullback-Leibler divergence (KLD); multiple
power series; Lauricella D-hypergeometric series

1. Introduction

Multivariate Cauchy distribution (MCD) belongs to the elliptical symmetric distri-
butions [1] and is a special case of the multivariate ¢-distribution [2] and the multivariate
stable distribution [3]. MCD has been recently used in several signal and image processing
applications for which non-Gaussian models are needed. To name a few of them, in speckle
denoizing, color image denoizing, watermarking, speech enhancement, among others.
Sahu et al. in [4] presented a denoizing method for speckle noise removal applied to a
retinal optical coherence tomography (OCT) image. The method was based on the wavelet
transform where the sub-bands coefficients were modeled using a Cauchy distribution.
In [5], a dual tree complex wavelet transform (DTCWT)-based despeckling algorithm was
proposed for synthetic aperture radar (SAR) images, where the DTCWT coefficients in each
subband were modeled with a multivariate Cauchy distribution. In [6], a new color image
denoizing method in the contourlet domain was suggested for reducing noise in images
corrupted by Gaussian noise where the contourlet subband coefficients were described
by the heavy-tailed MCD. Sadreazami et al. in [7] put forward a novel multiplicative
watermarking scheme in the contourlet domain where the watermark detector was based
on the bivariate Cauchy distribution and designed to capture the across scale dependencies
of the contourlet coefficients. Fontaine et al. in [8] proposed a semi-supervised multi-
channel speech enhancement system where both speech and noise follow the heavy-tailed
multi-variate complex Cauchy distribution.

Kullback-Leibler divergence (KLD), also called relative entropy, is one of the most
fundamental and important measures in information theory and statistics [9,10]. KLD was
first introduced and studied by Kullback and Leibler [11] and Kullback [12] to measure the
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divergence between two probability mass functions in the case of discrete random variables
and between two univariate or multivariate probability density functions in the case of
continuous random variables. In the literature, numerous entropy and divergence mea-
sures have been suggested for measuring the similarity between probability distributions,
such as Rényi [13] divergence, Sharma and Mittal [14] divergence, Bhattacharyya [15,16]
divergence and Hellinger divergence measures [17]. Other general divergence families
have been also introduced and studied like the ¢-divergence family of divergence measures
defined simultaneously by Csiszér [18] and Ali and Silvey [19] where the KLD measure
is a special case, the Bregman family divergence [20], the R-divergences introduced by
Burbea and Rao [21-23], the statistical f-divergences [24,25] and recently the new family
of a generalized divergence called the (, ¢)-divergence measures introduced and studied
in Menéndez et al. [26]. Readers are referred to [10] for details about these divergence
family measures.

KLD has a specific interpretation in coding theory [27] and is therefore the most
popular and widely used as well. Since information theoretic divergence and KLD in
particular are ubiquitous in information sciences [28,29], it is therefore important to establish
closed-form expressions of such divergence [30]. An analytical expression of the KLD
between two univariate Cauchy distributions was presented in [31,32]. To date, the KLD of
MCDs has no known explicit form, and it is in practice either estimated using expensive
Monte Carlo stochastic integration or approximated. Monte Carlo sampling can efficiently
estimate the KLD provided that a large number of independent and identically distributed
samples is provided. Nevertheless, Monte Carlo integration is a too slow process to be
useful in many applications. The main contribution of this paper is to derive a closed-form
expression for the KLD between two central MCDs in a general case to benchmark future
approaches while avoiding approximation using expensive Monte Carlo (MC) estimation
techniques. The paper is organized as follows. Section 2 introduces the MCD and the
KLD. Section 3 gives some definitions and propositions related to a multiple power series
used to compute the closed-form expression of the KLD between two central MCDs. In
Sections 4 and 5, expressions of some expectations related to the KLD are developed by
exploiting the propositions presented in the previous section. Section 6 demonstrates some
final results on the KLD computed for the central MCD. Section 7 presents some particular
results such as the KLD for the univariate and the bivariate Cauchy distribution. Section 8
presents the implementation procedure of the KLD and a comparison with Monte Carlo
sampling method. A summary and some conclusions are provided in the final section.

2. Multivariate Cauchy Distribution and Kullback-Leibler Divergence

Let X be a random vector of R” which follows the MCD, characterized by the following
probability density function (pdf) given as follows [2]

r(3) 1 1
TET(3) [EJ2 14 (x— ) TE M — )] T

fx(xlw, 2, p) = @

This is for any x € R?, where p is the dimensionality of the sample space, y is the location
vector, X is a symmetric, positive definite (p x p) scale matrix and I'(.) is the Gamma
function. Let X! and X? be two random vectors that follow central MCDs with pdfs
fx (|1, p) = fxa(x]0,Zq, p) and fyo (x|Z2, p) = fy2 (%[0, Z2, p) given by (1). KLD provides
an asymmetric measure of the similarity of the two pdfs. Indeed, the KLD between the two
central MCDs is given by

KL(X![|X?) = /]RP ln<m>fx1(x|21,p)dx )
= Exa{In f;a(X)} — Eya {In f2 (X) }. (3)

Since the KLD is the relative entropy defined as the difference between the cross-entropy
and the entropy, we have the following relation:
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KL(X'[|X?) = H(fx1, fx2) = H(fx1) 4)

where H(fy1, fy2) = —Eya {In fy2(X) } denotes the cross-entropy and H(fy1) = —Eya {In fya (X)}
the entropy. Therefore, the determination of KLD requires the expression of the entropy
and the cross-entropy. It should be noted that the smaller KL(X!||X?), the more similar are
fra (x|Z1, p) and fyo (x|Zo, p). The symmetric KL similarity measure between X' and X? is
di (X2, X%) = KL(X||X?) + KL(X?||X}). In order to compute the KLD, we have to derive
the analytical expressions of Eyi{In fy1(X)} and Eyi{In f2(X)} which depend, respec-
tively, on Ey1 {In[1 + X"2;'X]} and Ey1 {In[1 + X", 'X]}. Consequently, the closed-form
expression of the KLD between two zero-mean MCDs is given by

KL(X'[|X?) = %log Iij: — HTP (EX1 {In[1 +X"Z'X]} — Eya {In[1 + xT>:2—1X]}). (5)
To provide the expression of these two expectations, some tools based on the multiple
power series are required. The next section presents some definitions and propositions
used for this goal.

3. Definitions and Propositions

This section presents some definitions and exposes some propositions related to
the multiple power series used to derive the closed-form expression of the expectation
Eyo {In[1 + X"Z;'X]} and E,q {In[1 + X"Z; 'X]}, and as a consequence the KLD between
two central MCDs.

Definition 1. The Humbert series of n variables, denoted @én), is defined for all x; € C, i =
1,...,n, by the following multiple power series (Section 1.4 in [33])

(n) o S o (bn)my 7
D, (by, ... by x1, ., Xp Z ) —H—' 6)
=0 mmmo (Ot m oy !
The Pochhammer symbol (g); indicates the i-th rising factorial of g, i.e., for an integer
i>0
, = T(q+i
@i=qla+1)...(q+i-1) =g +8) =TI )
k=0 ()

3.1. Integral Representation for Cbén)

Proposition 1. The following integral representation is true for Real{c} > Real{}}' ; b;} >0
and Real{b;} > 0 where Real{.} denotes the real part of the complex coefficients

)n:bi—l " "

i=1 — ",
Hu?’ 1exl“ldui:B<b1,... Zb) (by,...,bu;c;x1, .., xn) (8)

i=1 i=1

where A = {(uq,...,un)|0<u; <1,i=1,...,m;,0 <wuy+...4+u, <1} and the multivariate

beta function B is the extension of beta function to more than two arguments (called also Dirichlet
function) defined as (Section 1.6.1 in [34])

Hn+l r( )

B(bll' . 'rbi’l/ bn+1) (Zn-i-l )

©)
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Proof. The power series of exponential function is given by

eXilli — Z m' u;'t. (10)

By substituting the expression of the exponential into the multiple integrals we have

n C*Z?:lbifl n
g = o
A i=1 i=1
n c-Xily bi-1 0 LM
:// (1—2141') (]‘[ Z i tbi dui> (11)
A i 1m;,=

