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Abstract: Texture analysis is a subject of intensive focus in research due to its significant role in the
field of image processing. However, few studies focus on colored texture analysis and even fewer
use information theory concepts. Entropy measures have been proven competent for gray scale
images. However, to the best of our knowledge, there are no well-established entropy methods that
deal with colored images yet. Therefore, we propose the recent colored bidimensional fuzzy entropy
measure, FuzEnC2D, and introduce its new multi-channel approaches, FuzEnV2D and FuzEnM2D,
for the analysis of colored images. We investigate their sensitivity to parameters and ability to identify
images with different irregularity degrees, and therefore different textures. Moreover, we study
their behavior with colored Brodatz images in different color spaces. After verifying the results
with test images, we employ the three methods for analyzing dermoscopic images of malignant
melanoma and benign melanocytic nevi. FuzEnC2D, FuzEnV2D, and FuzEnM2D illustrate a good
differentiation ability between the two—similar in appearance—pigmented skin lesions. The results
outperform those of a well-known texture analysis measure. Our work provides the first entropy
measure studying colored images using both single and multi-channel approaches.

Keywords: colored texture analysis; dermoscopy; entropy; fuzzy entropy; information theory;
medical image analysis; melanoma; texture analysis

1. Introduction

Texture features are of the utmost importance in segmentation, classification, and
synthesis of images, to cite only few image processing steps. However, no precise definition
of texture has been adopted yet. Texture is often referred to as the visual patterns appearing
in the image. Several algorithms have been proposed for texture feature extraction in recent
years and this research area is still the subject of many investigations [1–10]. Recently,
seven classes were proposed to classify the texture feature extraction methods [1]: statistical
approaches (among which we can find the co-occurrence matrices), structural approaches,
transform-based approaches (Fourier transform-based approaches, among others), model-
based approaches (such as the random field models), graph-based approaches (such as the
local graph structures), learning-based approaches, and entropy-based approaches. The
latter two classes (learning-based approaches and entropy-based approaches) are the most
recent ones. Several studies have shown that the entropy-based measures are promising
for texture analysis [11–18]. However, these studies are only at their beginning. Even if
they have the great advantage of relying on reliable unidimensional, 1D, entropy-based
measures (issued from the information theory field), they have the drawback—for most of
them—of being designed for gray scale images only.

Besides texture, color is essential not only for human perception of images but also for
digital image processing [19–25]. Unlike the intensity that is translated as scalar gray values
for a gray scale image, color is a vectorial feature that is appointed to each pixel for a colored
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image [19]. In contrast to gray scale images that could be handled in a straightforward
manner, colored images could be analyzed in several possible ways. This depends on
many factors, such as the need to analyze texture or color, separately or combined, directly
from the image or through a transformation, among other factors [19,24–26]. Only a few
studies have been performed on colored texture analysis and most of them were achieved by
adapting the application of gray scale textures analysis methods [13,18,27,28]. Nevertheless,
color and texture are probably the most important components of visual features. Many
biomedical images are color-textured: dermoscopy images, histological images, endoscopy
data, fundus and retinal images, among others.

According to the World Health Organization, one in every three diagnosed cancer
cases is a skin cancer and the incidence rate has been increasing over recent years. A
non-invasive imaging modality, dermoscopy or epiluminescence microscopy (ELM), is one
of the well-known non-invasive techniques used for skin cancer diagnosis on which most
research studies are conducted. However, visual diagnosis alone might be misleading and
subjective even when performed by experts. Thus, dermoscopy image analysis (DIA) using
computer-aided diagnosis (CAD) systems is essential to help medical doctors. Several
studies proposed computer extracted texture features for cutaneous lesions diagnosis,
specifically for the most aggressive type, melanoma [29–31]. Melanoma is metastatic, thus
its early diagnosis and excision would definitely increase the survival rate. Some DIA
methods focus only on the dermoscopic image structure/patterns [32,33], others rely on
colors [34–36], and some consider both [37], for more details please refer to [29–31]. Nev-
ertheless, most studies propose learning-based approaches and only few have suggested
entropy-based measures until now.

In this paper, we, therefore, propose novel bidimensional entropy-based measures
dedicated to color images in their two approaches: single-channel approach, FuzEnC2D,
and multi-channel approaches, FuzEnV2D and FuzEnM2D. First, we test the abilities of
our proposed measures in colored texture analysis on different kinds of image. After that,
we illustrate their application in the biomedical field by processing dermoscopic images
of two different kinds of common pigmented lesions: melanoma and benign melanocytic
nevi. Furthermore, our results are compared to one of the most well-known texture feature
extraction methods (co-occurrence matrices).