- x (I w) o

=0 m,=0 mi:

where the multivariate integral Ip, which is a generalization of a beta integral, is the type-1
Dirichlet integral (Section 1.6.1 in [34]) given by

C—Z?Zl bl‘—l n

n
Ip = / ) / (1 — Zui> Hu?iJ”bi_ldui
A i=1 i=1

1=

iz T(bi +mi)T(c — Yty bi)

= i= — . 12
Knowing that I'(b; 4+ m;) = I'(b;)(b;)m,, the expression of Ip can be written otherwise
i T(0i)T (e — Xitq bi) T (bi)my (13)

I = e O m

Finally, plugging (13) back into (12) leads to the final result

n n n
F(Cf E bl) H r(bl) +o0 (bi)m[ n mj n
=1 =l ! i':B<b1,... Zb) (b, ..., by;c;x1,.. ., xp) (14)
I'(c) nire, (©)xr ;=1 mi! =
my=0
O
Given Proposition 1, we consider the particular cases n = {1,2} one by one as follows:
Casen =1
: /1 b1 px b1 = (b)m X1 )
— [ w7 (1 — ) duy = L2 — @3 (by;c;x1) = 1F1(by, 6 x 15
B(by,c—b1) Jo ™ ( 1) 1 mgo (©my 1] 5 (b1;¢;x1) = 1Fi(by, ¢;x1) (15)

where 1 Fj (.) is the confluent hypergeometric function of the first kind (Section 9.21 in [35]).
Casen =2

bl 1 bz 1 x1111+xzu2(1 ul—uz)c_bl_bz_ldu1du2

(bhbz,c — b —by) /[41>0 >0, ¥

u +u2<1
(=] =] bl b2
= vy BB 5 o g ) = (b, b, 1) (16)
my=0nmr=0 )m1+m2 ml my!

where the double series ®; is one of the components of the Humbert series of two
variables [36] that generalize Kummer’s confluent hypergeometric series 1 F; of one variable.
The double series ®; converges absolutely at any x1, xo € C.
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3.2. Multiple Power Series FI(\," )

n)

Definition 2. We define a new multiple power series, denoted by FI(\] and given by

FI(\;’)(LZ,' bi,...,bu;c,cn; X1, .0, Xn)

_ i" (@)gr (@ —cn+Dpn o, T H(ag)’”ll(lx;l)mn
" M1,s (ﬂ+b —Cn+1) i L ()Zn 1 - ml Tf’ln! '

my=0

(17)

The multiple power series (17) is absolutely convergent on the region |x;x; | + |1 — x; 1| < 1in
c', vie{l,...,.n—1}.

The multiple power series Fz(\? ) (.) can also be transformed into two other expressions
as follows

Fl(\;l)(a;bl,...,bn;c,cn;xl,...,xn)

_ T (ﬂ —Cn + 1)27:_]1 mi(b'fl)mn (a)zfl:l m; H:l;ll(bl)ml ﬁ x;’”i (1 - xn)mn (18)
i (@+ by —cn+1D)yn o, (@ gty g mt mal
My =
i JrXo:o (a—cy+ 1)):71 1m,(b —cn+1)m, (a)):;:f ;s H?:_ll(bi>mi n—1 x;ni (1— x,)™n 19)
n mlr"'é (LZ +b, —cy+ 1) o m (C)Zln;ll m; =1 m;! My,!
my =

By Horn's rule for the determination of the convergence region (see [37], Section 5.7.2), the
multiple power series (18) and (19) are absolutely convergent on region |x;| < 1, Vi €
{1,...,n—=1}, [1 —x,] <1inC".

Equation (18) can then be deduced from (17) by using the following development

where the FI(\IP ) function can be written as

too (@)gu1,, (@ —cn 4 1) bj
FI(\;i)(a;bl,...,bn;C,Cn;xl,---,xn)ZX,I’Z Z i m v tm Tl 1( i)m;
my,..., (a+by —cn+ 1)):?;11 m; (e )21;211 m;

my—1=0

n—1 x m; 00 ) (6 — cpy m _xflmn
I (2)" L Wnleata, 0o 20

T \Xn a+by—cn+1)m, My!

my=0

and o = a+ 2?2_11 m; is used here to alleviate writing equations. Using the definition of
Gauss’ hypergeometric series »Fj(.) [34] and the Pfaff transformation [38], we can write

- —cn+ D, (1=, H)™ -1
= »F — 1; b, — 11— 21
ng:O 0<+bn*0n+1)mn ] 2P (a0 —cp+La+ by —cn+11—x,) (21)
= xy 2F (tx, by +by —cp + 1,1 — xn> (22)
i Jo (BJy (1= %0) (23)
=0 a+b —cn+1D)m, My,

By substituting (23) into (20), and using the following two relations:

(a )E,” : m,("‘)mn = (a) " (24)
(a+bn—cn+1)z?:_11mi(uc+bn—cn+1) =(a+by—cn+1)yr (25)

we can get (18).
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The second transformation is given as follows

zFl(zx,tx—cn—l-l;bn—cn—i-tx—i-l;l—x;l)

= xﬁ‘fc”*l »F (bn —cp+lL,a—cp+La+by,—c, +1;1— xn) (26)
_ g-ertt 3 (820t Doy (b = €0 % Doy (1= 1) 27)
n =0 ((X—i—bn — Cy +1)mn mn!

By substituting (27) into (20), we get (19).

(n)

Lemma 1. The multiple power series Fy;’ is equal to the Lauricella D-hypergeometric function

Fg") (see Appendix A) [39] when a — ¢, + 1 = ¢ and is given as follows
oo (@) Tl (Oi)my =1 2" (1 — x)™
F™aby,..., by; X1, = =1 1 l 7” 2
N (@0 baie e ) S G —cn+1 m; Pomy! (28)
my=0
:Flg)(a,bl,...,bn;a—i—bn—cn+l;x1,...,xn,1,1—xn) (29)

Proof. By using Equation (18) of the multiple power series FI(\IH ) and after having simpli-
fied (a — ¢y + 1)27,71 . to the numerator and (C)Z,H . to the denominator, we can get
i=1 i i=1 i

the result. [

3.3. Integral Representation for FI(\,H 1)

Proposition 2. The following integral representation is true for Real{a} > 0,Real{a — ¢, 11 +
1} > 0,and Real{a — ¢, 41 + by +1} >0

I'(@)I(a—cpp1+1)
I'(a—cy1+ by +1)

:/0 e*rr”’*lcbén)(bl,...,bn;c;rx1,...,rxn)ll(bn+1,cn+1;rxn+1)dr (30)

n+1
F](\] )(a;bll'-'/bﬂ+1;clcn+l;xl/-"/xn+1)

where U(-) is the confluent hypergeometric function of the second kind (Section 9.21 in [35]) defined
for Real{b} > 0, Real{z} > 0 by the following integral representation

U(b,cz) = 1"(117)/0 e #1141yt lge (31)

and <I>§”) (+) is defined by Equation (6).

Proof. The multiple power series CDén) and the confluent hypergeometric function U(-) are
absolutely convergent on [0, +o0]. Using these functions in the above integral and changing
the order of integration and summation, which is easily justified by absolute convergence,

we get

[ee]
—ra—1 51 . .
/0 e 'rt CI>§ )(bl,...,bn,c,rxl,...,rxn)l,l(an,CnJrl,ran)dr

- BB et ()

n
i=1 "M

where integral I is defined as follows

o a—1+ Z m;
IZ/ e'r =1 U(byy, Cupt;rxpy)dr. (33)
0
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Substituting the integral expression of U(-) in the previous equation and replacing & =
a+ Y, m; to alleviate writing equations, we have

0 p— (T4xy41t)r i ltb,&lfl
- / / drdt. (34)
n+1

Cn+1 byi1-1)

Knowing that [35]

o _ I'(a)
(T4xy 1) 1d . -\®) 35
ke R (T %)

and

© tbn+]71 (1 + t)cn+1*bn+171 F(bn+1)r<“ —Cpg1 + 1)
dt _ F b . b — 1. 1 -
/O G ot by —cry 3 1) oFy (@, by e+ by — e + 11— xp41) (36)

the new expression of Iis then given by

T(a)T (0 —cpp1 +1) Jrzolo (D‘)mnﬂ (bn+1)mn+1 (1 = xpp1)"m+

(37)
F((X + bn+1 —Cp+1 + 1) My 1 =0 (DC + anrl —Cpy1 + 1)711,,“ anrl!

Using the fact that T'(«) = I'(a)(a)yr  , and (a)yr o, (&)m,,,, = (ﬂ)ZnJrl .- and developing
i=1"" i=1""1 i=1 "1
the same method to I'(« + b, 41 — ¢, 1 + 1), the final complete expression of the integral is

then given by
T(a)T(a—cpq+1) & i b1y e (), (@ = Ct1 F D5 (s )y (@) g, H M
F(a +byy1 —Cpy1 + 1) =0 B Mys1=0 (C) " m; (a +byp1 —cp1 + 1)21@11 m; i=1 m;!
(1 — xp41)™ 1 F@I'(@a—cus1+1) (nt1)
= F ;b1,..., b5, X1, ..., . 38
X M1 ! F(é] —Cpi1tbp1 + 1) N (a; b1 n+1,C Cnt-1; X1 Xni1) (38)

4. Expression of Ey1 {In[1 +XTZ;'X]}
Proposition 3. Let X' be a random vector that follows a central MCD with pdf given by fx1 (x|Z1, p).
Expectation Ea {In[1 + XTZ 1X]} is given as follows

Eg{In[1+XTZ;1x]} = ¢(1+p> 1/;(;) (39)

where (.) is the digamma function defined as the logarithmic derivative of the Gamma function
(Section 8.36 in [35]).

Proof. Expectation Eyi {In[1 + X"E'X]} is developed as follows

Ea{ln[1+X"Z;'X]} = dx (40)

A / In[1 +xTZ] %]
|z )2 TR |

1
1+ 272 %] 2t

where A = F(HTP)H_HTP. Utilizing the following property [ log(x)f(x)dx = 2 [ x"f(x
dx|a:0, as a consequence the expectation is given as follows
A 9 L+p

= 14+ 2Tz 1y 2 41
Elﬁaa/w[ tEE dxazo “n

E{In[1 +X"Z;'X]} =

Consider the transformation y = I /2y where v = [y1,¥2,.-.,yp|T. The Jacobian
determinant is given by dy = |£1|~!/2dx (Theorem 1.12 in [40]). The new expression of
the expectation is given by
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0 Ltp
Ty 1yl — T, ja— 52
Exi{In[1+ X Z;°X]} = Aaa /]Rp 14y y]" 2 dy . (42)

Let u = y”y be a transformation where the Jacobian determinant is given by (Lemma 13.3.1
in [41])

zZ oy
dy = uz du. (43)
r(%)
The new expectation is as follows
1+p) 9 [t 1+
Eo (in[1+ XTE1x)} = 2 ) 2 [t 1
x {n[1+X"Z7X]} = /212 3 s u2 " (1+u)'= 2 dua:o (44)
Using the definition of beta function, we can write that
40 (el -
/ W14 ) du = (23+(2 9, (45)
0 I(=" —a)
The derivative of the last integral w.r.t a is given by
d /+°° . 1 T(?)T(%){ 1+p 1
P T (4w)" T T du| = Y(——) = ¢(5) (46)
da Jo 20 F(HTP) 2 2
Finally, the expression of Ey:1 {In[1 + XTZ‘.l_ IX]} is given by
1+ 1
Eyi{In[1+X"E;1X]} = 1p< p) ¢<2>. (47)

O

5. Expression of Ey:{In[1 4 T2 1X]}

Proposition 4. Let X' and X? be two random vectors that follow central MCDs with pdfs given,
respectively, by fy (x|Z1,p) and fyp (x|Eo, p). Expectation Ea{In[l + XTE'X]} is given
as follows

Ex {In[1+ XTZ;1X]} = ¢<1+P> w(;)ﬂn)\p

o (p»(. 11 1 1 1+p M Ap 1
_aa{FD a’i’i”"’§,a+2a+T1 Ap 1_Tp 1_A7p

p

(48)

where Ay,..., Ay are the eigenvalues of the real matrix £1X, L and Fl()p ) (.) represents the Lauricella
D-hypergeometric function defined for p variables.

Proof. To prove Proposition 4, different steps are necessary. They are described in the
following:

5.1. First Step: Eigenvalue Expression
Expectation Ey1 {In[1 + XX, 'X]} is computed as follows

Eo{In[1 +X"Z;'X]} = dx (49)

A / In[1+xTZ; %]
Iz |2 R [1+xTZ] x]Tp
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where A = T(HTP)H_%J. Consider transformation y = Zfl/Zx wherey = [y1,12, .. .,yp]T.

The Jacobian determinant is given by dy = |£1|~!/2dx (Theorem 1.12 in [40]) and matrix

1 1
L=X%, 1212 is a real symmetric matrix since X; and X, are real symmetric matrixes.
Then, the expectation is evaluated as follows

In[1+ yTZy]
71”
B 1+yTy]>

Matrix £ can be diagonalized by an orthogonal matrix P with P~! = PT and £ = PDP !
where D is a diagonal matrix composed of the eigenvalues of £. Considering that y'Zy =
tr(ZyyT) = tr(PDP yy”) = tr(DPTyy P), the expectation can be written as

E{In[1+X"Z,'X]} = A (50)

In[1 + tr(DPTyy P
B [Ty

E{In[1+X"Z;'X]} = A ) dy. (51)

Letz = PTy with z = [z1,2,,. .., zp]T be a transformation where the Jacobian determinant
is given by dz = |PT|dy = dy. Using the fact that tr(DPTyy'P) = tr(Dzz") = 2Dz and
yTy = zTPTPz = 27z, then the previous expectation (51) is given as follows

T
Ey{In[1 +X"Z;1X]} = A Mdz (52)
" [eTe
1n1+2 Aiz
_A/ / ; Z”z 12 Hp]dzl...dzp (53)
+

where Ay,..., A are the eigenvalues of L1 X, 1

5.2. Second Step: Polar Decomposition

Let the independent real variables zy,...,z, be transformed to the general polar
coordinates r, 61,...,6p,1 as follows, where r > 0, —7t/2 < Gj <mn/2,j=1,...,p—=2,
-7t <0, 1 < 7[40],

z1 = rsin 6 (54)
zp = rcos 01 sin 0 (55)
zj:rcosGlcosez...cosej,lsine‘, j=23,...,p—1 (56)
zp =rcostycost...cosb, 1. (57)

The Jacobian determinant according to theorem (1.24) in [40] is
p—1 4
dzy...dzp =P~ ] |cos6;|P~/~1drde;. (58)
j=1

It is clear that with the last transformations, we get Y/, z> = r? and the multiple integral
in (53) is then given as follows

Tw_1 "7T/2 n [(p-1 i1
{In[1+XTZ;1X]} = A S [T I cos6;|?1~1 | x
X ]
1+1’2 7r/2 —m\j=1

p—1
In[1472(A1sin®0; + ...+ Ap cos? 0 . ..cos’ 0,1)]dr ]| de;. (59)
j=1

By replacing the expression of sin’ 0 by 1 — cos? 0, forj = 1,...,p — 1, we have the
following expression
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Apsin?0; 4+ ...+ Ap cos? 0y . ..cos 0,1 =M+ (A2 —Ap) cos? 6,
+oo+(Ap —Apo1) cos? 0 cos> 05 . . . cos> 0p-1- (60)

Let x; = cos?6; be a transformation to use where dx; = 2xil/ 2(1 - xi)l/ 2d6;. Then the
expectation given by the multiple integral over all6;, j = 1,...,p — 1 is as follows

]
2A/O — T / / (Hx 2 T(1—x; )%> ln[l—l—rzBp(xl,...,xp_l)]drdxl...dxp_l (61)
r2]

where Bp(xq,...,xp 1) =AM+ (A= A)xy +... 4+ (Ap —Ap1)x1x2...xp1, p > 1 and
= A1. In the following, we use the notation By, instead of By(xy,. .., xp,l) to alleviate
writing equations.
Let t = 12 be transformation to use. Then, one can write

+o00 t%*l 1 1 /p—1 P=i_q 1
:A/O ﬁ/o/o (ijz (1—x;)"% | In[1 + tB,)dtdxy ... dx, 1. (62)
[1+t] 2 j=1