The rest of the paper is organized as follows: Section 2 introduces the proposed
bidimensional colored fuzzy entropy measures; Section 3 presents the validation images
used; Section 4 reports the experimental results and their analysis; finally, Section 5 draws
the conclusion of this paper.

2. Colored Bidimensional Fuzzy Entropy

We recently developed bidimensional fuzzy entropy, FuzEn2D, and its multi-scale
extension MSF2D [17,18,38]. These entropy measures revealed interesting results for some
dermoscopic images but were limited to gray scale images. Based on FuzEn2D, we propose
herein approaches to deal with colored images: the single-channel bidimensional fuzzy
entropy, FuzEnC2D [28] which considers the characteristics of each channel independently,
and the multi-channel bidimensional fuzzy entropy measures, FuzEnV2D and FuzEnM2D,
which take into consideration the inter-channel characteristics. In this paper, we limit our
study to three color channels. However, extension to a higher number of channels would be
straightforward. For a colored image U of W width, H height, and K channels (W × H × K
pixels), the following initial parameters are first set: tolerance level r, fuzzy power n,
and window size m (see below). The algorithms to compute FuzEnC2D, FuzEnV2D, and
FuzEnM2D are presented below.
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2.1. FuzEnC2D Single-Channel Approach

The colored image U is separated into its corresponding color channels K1, K2, and
K3, as UK1, UK2, and UK3, respectively. For each channel composed of uK(i, j) elements,
Xm

i,j,K is designated as the m-length square window:
uK(i, j) . . . uK(i, j + m− 1)

uK(i + 1, j) . . . uK(i + 1, j + m− 1)
. . . . . . . . .

uK(i + m− 1, j) . . . uK(i + m− 1, j + m− 1)

,

with K = K1, K2, or K3 and the indices are defined as such: 1 ≤ i ≤ H −m and 1 ≤ j ≤
W − m. The m + 1 square window, Xm+1

i,j,K , is defined in the same way. In each of UK1,
UK2, and UK3, the total number of defined square windows for both m and m + 1 sizes is
Nm = (W −m)(H −m).

Based on the original fuzzy entropy definition, FuzEn1D [39], a distance function
dm

ij,ab,K between Xm
i,j,K and its neighboring windows Xm

a,b,K is defined as the maximum abso-
lute difference in their corresponding scalar components. We compose dm

ij,ab,K as follows:

dm
ij,ab,K = d[Xm

i,j,K, Xm
a,b,K ]

= max
s,t∈(0,m−1)

(|uK(i + s, j + t)− uK(a + s, b + t)|), (1)

with a ranging from 1 to H−m and b ranging from 1 to W−m. The similarity degree Dm
ij,ab,K

of Xm
i,j,K with its neighboring patterns Xm

a,b,K is defined by a continuous fuzzy function
µ(dm

ij,ab,K, n, r):
Dm

ij,ab,K(n, r) = µ(dm
ij,ab,K, n, r) = exp(−(dm

ij,ab,K)
n/r). (2)

Afterwards, the similarity degree of each Xm
i,j,K is averaged to obtain Φm

i,j,K(n, r) and then
construct:

Φm
K (n, r) =

1
Nm

i=H−m,j=W−m

∑
i=1,j=1

Φm
i,j,K(n, r). (3)

It is similar for m+ 1 patterns to obtain Φm+1
K (n, r). Consequently, FuzEn2D of each channel

is calculated as:

FuzEnCK2D(m, n, r, UK) = ln
Φm

K (n, r)
Φm+1

K (n, r)
. (4)

Finally, FuzEnC2D is defined in each channel as the natural logarithm of the conditional
probability that patterns with m × m similar pixels would remain similar for the next
(m + 1)× (m + 1) pixels in each channel:

FuzEnC2D(m, n, r, U) = [FuzEnCK1,2D, FuzEnCK2,2D, FuzEnCK3,2D]. (5)

This single-channel approach treats each channel independently. It has the advantage of
allowing us to selectively study certain channels which is of special importance when
it comes to images in different color spaces and natures (intensity, color, and texture).
In our study, we used n = 2. Thus, the similarity degree is expressed by a Gaussian
function exp(−(dm

ij,ab,K)
2/r). For better illustration, we show in Figure 1 an example for

FuzEnC2D of an RGB color space image for an embedding dimension of m = [2, 2]; i.e.,
m×m pixels for each channel. The illustration shows RGB channels as an example, but the
same could be applied to different color spaces.
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Figure 1. Illustration for FuzEnC2D of an RGB color space image. (a) The image U is split into its
corresponding channels UR, UG, and UB, respectively, from left to right; (b) the embedding dimension
pattern of size m×m having m = [2, 2]; (c) Xm

i,j,K and Xm
a,b,K for K = K1, K2, and K3 being the R, G,

and B color channels, respectively.

2.2. FuzEnV2D Multi-Channel Approach

For an image U composed of ui,j,k pixels, Xm
i,j,k is defined as the m-length cube. Xm

i,j,k
represents the group of pixels in the image U of indices from line i to i + m− 1, column j to
j + m− 1, and the depth of K-channels (k: depth index) as follows:

Similarly, Xm+1
i,j,k is defined as the (m + 1)-length cube. Let Nm = (W − m)(H − m)

(K−m) be the total number of cubes that can be generated from U for both m and m + 1
sizes. For Xm

i,j,k and its neighboring cubes Xm
a,b,c, the distance function dm

ijk,abc between them
is defined as the maximum absolute difference of their corresponding scalar components,
knowing that a, b, and c range from 1 to H −m, W −m, and K−m, respectively. Having
(a, b, c) 6= (i, j, k), the distance function is depicted as follows:
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dm
ijk,abc = d[Xm

i,j,k, Xm
a,b,c ] = max

e, f ,g∈(0,m−1)

(|u(i + e, j + f , k + g)− u(a + e, b + f , c + g)|).
(6)

The similarity degree Dm
ijk,abc of Xm

i,j,k with its neighboring cubes Xm
a,b,c is defined by a

fuzzy function µ(dm
ijk,abc, n, r):

Dm
ijk,abc(n, r) = µ(dm

ijk,abc, n, r) = exp(−(dm
ijk,abc)

n/r). (7)

Afterwards, the similarity degree of each cube is averaged to obtain Φm
i,j,k(n, r), then

construct:

Φm(n, r) =
1

Nm

i=H−m,j=W−m,k=K−m

∑
i=1,j=1,k=1

Φm
i,j,k(n, r). (8)

This is similar for m + 1 cubes to obtain Φm+1(n, r). Finally, multi-channel bidimensional
fuzzy entropy of the colored image U is defined as the natural logarithm of the conditional
probability that cubes similar in their m×m×m pixels would remain similar for the next
(m + 1)× (m + 1)× (m + 1) pixels:

FuzEnV2D(m, n, r, U) = ln
Φm(n, r)

Φm+1(n, r)
. (9)

The multi-channel approach has the advantage of extracting inter-channel features.
However, we limit our study herein to 3-channel colored images. Thus, the embedding di-
mension m values could be 1 or 2 to avoid exceeding the maximum possible 3× 3× 3 pixels
cubes for the m + 1 calculations. This means that for K channels the m-value can only be
defined between 1 and K-1. Herein, n is taken to be 2 and r within the range suggested in
previous studies. For better illustration, we show in Figure 2 an example for FuzEnV2D of
an RGB color space image for an embedding dimension of m = [2, 2, 2].

Figure 2. Illustration for FuzEnV2D of an RGB color space image having m = [ 2,2,2]. (a) A portion of
the colored image U with its R, G, and B channels; (b) the scanning pattern or embedding dimension
with m = [2, 2, 2] that is a 2 × 2 × 2 cube; (c) Xm

i,j,k and Xm
a,b,c, the fixed and moving templates

defined above.

2.3. FuzEnM2D Modified Multi-Channel Approach

Since the FuzEnV2D embedding dimension size is limited to m = 1 and m = 2 for this
trichromatic study (K = 3), we introduce herein a modified colored multi-channel approach
that can take up to any m value. This method is similar to FuzEnV2D except for the fact that
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the embedding dimension is a cuboid of m×m× K voxels for FuzEnM2D. Therefore, the
third dimension of the template is not limited by the number of color channels in the study.

For image U with K = 3 color channels, composed of ui,j,k voxels, Xm
i,j,k is defined as

the m×m× 3 cuboid. Xm
i,j,k represents the group of voxels in the image U of indices from

line i to i + m− 1, column j to j + m− 1, and the depth of K-channels (k: depth index).
Similarly, Xm+1

i,j,k is defined as the (m + 1)× (m + 1)× 3 cuboid. Let Nm = (W −m)(H−m)

be the total number of cuboids that can be generated from U for both m and m + 1 sizes.
Sizes m and m + 1 stand for [m, m, 3] and [m + 1, m + 1, 3] that are made up of m×m× 3
and (m + 1)× (m + 1)× 3 voxels, respectively.