In order to solve the integral in (62), we consider the following property givenby [ log(x)f(x)

dx = —4- f xOf(x dx} and the following equation given as follows
- 1 +oo
L Byt) = o [yt le By, 63
4B =iy )y Y y (63)

Making use of the above equation, we obtain a new expression of (62) given as follows

Eyo {In[1 +X"Z;'X]}

+o0 ] 400 1 1.1771 P=j_
:a{ 4 / £2 Hp/ y“‘le_(1+BPt)y/.../ X2 1(1x]-)—%dxjdydt} (64)
da r(ﬂ) 0 [1+t]T JO 0 0 j=1 a=0
2 (4 e i e
= —— e YH(t,y)dydt 65
a“{r(ﬂ)/O [1+t]1ﬂ o 7 ° (y)dy }u—O )

where H(t,y) is defined as

P=i_q
H(t,y) / / ~Byty H x.2 (11— x]')_%dxj. (66)

5.3. Third Step: Expression for H(t,y) by Humbert and Beta Functions
Let xg =1—-x;,i=1,...,p—1Dbe transformations to use. Then

(A2 = Ap)xg = (A2 — Ap)(1 —x7) (67)

(A3 = Ag)x1xa = (A3 — A2) (1 — x7)[1 — x3] (68)

(A = A3)x1x0x3 = (Ag — A3)(1 — x7)(1 — x3)[1 — x3] (69)
p—1 - p—1

(/\p — )Lpfl) H X; = ()\p - /\pfl) (1 - x;) (70)
i—1 i=1

Adding equations from (67) to (70), we can state that the new expression of the function
By, becomes
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By = Ap — (Ap = A)xt — (Ap = A2) (1 = x1)x5 — (Ap — A3) (1 — x7) (1 — x3) 3
— = (A=A (A= x) o (1= 5)x, (71)

Then, the multiple integral H(t,y) given by (66) can be written otherwise

Lot g typil NS, /
H(t,y):/o.../o e v g(l—xj) 77 Adxg...dxg . (72)
Let the real variables x|, x5, ..., x;_l be transformed to the real variables uy,us, ..., u, 1 as
follows

u; = x (73)
up = (1—xp)xh = (1 —up)xh (74)
us = (1-x7)(1 —x3)x3 = (1 — ug — uz)x3 (75)

p—2 p—2
up1 =T —=x)x,_y = (1= ) ui)x, 4. (76)

i=1 i=1

The Jacobian determinant is given by
p-1 j-1
duy...du,_q = H (1 - ui) dxq...dx),_;. (77)
j=1
Accordingly, the new expression of B, becomes
p-1
By =Ap— 1; (Ap = Aj)u;. (78)

As a consequence, the new domain of the multiple integral (72) is A = {(u1,ua, ..., up_1) €
Rp—l;o <1 <1,0<u; <1—u,0<uz <1—uy —up,...,and0 < Up—1 <1—u —

Uy ... —up 2}, and the expression of H(t,y) is given as follows
p-1 j-1 \ ! ” =3 p-1 " Iyl
- J
o [t B [ VR ) e
j=1 i=1 1- Zizl uj = 1- Z:i:l Ui
. P=i_q ) 1_p-i
p=1 j 2 =1 \2 2
= / . / e_Bl’ty H u]._7 (1 — Z Mi) (1 — Z ui> dug... dup_l (80)
A j=1 i=1 i=1
p_prl 4
p—1 272 p—1 1
:// e~ Brty 1—Zui Huj du; (81)
A i=1 =1
1
2 p—l

p—1 B 1
— e_/\Pty / . / <1 — Z ”i) u; ze(Ap_/\i)uitydui. (82)
A B

Using Proposition 1, we subsequently find that

_ 1 1 /1 1p
H(t,y) =¢ /\pt]/B<2I“_’2>q)§p )(2,._,,2,‘ E,‘ ()\p—)\l)ty, (/\p—)xz)ty,...,()tp—Ap1)l’y). (83)
_\p,_/ -
p—
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where CDgp b (.) is the Humbert series of p — 1 variables and B(3, ..., %) is the multivariate

beta function. Applying the following successive two transformations » = ty (dr = tdy)

and u = 1/t (du = —u?dt), the new expression of the expectation given by (65) is written
as follows
d A 1 1 +o0
Evi{ln[1+XTz;Xxp =20 2 B(=,...,= / a—1,-Apr
L+ XTE X)) = = { (5 ) [t
h\/_/
p
+o0
<@ Gz b = M O = g ) ([T e (34
2 2°2 0 -,
p—1

5.4. Final Step

The last integral is related to the confluent hypergeometric function of the second kind
U(.) as follows

+o00
b
0

As a consequence, the new expression is

Ep{In[1 +X"Z;'X]} = —a{Ale(l 1)

Nl=

(1+u)71+7pe*”‘du:F(a—i-%)ll(a—i-%,u—i-l—g,r). (85)

da ['(a) 277772
w 11 1
X / r”_le_’\i’r@y’_l) . E;1; Ap—=A)r, (A — /\p,l)r Ua+=,a+1- B,r)dr (86)
/ 2722 2 2 o

Using the transformation #' = A,r and the Proposition 2, and taking into account the
expression of A, the new expression becomes

o (Bla+3,%)
Exi{In[1+XTE5;'X]} = ——{ — 2/ 2277
Xl{n[ + 2 1} aa{ B(%/g) p
w(, 1 1 1p p M Ap1 0
F S=seer s —ca—-+L1—-—,.. ., 1——— 7
X N (arzr /2/‘14_2//2/['z 2+ 7 /\p/ 7 Ap 7 tp 0 (8)
p
Knowing that
a{B(g,H;)} 1 1+p
= =¢(5) -9 , and (88)
oa B g,%) 40 2 2
WL 1, 1p, P M L TR I
FN (alzl ,2,a+2,2,ﬂ 2+1/1 /\p/ /1 /\p 7t p azo_]-/ (89)
the new expression of Ey1{In[1 + XTE51X]} becomes
. 1+ 1
Exi{In[1+ XL, 'X]} = 1P<2P> - Eb(z)
O foapw (gl 1 lp P 4 M M1y
ag{AP FN a,i,...,E,a‘i‘E,E,ﬂ E‘i‘l,l /\7;7,...,]. Tp, P a:O. (90)
p

Applying the expression given by (18) of Definition 2 and relying on Lemma 1, the final
result corresponds to the D-hypergeometric function of Lauricella Fl()p) (.) given by
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_ 1+p 1
Ty —1 —
-1
5 {“ 5 (@)gp @+ Doy [T (%)mﬂﬁ<l Ai>’"" 1 (1—%1)”“7} o)
T oa)P I+p J A, ) om m,!
oa 7”1;,:6 (a + T)ZL] m; i=1 )\P m; Mmp: a=0
_ (1+p 1 0, upp(. 1 1 1 1+4p . A Ap— 1
_¢<2) ¢(2> aa{)\” Fy a,E,...,E,a—l—Z,a—i-T,l /Tp,...,l Tp'l /\—p . (92)
p
The final development of the previous expression is as follows
_ 1+ 1
E{In[1+X"2,'X]} = 1/;(2”) —¢<2) +1InA,
o[ (. 1 1 1. 1+p. M Ap—1 1
aa{FD a,i,i,-u,i,a‘l'i/a‘FTrl Tp/"-ll Tp/]- Tp 0 (93)
p

O

In this section, we presented the exact expression of Ey1{In[1 + XTE;'X]}. In addition,
the multiple power series ng ) which appears to be a special case of FZ(\IP ) provides many
properties and numerous transformations (see Appendix A) that make easier the conver-

gence of the multiple power series. In the next section, we establish the KLD closed-form
expression based on the expression of the latter expectation.

6. KLD between Two Central MCDs

Plugging (39) and (93) into (5) yields the closed-form expression of the KLD between
two central MCDs with pdfs fy1(x|Zq, p) and fy2(x|X2, p). This result is presented in the
following theorem.

Theorem 1. Let X! and X? be two random vectors that follow central MCDs with pdfs given,
respectively, by fy (x|Z1, p) and fyo (x|Eo, p). The Kullback-Leibler divergence between central
MCDs is

1 4 1
KLOE||X?) = — log [ TAi + ~2 F |log A,

a—0:| (94)

where Ay,..., Ap are the eigenvalues of the real matrix Tq1X, L and Fg’ ) (.) represents the Lauricella
D-hypergeometric function defined for p variables.

Lauricella [39] gave several transformation formulas (see Appendix A), whose rela-

tions (A5)—(A7), and (A9) are applied to F,(Dp) () in (94). The results of transformation are
as follows
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w(, 1 1 1 1+p. M =
Fy (a,z,...,z,a—i-z,a—i- 5 ;1 A no TR,
pPzl 1+p 1 1 1 1+ Ap A
AT TT A 2 W p 1 : S S B S AL |
p g i D 2 7 2/ 2 ,a + 2 + 2 Al /\p_l 7 p (95)
MmN 1 1 1 1+p . Ap A 1
= Ap) PD ﬂ,i,...,i,ﬂ‘Fz +T —/\71 1—)\71 1_)‘71 (96)
Yy O (P S e S B L B W B 97
- 14 D a/i/' '/E/a_'_T - ‘1, EAVIEERY: - 14 ( )
P 1+p 1 1 1+ 1 1 1
CATTA W p L P - ).
APEAZ I ( IR T (98)

Considering the above equations, it is easy to provide different expressions of KL(X!||X?)
shown in Table 1. The derivative of the Lauricella D-hypergeometric series with respect to
a goes through the derivation of the following expression

o (p( 11 1 1 1+p M Ap-1 1

G e (a2 2 Sat st — Py oty 2

a”{ P (a,z,z, ,2,a+2,a—|— 2 77 AT Ap T Ay a=0 )
oo (a)yr (a+3) p—1 N\ M 1— A=y

= Z aa{ o lﬁp } H(;) (1—21) —1,% (100)
my,. a ({1 -+ - )):p i a=0 i=1 m; p m;: mp.
mpf i= 1

The derivative with respect to a of the Lauricella D-hypergeometric series and its trans-
formations goes through the following expressions (see Appendix B for demonstration)

9 @y (@t 2)m, B (%)’"P(l)zlf;lmf 101

a 1tp T (L ’ (101)
(a+ )EP Lm a=0 ( 2 )Zf: mi(Zl_l mz)

0 ( )2” m; (1)Zf:1 m;

s %)y Sl (B2 Y (102)
(a+ )):I_Zlm[ a=0 (7 )Zlemi(zizl m;)

8{ e } = mpil 1 —ngi_l . (103)

oa ( + )): =1 M a=0 (HTP)ZZ‘U:lmi k=0 k+% k=0 k+l+Tp ,

yP o omi—1

d 1 -1 = 1

el I el M v 04
(a+ ) )):] L m a=0 ( 3 )Z,P,]ml k=0 + )

To derive the closed-form expression of dip (X!, X?) we have to evaluate the expression
of KL(X?||X!). The latter can be easily deduced from KL(X!||X?) as follows

p
KL(X?||x!) = logH 1+P {log)\

9 [ .(p) 1 1 1+p . Ap Ap
P a2, 2 LA 5 I A (s
+ aa{ D (a/ 2/ 7 2/a + 2 + 2 7 All 4 Apil, Ap

] . (105)
a=0

Proceeding in the same way by using Lauricella transformations, different expressions of
KL(X?||X!) are provided in Table 1. Finally, given the above results, it is straightforward to
compute the symmetric KL similarity measure di; (X', X?) between X! and X2. Technically,
any combination of the KL(X!||X?) and KL(X?||X!) expressions is possible to compute
dxr (X!, X?). However, we choose the same convergence region for the two divergences for
the calculation of the distance. Some expressions of diy (X!, X?) are given in Table 1.
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Table 1. KLD and KL distance computed when X! and X? are two random vectors following central
MCDs with pdfs fy1(x|Zq, p) and fy2 (x[Zo, p).

KL(X![|X?)
1. £ 1+p 9 [/ 1 1 1 1+p M Apo1 1
= —Z1 i+ —Lllogh, — =< (a4, =, ., 20+ 0+ —L1 -2 1 - 1 — 1
2ogill/\ﬂr ) {og P au{D (a,z, ,2,a+2,u+ > A Y A, L (106)
r
1, £ T4p 2P0 19 [ (m(l+p 1 1 1 1+p Ap Ap
= —Elogﬂ/\,— 5 AZ HAZ a{F <T,§,...,§,a+§, +— ,1—7, ,1—Ap71,1—)\,,)}a_0 (107)
, = . , -
P
= -1 ﬁAJr—l A O SIS P el B SO R S R (108)
= Ogll i 0og 1 ) D AN 5 5 /\1, ’ /\1; )\] o
N——— =
P
_ 1+p 0 (») 1 1 1+
= El ,H1Al 5 5{FD 8,55t =1 Moo, 1=2p ) (109)
N—— a=
p
4 1+p& 10 [ (mfl+p 1 1 1+ 1 1
_ _ = _ - T"F 2 Y P) J7 . J _ -
- loglj/\l 5 UAI aa{FD< R e i A= )} ) (110)
i=1 i=1 —_— r a=0
r
KL(X2||x1)
= log]Jhi— —F |logh, + —J FP R S YR b o S N B N B 111)
= 3 gl_l i 5 & \p 3 D SN 5’ 5 A /\p71/ p .
- 2 2 2 -
r
P 14+p —pbl 1 a 1+p 1 1 1+ A Ay 1
_ 1 7 29 ) r(p) rp i P.s_M _ Mp1r b
= 1ogEA, 5 Ap i:12\l au{FD <—2 TR T vl ;1 A ,1 x ,1 )\p)}azo (112)
p
1+ (») 1 1 1 1+p M M
= Z1 —— I F e 1=, 1= 01— 11
20gg/\, 3 {ogMJra{D a,z, 2a+2a+ 2 A, T A o (113)
= N——— =
r
1+po [_p»n( 1 1 1+p 1 1
= -1 — P = 1——,. .., 1— 114
oi]:[/\, 5 aa{D TR TL i St el WY )0 (114)
P
1, £ T+p{r .19 [ pmfl+p 1 1 1+p
= =1 A — —L 2 R —E 2, a4+ —L1 1 11
2 Oggz ) ;[jl)\z Bu{ ( 5 'y’ ,2,11+ 5 Aty /\p)} W (115)
= = ~ " a=
p
di (X, X?)
1+p o[ pm( 1 1 1 T+p, M Ap-1 1 _pPl g
= ——!F =,z o+ —L1-2 11— 11— — —A, 2 A2
2 {OgA” aa{D ST T TR S WAL Wtk W | N § £
N———— = =
p
9 [ (p(l1+p 1 1 1 1+ A Ap-1 1
SR —=E, ..., —a+ —51- = 1— - — 11
Xaa{D< I L T A A WAL Wl vy N (116)
N——— =
p
14+p[0 [/ 1 1 1+p Pela [ pfl+p 1 1 1+p
= ——F1_!F = s — 51— 1-A AMSFEP(—E£, -, 5 ;
2 {E)a{D ﬂlzl /2/ﬂ+ 2 7 1, 7 14 ﬂ70+;[:!: ,aa D 2 /2/ /z/ﬂ 2 7
—0 = =
p p
1—Ay, ,1—A,,>} } (117)
a=0

_ T+pl -1 0 [ (m(l+p 1 1 14p 1 1 [ (. 1 1 1+4p
= —— {U/\, %{FD gy +T,1 oW ,1 . ) +$ E a'i'”"i'qu -
i=1 p a=0 K ,
P p
1 1
Ty 118
M /\P>}u:0:| (118)

7. Particular Cases: Univariate and Bivariate Cauchy Distribution
7.1. Caseof p =1

This case corresponds to the univariate Cauchy distribution. The KLD is given by



Entropy 2022, 24, 838

16 of 26

(119)

1 ) 1
KL(X||X?) = —5 logA — aa{ 2Fi(a, 570 +1;1 —A)}

a=0

where , Fj is the Gauss’s hypergeometric function. The expression of the derivative of , F; is
given as follows (see Appendix C.1 for details of computation)

a{ 1 X 1\ 1(1—A)"
= zFl(a,;ale;l—?\)} = () P
da 2 4=0 7; 2),n n!
1/2
:—21n<1+2)‘ ) (120)
Accordingly, the KLD is then expressed as
(14A2)2
KL(X'[|X?) = log ~——~~ (121)
412
N}
—tog BEATDT g (x2x1). (122)
4r"2

We conclude that KLD between Cauchy densities is always symmetric. Interestingly,
this is consistent with the result presented in [31].