For Xm
i,j,k and its neighboring cuboids Xm

a,b,c, the distance function dm
ijk,abc between them

is defined as the maximum absolute difference of their corresponding scalar components,
knowing that a and b range from 1 to H − m and W − m, respectively, whereas c is 1.
Having (a, b, c) 6= (i, j, k), the distance function is depicted as follows:

dm
ijk,abc = d[Xm

i,j,k, Xm
a,b,c ] = max

e, f∈(0,m−1)g∈(0,2)

(|u(i + e, j + f , k + g)− u(a + e, b + f , c + g)|).
(10)

The similarity degree Dm
ijk,abc of Xm

i,j,k with its neighboring cuboids Xm
a,b,c is defined by a

fuzzy function µ(dm
ijk,abc, n, r):

Dm
ijk,abc(n, r) = µ(dm

ijk,abc, n, r) = exp(−(dm
ijk,abc)

n/r). (11)

Afterwards, the similarity degree of each cuboid is averaged to obtain Φm
i,j,k(n, r), then

construct:

Φm(n, r) =
1

Nm

i=H−m,j=W−m,k=K

∑
i=1,j=1,k=1

Φm
i,j,k(n, r). (12)

This is similar for (m+ 1)× (m+ 1)× 3 cuboids to obtain Φm+1(n, r). Finally, multi-channel
bidimensional fuzzy entropy of the colored image U is defined as the natural logarithm of
the conditional probability that cuboids similar in their m×m× 3 voxels would remain
similar in their (m + 1)× (m + 1)× 3 voxels:

FuzEnM2D(m, n, r, U) = ln
Φm(n, r)

Φm+1(n, r)
. (13)

FuzEnM2D has the advantage of extracting inter-channel features and always considering
all the color channels of texture images. However, as mentioned previously, we consider
our study herein for 3-channel colored images which could be further adapted to a higher
number as well. Herein, n is taken to be 2 and r within the range suggested in previous
studies. For better illustration, we show in Figure 3 an example for FuzEnM2D of an RGB
color space image for an embedding dimension of m = [2, 2, 3]; i.e., moving m-sized cuboid
is 2× 2× 3.

2.4. Comparing Algorithms

The proposed entropy measures are based on the fuzzy entropy definition [17,39,40]
that calculates the similarity degree between the corresponding patterns using a continuous
fuzzy function. The latter ensures calculating a participation degree for all the compared
patterns and quantifies the irregularity of the analyzed data. This information theory
concept has been proven to be reliable for 1D, 2D, and 3D data [17,18,38–40]. However,
only gray scale data have been investigated to date. Therefore, the idea to analyze colored
texture images using the fuzzy entropy concept from a single channel and a multi-channel
perspective is interesting.
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Figure 3. Illustration for FuzEnM2D of RGB color space image having m = [2, 2, 3]. (a) A portion of
the colored image U with its R, G, and B channels; (b) the scanning pattern or embedding dimension
with m = [2, 2, 3] that is a 2× 2× 3 cuboid; (c) the fixed and moving templates defined above.

The major differences between the three proposed algorithms are in the way the
similarity degrees are calculated. For the single-channel approach, FuzEnC2D, the image
is analyzed channel by channel and the result is three entropy values that represent the
three channels, respectively, please refer to Figure 1. This is a particular advantage when
it comes to analyzing and comparing specific channels in different color spaces. On the
other hand, the multi-channel approaches, FuzEnV2D and FuzEnM2D, deal with all the
channels at the same time; i.e., the inter-channel information is taken into account (unlike
handling each color channel separately). FuzEnV2D transforms the 2D similarity degree
scanning window into a 3D cubic pattern that studies similarity among the m× m× m
and the m + 1×m + 1×m + 1 patterns within a colored image. FuzEnV2D showed good
results but for the application in trichromatic color spaces the embedding dimension size
was limited to m = 1 or 2, please see Figure 2. Therefore, in order to investigate similarity
degrees with larger embedding dimension sizes, we present the modified multi-channel
approach FuzEnM2D, please refer back to Figure 3. FuzEnC2D, FuzEnV2D, and FuzEnM2D
provide colored texture analysis from single-channel and multi-channel perspectives. The
choice of the algorithm depends on the intended application. Moreover, the analysis could
be extended to multi-spectral images and even other color spaces than the ones discussed
in this paper.