7.2. Caseof p =2
This case corresponds to the Bivariate Cauchy distribution. The KLD is then given by

KL(X!||X?) = —%mgAm— 39 {Fl(u 11 +§;1 — A1 —A2)} (123)

20a 227" 3

a=0

where F, is the Appell’s hypergeometric function (see Appendix A). The expression of the
derivative of F; can be further developed

d 11 3
aﬂl{Fl(allea_*— 5/1 _)\]/1 _)\2)} 0

L Ono@ue 1 0= 0=
- (%)mw m+n  n! m!

(124)

n,m=0

In addition, when the eigenvalue A; for i = 1,2 takes some particular values, the
expression of the KLD becomes very simple. In the following, we show some cases:
M =LA #1or(A=1A #1)

For this particular case, we have

d 11 3 0 1 3
aa{Fl(ﬂ,z,z,a‘i‘z,l_/\i,O)} a_O—aa{2F1<a,2,a+2,l_/\1)} o (125)
At ln<1_vl_Ai)+2. (126)
1—)\1‘ 1+\/1—)\i

The demonstration of the derivation is shown in Appendix C.2. Then, KLD becomes
equal to

3 1 1—+v/1-—A;
KLXY|X?) =InA, — = 1 L) —s. 127



Entropy 2022, 24, 838 17 of 26
A=A =A
For this particular case, we have
d 11 3 ] 3
—{F(a, =, =a+21-21—A =—9h@La+;1-A 128
aﬂ{ 1([1,2,2,ﬂ+2, 7 )} o aa{Z 1(“! ﬂ+2 )} o ( )

2
— 7T/\_11n(\/X+ VA—1)+2. (129

For more details about the demonstration see Appendix C.3. The KLD becomes equal to

3
KL(X![X?) = —InA + ﬁln(ﬁJr VA—-1)-3. (130)

It is easy to deduce that

2 1y _ 3 -1 -1 _ _
KL(X||X)—1nA+mln(\/)\ +V/AT=1) -3 (131)

This result can be demonstrated using the same process as KL(X!||X?). It is worth to
notice that KL(X![|X?) # KL(X?||X!) which leads us to conclude that the property of
symmetry observed for the univariate case is no longer valid in the multivariate case.
Nielsen et al. in [32] gave the same conclusion.

8. Implementation and Comparison with Monte Carlo Technique

In this section, we show how we practically compute the numerical values of the
KLD, especially when we have several equivalent expressions which differ in the region of
convergence. To reach this goal, the eigenvalues of £1Z, ! are rearranged in a descending
order Ap > A, 1 > ... > Ay > 0. This operation is justified by Equation (53) where it can
be seen that the permutation of the eigenvalues does not affect the expectation result. Three
cases can be identified from the expressions of KLD.

81.Casel1>Ap>A, 1>...>A >0

The expression of KL(X!||X?) is given by Equation (109) and KL(X?||X!) is given
by (115).

82.Case dp > Apq1>...> A >1
KL(X!||X?) is given by the Equation (110) and KL(X?||X!) is given by (114).

83. Case Ap > 1and A < 1

This case guarantees that 0 < 1 — )tj/)\p <Lj=1,...,p—1and0<1-1/A, < 1.
The expression of the KL(X!||X?) is given by Equation (106) and KL(X?||X!) is given
by (112) or (113). To perform an evaluation of the quality of the numerical approximation of
the derivative of the Lauricella series, we consider a case where an exact and simple expression

of %{Fl()p)(.)}b:o is possible. The following case where A = ... = A, = A allows the
Lauricella series to be equivalent to the Gauss hypergeometric function given as follows

11 1+ L+
F§P>(a,2,...,2;a+2’7;1—A,...,1—A)=2F1<a,§;a+2*’;1—)&). (132)
H,—/
P

This relation allows us to compare the computational accuracy of the approximation of the
Lauricella series with respect to the Gauss function. In addition, to compute the numerical

value the indices of the series will evolve from 0 to N instead of infinity. The latter is chosen
to ensure a good approximation of the Lauricella series. Table 2 shows the computation

of the derivative of Fl()p) (.) and »F(.), along with the absolute value of error |e|, where
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p = 2,N = {20,30,40}. The exact expression of 2 {,F;(.)}|,—0 when p = 2 is given by
Equation (129). We can deduce the following Concluswns First, the error is reasonably low
and decreases as the value of N increases. Second, the error increases for valuesof 1 — A
close to 1 as expected, which corresponds to the convergence region limit.

Table 2. Computation of A = (%{ZFl(.)}\u pand B = {F (.)}|a:0 whenp =2and A} =... =
Ap = A
P

N =20 N =30 N =40
1—A A B le] B le] B le|
0.1  0.0694 0.0694 9.1309 x 10716  0.0694 9.1309 x 10716 0.0694 9.1309 x 1016
0.3 02291 02291 3.7747 x 10714 02291 1.1102 x 10716 02291 1.1102 x 1016
05 04292 04292 26707 x 1077  0.4292 1.2458 x 10712 04292 6.6613 x 1016
0.7 07022 07022 59260 x 1076  0.7022 82678 x 10°8  0.7022 13911 x 10~?
09 11673 1.1634 0.0038 1.1665 7.2760 x 107% 11671  1.6081 x 104
099 17043 1.5801 0.1241 1.6267 0.0776 1.6514 0.0529

In the following section, we compare the Monte Carlo sampling method to approximate
the KLD value with the numerical value of the closed-form expression of the latter. The
Monte Carlo method involves sampling a large number of samples and using them to
calculate the sum rather than the integral. Here, for each sample size, the experiment is
repeated 2000 times. The elements of £; and X, are given in Table 3. Figure 1 depicts the
absolute value of bias, mean square error (MSE) and box plot of the difference between the
symmetric KL approximated value and its theoretical one, given versus the sample sizes. As
the sample size increases, the bias and the MSE decrease. Accordingly, the approximated
value will be very close to the theoretical KLD when the number of samples is very large. The
computation time of the proposed approximation and the classical Monte Carlo sampling
method are recorded using Matlab on a 1.6 GHz processor with 16 GB of memory. For the
proposed numerical approximation, the computation time is evaluated to 1.56 s with N = 20.
The value of N can be increased to further improve the accuracy, but it will increase the
computation time. For the Monte Carlo sampling method, the mean time values at sample
sizes of {65,536; 131,072; 262,144} are {2.71;5.46;10.78} seconds, respectively.

107 L
\~
\Q
o ~ N,
~~o 5 o,
10 e 10 \‘\
@ S w N,
© \\ ()] \\
o ™, 2 N
6 \, .
10 S RN
\, A
\ ~
. N\,
o7k ‘ ‘ ‘ ‘ | 10 L ‘ ‘ ‘ RN
8192 16384 32768 65536 131072 262144 8192 16384 32768 65536 131072 262144
Sample Size Sample Size
0015 ft
0.01 i % +
I
0.005 | | | ! % }F pu
5 o0 E M 83 e =+
= T I
0,005 i i % +
001
LT
0018 %
-0.02 t i i i i i
8192 16384 32768 65536 131072 262144
Sample Size

Figure 1. Top row: Bias (left) and MSE (right) of the difference between the approximated and
theoretical symmetric KL for MCD. Bottom row: Box plot of the error. The mean error is the bias.
Outliers are larger than Q3 + 1.5 x IQR or smaller than Q; — 1.5 X IQR, where Q1, Q3, and IQR are
the 25th, 75th percentiles, and the interquartile range, respectively.
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Table 3. Parameters X1 and X, used to compute KLD for central MCD.

r 211, X2, 33, 212, £13, L23
X 1,1,1,0.6,0.2,0.3
Xy 1,1,1,03,0.1,04

To further encourage the dissemination of these results, we provide a code available as
attached file to this paper. This is given in Matlab with a specific case of p = 3. This can be
easily extended to any value of p, thanks to the general closed-form expression established
in this paper.

00***X—****>FX—**X‘**X—*****X—X—****)FX—*X‘**>FX—***********X—********X‘*********X—****X—X—*****X—**
% Compute the KL divergence and distance between two central multivariate Cauchy
% distribution .

%) Input:

% + Sigmal: Symmetric positive definite (p#*p) scale matrix

% + Sigma2: Symmetric positive definite (p+*p) scale matrix

% + nb: indices used to compute the KL and dis; nb={20,30,40,etc}.

% Increase nb means increase the precision and also the computation time.

%) Output:

% + KL_12: KL divergence between X1 and X2: KL(X1I1X2)

% + KL_21: KL divergence between X2 and X1: KL(X2IIX1)

% + Esp_12: expectation E_{X}\{In[1+ XAT+Sigma2/{-1}«X]}} where X~-MD(Sigmal,p=3)
% + Esp_21: expectation E_{X}\{In[1+ XAT+Sigmal~{-1}+X]}} where X~-MD(Sigma2,p=3)
% + dis: distance between X1 and X2: dis = KL(X111X2) + KL(X2I1X1)

% Example:

% Sigmal = [1 0.6 0.2; 0.6 1 0.3; 0.2 0.3 1];

% Sigma2 = [1 0.3 0.1; 0.3 1 0.4; 0.1 0.4 1];

% [KL_12, KL_21, Esp_12, Esp_21, dis] = fonction_KL_MCD_final (Sigmal, Sigma2,20);
(yo**>('***’(‘*>('************>('**3(‘**>('**’(‘**>('***’(‘********>('>(->(-=('>6*>('>(->(-=(‘>6***********************
function [KL_12, KL_21, Esp_12, Esp_21, dis] = fonction_KL_MCD_final(Sigmal, Sigma2,nb)
format long;

p=3

vpr = real(eig(Sigmal+inv (Sigma2)));
vpr = sort(vpr, ‘ascend’);

nbre = nb;
[NNM,L] = ndgrid (0:nbre,0:nbre,0:nbre);

if vpr(p)< 1
(70***********************************’(’*****’(‘*’('******************************
%) Derivative of Fd(a,1/2,1/2,1/2;a+(1+p)/2;1-vpr(1),1-vpr(2),1-vpr(3))la=0
0/0*)?********’(‘********************************>{—*****>F***********X—************
H = NAMHL;
H(H==0)= inf;
commun = (1-vpr(1)).AN./factorial (N).*(1-vpr(2))."M./ factorialM).+(1 -vpr(3)).~L./ factorial(L).x...
pochhammer(1/2 ,N).*pochhammer(1/2 M).+pochhammer(1/2,L);
hl = commun.x pochhammer (1 ,N#M+L)./pochhammer((1+p)/2, NaVHL)*1./H;
derivel = sum(sum(sum(hl))) % Eq. (102) and (Al)
] = NHWKL-1;
A=[0, cumsum(1./((p+1)/2 +(0:p*nbre-1)))];
for i=1l:nbre+1
for j=1l:nbre+l
for l=1:nbre+l
G(i,j, )= -A(J(i,j,1)+2);
end
end

end
h2 = commun.*G;
derive2 = sum(sum(sum(h2))) % Eq. (104) and (Al)

o
(¢

Esp_12 = psi(1/2 + p/2)-psi(1/2) - derivel
Esp_21 = psi(1/2 + p/2)-psi(1/2) — prod(vpr).~(1/2)+derive2
KL_12 = -1/2+log(prod(vpr))—(1+p)/2+derivel % Eq.(109)
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KL_21 = 1/2x+log(prod(vpr))—(1+p)/2+prod(vpr).~(1/2)+derive2 % Eq.(115)

elseif vpr(1l) > 1
0/()**>('******************>('*****>('>('************>('****>('>('********************************X—****
%) Derivative of Fd((1+p)/2,1/2,1/2,1/2;a+(1+p)/2;1-1/vpr(1),1-1/vpr(2),1-1/vpr(3))Ia=0
0/0****************************>('******************>('*********X—***************************
] = NWMKL-1;
A=[0, cumsum(1./((p+1)/2 +(0:p*nbre-1)))];
for i=1l:nbre+l

for j=1l:nbre+l

for 1=1:nbre+l
G(i,j, D= -A(J(i,j,1)+2);
end

end
end
commun = (1-1/vpr(1)).~N./factorial (N).*»(1-1/vpr(2))."M./ factorial M).x(1-1/vpr(3)).~L./ factorial(L).x...

pochhammer(1/2 ,N).*pochhammer(1/2 M).+pochhammer(1/2,L);
hl = commun.=*G;
derivel = sum(sum(sum(hl))) % Eq. (104) and (Al)
H = N+VHL;
H(H==0)= inf;
h2 = commun.*pochhammer (1 ,N#V+L)./pochhammer ((1+p)/2, NdVL)=+1./H;
derive2 = sum(sum(sum(h2))) % Eq. (102) and (Al)
Esp_12 = psi(1/2 + p/2)-psi(1/2) - prod(vpr).~(-1/2)+derivel
Esp_21 = psi(1/2 + p/2)-psi(1/2) — derive2
KL_12 = -1/2+log(prod(vpr))—(1+p)/2+prod(vpr).A(—-1/2)+derivel % Eq.(110)
KL_21 = 1/2+log(prod(vpr))—-(1+p)/2+derive2 % Eq.(114)

else
UA)***********************************){->(->(->€>€>é>E>(->(->(->€>(->€>F>(->(->(->(—>€>€>(->(->(~>€>€>(->(->(-*****){-******************>(->(->E
%) Derivative of Fd(a,1/2,1/2,a+1/2;a+(1+p)/2;1-vpr(1)/vpr(3),1-vpr(2)/vpr(3),1-1/vpr(3))la=0
0/0****************>(-****>6>(->6*****>(-*****>(->(-***************3{-**************************************
H = NHMKL;
H(H==0)= inf;
commun = (1-vpr(1)/vpr(3)).AN./ factorial (N).x(1 -vpr(2)/vpr(3))."M./ factorial(M).x...
(1-1/vpr(3)).~L./ factorial (L).*...
pochhammer(1/2 ,N).*pochhammer(1/2 M).+pochhammer(1/2,L);
hl = commun.xpochhammer (1 ,N+V&#L)./pochhammer((1+p)/2 ,NaVL)./H;
derivel = sum(sum(sum(hl))) % Eq.(101) and (A1)
] = NeM+L-1;
JJ] = L-1;

[0, cumsum(1./((p+1)/2 +(0:pxnbre-1)))I;
B = [0, cumsum(1./(1/2 +(0:nbre-1)))];
f i=1l:nbre+l
for j=1:nbre+l

for 1=1:nbre+l

G(i,j, )= BUT(i,j,1)+2) ~ A(J(i,j,1)+2);
end
end

end
h2 = commun.*G;
derive2 = sum(sum(sum(h2))) % Eq. (103) and (Al)
Esp_12 = psi(1/2 + p/2)-psi(1/2) + log(vpr(p)) - derivel
Esp_21 = psi(1/2 + p/2)-psi(1/2) — vpr(p) (—-p/2)*(vpr(1l)*vpr(2))~(1/2)+derive2
KL_12 = -1/2+log(prod(vpr)) —(1+p)/2+(-log(vpr(p)) + derivel) % Eq. (106)

KL_21 = 1/2+log(prod(vpr)) —(1+p)/2+vpr(p) (-p/2)+(vpr(1)=vpr(2))"(1/2)+derive2 % Eq. (112)
end

dis = KL_12 + KL_21

9. Conclusions

Since the MCDs have various applications in signal and image processing, the KLD
between central MCDs tackles an important problem for future work on statistics, machine
learning and other related fields in computer science. In this paper, we derived a closed-
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Fé)")(a,bl,. ey

P[()")(a,bl,...,bn;c;xl,...,xn) =

form expression of the KLD and distance between two central MCDs. The similarity

measure can be expressed as function of the Lauricella D-hypergeometric series F,(Jp ) We
have also proposed a simple scheme to compute easily the Lauricella series and to bypass
the convergence constraints of this series. Codes and examples for numerical calculations
are presented and explained in detail. Finally, a comparison is made to show how the Monte
Carlo sampling method gives approximations close to the KLD theoretical value. As a final
note, it is also possible to extend these results on the KLD to the case of the multivariate
t-distribution since the MCD is a particular case of this multivariate distribution.