3. Validation Tests and Medical Database

In order to validate the proposed colored bidimensional entropy measures, we studied
their sensitivity to different parameter values. The algorithms were also tested using images
with different degrees of randomness and the colored Brodatz dataset [41]. The images
were normalized by subtracting their mean and dividing by their standard deviation and
all the tests were performed using MATLAB. In the following, we describe the elements
used for the validation tests and the medical dataset.

3.1. MIX2D(p) Processes

MIX2D(p) [12] is a family of images of stochastic processes that are moderated by the
probability of irregularity, p, varying from 0 (totally regular periodic image) to 1 (totally
irregular image). We used MIX2D(p) for the single-channel approach, and MIX3D(p), a
volumetric extension for MIX2D(p) proposed by [40], for our multi-channel approach.

3.2. Colored Brodatz Images

For texture validation tests, we used the colored Brodatz texture (CBT) [41,42] images,
see Figure 4. CBT presents colored textures with different degrees of visible irregularity.
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We can notice that, for example, the CBT images (a), (b) and (e) show more regular and
periodic repetitive patterns than (c), (f) and (i).

Figure 4. Colored Brodatz texture (CBT) images of different colored irregularity degrees [41,42].
(a–i) CBT images that are used for the validation test (Section 4.3) to compare the entropy values of
each colored texture to its corresponding sub-images in three color spaces (RGB, HSV, and YUV);
(f) is used again for studying the sensitivity of the proposed measures to different initial parameters
(Section 4.1).

3.3. Color Spaces

Besides using the most common trichromatic color space, red, green, blue (RGB),
we extend our study by transforming the images to use two other color spaces: hue,
saturation, value (HSV; hue and saturation: chrominance, value: intensity) and YUV (Y:
luminance, U and V: chrominance) to investigate the effect of color space transformations
on FuzEnC2D, FuzEnM2D, and FuzEnM2D outcomes. In RGB color space, the intensity
and color are combined to give us the final display, whereas for HSV and YUV color spaces,
intensity and color are separated.

3.4. Co-Occurrence Matrices

For the application on medical images, we study the effect of different color spaces and
compare our results to those obtained with gray level co-occurrence matrices [43], which
probably remains the most used texture analysis technique. We employed the co-occurrence
matrices of each channel (integrative way) for comparing the results to our single-channel
approach, and its extended 3D co-occurrence matrices [44] for comparing the results to our
multi-channel approach. We thus adopted the following procedure:

• The 2D co-occurrence matrices were created considering 4 orientations (0◦, 45◦, 90◦,
and 135◦), 4 inter-pixel distances (1, 2, 4, and 8), and 8 gray levels (Ng = 8) to be
compared with FuzEnC2D.

• The 3D co-occurrence matrices were created considering 13 orientations [44], 4 inter-
pixel distances (1, 2, 4, and 8), and 8 gray levels to be compared with FuzEnV2D and
FuzEnM2D.

Then, we calculated the Haralick features for each co-occurrence matrix (for each
orientation and distance). Finally, the average of features for all matrices was calculated to
be compared with FuzEnC2D, FuzEnV2D, and FuzEnM2D values. Among the 14 features
originally proposed [43], only six are commonly employed by researchers due to their
correlation with the other eight, see Table 1.
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Table 1. Definition of the computed Haralick features [43].

Haralick Feature Annotation

Uniformity (Energy) ∑i ∑j P2(i, j)
Contrast ∑

Ng−1
n=0 n2(∑

Ng

i=1 ∑
Ng

j=1 P(i, j)), |i− j| = n
Correlation ∑i ∑j(ij)P(i, j)− µxµy/σxσy

Variance ∑i ∑j(i− µ)2P(i, j)
Homogeneity ∑i ∑j P(i, j)/(1 + ((i− j)2)

Entropy −∑i ∑j P(i, j)log P(i, j)
where P represents the elements of the co-occurrence matrices and µx , µy, σx , and σy are the means and standard
deviations of row and column sums, respectively.

3.5. Medical Images

For our medical application we used the HAM10000, “Human Against Machine
with 10,000 training images” [45,46]. The dataset is composed of dermoscopic images for
pigmented lesions, see an example in Figure 5a. The dataset contains dermoscopic images
of melanocytic nevi, melanoma, dermatofibroma, actinic keratoses, basal cell carcinoma,
and benign keratosis [45].