Author Contributions: Conceptualization, N.B.; methodology, N.B.; software, N.B.; writing original
draft preparation, N.B.; writing review and editing, N.B. and D.R; supervision, D.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors gratefully acknowledge the PHENOTIC platform node of the french
national infrastructure on plant phenotyping ANR PHENOME 11-INBS-0012. The authors would
like also to thank the anonymous reviewers for their helpful comments valuable comments and
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Lauricella Function

In 1893, G. Lauricella [39] investigated the properties of four series F (n) Flg ), Fén), Fé)n)
of n variables. When n = 2, these functions coincide with Appell’s F, F3, F4, F;, respectively.

When n = 1, they all coincide with Gauss’ 2F;. We present here only the Lauricella series
Fl()") given as follows

o o b)my -+ (b)), X0 X
bu; G X1, ..., Xp) = Dt nl 2 (A1)
W) mlz: Z: (c )m1+...+mn myl !

where |x1],...,|x,| < 1. The Pochhammer symbol (g); indicates the i-th rising factorial of
q,ie.,

. I'ig+1) ., .
(q)i:q(q—i—l)...(q—i—z—l):% if i=1,2,... (A2)
(4)
Ifi =0, (g); = 1. Function Fg’) (.) can be expressed in terms of multiple integrals as

follows [42]

I'(c)
T(c— f’lb-) L T(b)

. » N n n
/Q.../Hu?f L Z )e-Lisa bi —11—qu )] [ dui (A3)
: i=1 i=1 i=1

i=1

Fé)")(a,bl,...,bn;c;xl,...,xn) =

X

where O = {(uy,up,...,uy);0 < u; <1,i=1,...,n,and0 < uy +up+ ...+ u, <1},
Real(b;) > 0fori=1,...,nand Real(c — by — ... —b,) > 0. Lauricella’s Fp can be written
as a one-dimensional Euler—type integral for any number n of variables. The integral form

of Fl()n) (.) is given as follows when Real(a) > 0 and Real(c —a) > 0

I'(c)

1
m /O ua—l(l — u)c—a—l(l — uxl)—ln . (1 _ Mxn)_b”du. (A4)



Entropy 2022, 24, 838 22 of 26

Lauricella has given several transformation formulas, from which we use the two following
relationships. More details can be found in Exton’s book [43] on hypergeometric equations.

Fz(jn)(ﬂ,bh--.,bn;c;xl,...,xn)

n

= (1—xi)_biFé")(c—a,bl,...,bn;c; o x") (A5)

P x1—1""""x,—1

X1 X1 — X2 X1 — Xn
=(1- ”F b;, by, .. A
( xl) < 2 ir V2, ns ’.X1—1/ X1—1’ , x1_1> ( 6)
== 1* _uF(n) /b yeeoy ; b/ Xl/xnile...,xnixn_ll xn A7
( xn) D |40 by_1 Z1C X =1 1,1 o1 x 1 (A7)
1 _— J—
=(1-x)"]Ja- xl-)fh"Fl()") (c —a,c— Zb,-, by, ... bycxy, 22— 2L X x1> (A8)
i=1 i xp—1 X, —1
n J—
— (1= %) [0 = x;) BEY) (ca,bl,... 1, C Zb,,c x”,...,x”*l "”,xn) (A9)
1 x| — X1 —1

Appendix B. Demonstration of Derivative

Appendix B.1. Demonstration

We use the following notation & = Zf;l m; to alleviate the writing of equations.

Knowing that 2@k = (©k(Ple+k) —9(0), wle+k) —p(c) = Li—j o7 and () =
124 (c + i) we can state that

a{ (a)a }:(a)a[w(aﬂ)—w(a)—tp(ﬁ1?+a)+¢(a+1§”)}
da (”"‘HTP)tx (a+H-Tp)a

1
k=0 =0 Aty T+
= . (A10)
1
(a4 =)
Using the fact that

_ a—1 a—1 a—2
=[JGa+k+ J] (@+k)+...+]J(a+k (A11)

k= k=0 k=1 k=0k#1 k=0

we can state that

9 [ () (-1 (D 1
aa{<a+1“’)} . i "

Appendix B.2. Demonstration

a{(a)a<a+%>mp} (@+3)my (@alpla+a) —y(a) +pla+ 3 +mp) —yp(a+3)]

9L (a+ 5 (a+ 5"
(@)a(@+ 3)my[Pla+ 5P +) = pla+ 55P)] AL
(a+ 1+P) (A1
a—1 K— my—1
(@t Dy TT@4B)|T L4y 1
k=0 k=0 “ atb+k (2o atatk
= ) (A14)

1
(Cl + y)ﬂt
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By developing the previous expression we can state that

s

Appendix B.3. Demonstration

(1),

1
- (A15)

(%)mp("‘_l)! (% mp(l)ﬂc
a=0 (

a+ 1 a + 1 mp—1 a—1 1
a{( 12+)'”v}:( 2)m {Z} B —— } (A16)
9 (a+ 5P)q (a+=P)alizo ata+tk Sha+ 5P +k
As a consequence,
a+ 1 1 mp—1 a—1
el - [E ]
P (a+ =5 )alla=0  (F")a L k=0 3tk k=0 —~ +k
Appendix B.4. Demonstration
2 1 pla+ 5t +a) —pa+ 5P
FA PRI Ex (A18)
(a+ =) (@4 =5")a
-1 x—1 1
= (A19)
(a+ 320 iSoa+ 32 1k
Finally,
ad { 1 }
) - . (A20)
da (a+ HTp)a a=0 (1+p )a Z0 1+p +k
Appendix C. Computations of Some Equations
Appendix C.1. Computation
Let f be a function of A defined as follows:
1) — 21\ 1(1-A)" AD1
f()—;l 2) w (A21)

The multiplication of the derivative of f with respect to A by (1 — A) is given as follows
J (1-A)" 172
— = _ - =1-— ) A22
a-ngrm=-1(3) 5 A (A22)
As a consequence,

9 1—A V2 (12
ﬁfw— 1—A 14+ AV2

(A23)

Finally,

f(A) = —2In———. (A24)
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Appendix C.2. Computation
0 1 3
aa{ 2Fl <a,2,a+ E,l - AZ) }

where f is a function of A;. The multiplication of the derivative of f with respect to A; by
(1 —A;) is given as follows

1
Ai) (A25)

9 2 (2)n (W (1 A"
1-A1)=—=f(Ai) = — (A26)
1.3
= —1F (2,1, 2,1—/\,'> +1. (A27)
Knowing that
1.3 arctan(y/A; — 1)
FlzL1-M) = ———mm= A28
_ 1 ln(1+\/1)\i> (A29)
2v1—A; 1-vV1I-A;
we can deduce an expression of
] _arctan(y/A; — 1) 1
Accordingly,
f(Ai):_lnAi_zw 42 (A31)
Ai—1
1 1-vV1-A
=—InA; 1 d 2. A32
it A n(1+\/1—)\i>+ (A32)
Appendix C.3. Computation
d 3 = (1)n(1)n 1 =A)"
aﬂ{zﬁ(a,l;a%-z;l—)\)} :Z( );( ) ( — )
a=0 n=1 (2)”" :
= f(A) (A33)

where f is a function of A. The multiplication of the derivative of f with respect to A by
(1 —A) is given as follows

9 v (Dn(Wn (1=2)"

1-A)ZFA) = — (A34)
)8/\f ) n; (3)n n!
S (1, 13- A) 1. (A35)
Knowing that

3 1 arcsin(v/1—A)
FI1LL1-A) = ——=——F—7F=—- A36
2 1< 5 ) < T (A36)

we can state that

ad 1 arcsin(v/1—-A7A) 1
ﬁf()‘)*_ﬁ (1= )32 iAo

(A37)
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As a consequence,

72\/Xarcsin( 1-A)

f) N +2 (A38)
= —#ln(ﬁ-i- A—1)+2. (A39)
1—A-1
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