As suggested by medical doctors, the most significant comparison is that between
melanoma and melanocytic nevi. The target of the medical application in our study
is to try to differentiate the deadliest type of skin cancer, melanoma, from the benign
melanocytic nevi. These two widespread types of pigmented skin lesions are often mistaken
in diagnosis and detection, especially in their early stages. Moreover, early diagnosis and
excision could vastly increase the patients’ survival rate [29–31]. Thus, we selected from
the proposed dataset forty melanoma images and forty melanocytic nevi images to be
processed and compared.

Figure 5. Dermoscopic images segmentation for choosing the region of interest (ROI). (a) an example
of the dermoscopic image for a pigmented skin lesion; (b,c) the contouring and segmentation of the
lesion; (d) the ROI as the central 128× 128× 3 pixels.

4. Results and Discussion

In this section, we present the results of the validation tests. We start by testing the
algorithms’ sensitivity to initial parameter choice, then we explore the algorithms’ ability to
identify increasing irregularity degrees in colored textures. After that, we analyze colored
Brodatz texture images in 3 different color spaces (RGB, YUV, and HSV). Finally, we show
the results using FuzEnC2D, FuzEnV2D, and FuzEnM2D for melanoma and melanocytic
nevi dermoscopic images and compare them to those obtained using single-channel and
multi-channel co-occurrence matrices.

4.1. Sensitivity to Initial Parameters

To study the sensitivity of our proposed measures, with different embedding dimen-
sions m and tolerance levels r, we evaluated 100 × 100 pixels of a colored Brodatz image
(Figure 4f) using different parameter choices.

• For FuzEnC2D, the embedding dimension m was taken as 1, 2, 3, 4, and 5, and the
tolerance level r from 0.06 up to 0.48 (step 0.06). The results are displayed in Figure 6.
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Figure 6. FuzEnC2D results for the red, green, and blue channels (left to right) of the colored Brodatz
image, Figure 4f, with varying r and m.

• For FuzEnV2D, the embedding dimension m was taken as 1 and 2, since the maximum
possible cube volume for (m + 1)-length cubes is 3× 3× 3 pixels (given the 3 color
channels). The results are displayed in Figure 7.

Figure 7. FuzEnV2D results with varying r and m of the colored Brodatz image, Figure 4f.

• For FuzEnM2D, the embedding dimension m was taken as 1, 2, 3, 4, and 5, and the
tolerance level r from 0.06 up to 0.48 (step 0.06). The results are displayed in Figure 8.

Figure 8. FuzEnM2D results with varying r and m of the colored Brodatz image, Figure 4f.

We observe that FuzEnC2D, FuzEnV2D, and FuzEnM2D remain defined for different
chosen initial parameters. Additionally, the algorithms show low variability upon changes
in r and m. This illustrates their low sensitivity to r and m, allowing a certain degree of
freedom in our choice of initial parameters without restrictions.

4.2. Detecting Colored Image Irregularity

We generated 256× 256 pixel MIX2D(p) in three channels and 256× 256× 3 pixel
MIX3D(p) images and analyzed them by single-channel (FuzEnC2D) and multi-channel
approaches (FuzEnV2D and FuzEnM2D), respectively.

• FuzEnC2D: we set r = 0.15, m = 1, 2, 3, 4, 5, and p = 0 to 1 with a step of 0.1, and
repeated the calculation for 10 images each. The results are depicted in Figure 9.

Figure 9. FuzEnC2D mean and standard deviation for MIX2D(p) images with 10 repetitions.

• FuzEnV2D: we set r = 0.15, m = 1 and 2 (as the maximum possible cube volume for
m + 1 could only be 3× 3× 3 pixels), p = 0 to 1 with a step of 0.1, and repeated the
calculation for 10 images each. The results are depicted in Figure 10.
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Figure 10. FuzEnV2D mean and standard deviation for MIX3D(p) images with 10 repetitions.

• FuzEnM2D: we set r = 0.15, m = 1, 2, 3, and 4, and p = 0 to 1 with a step of 0.1, and
repeated the calculation for 10 images each. The results are depicted in Figure 11.

Figure 11. FuzEnM2D mean and standard deviation for MIX3D(p) images.

The results show that both the single- and multi-channel approaches lead to increasing
entropy values with increasing irregularity degree, p. This illustrates their ability to properly
quantify increasing irregularity degrees and their consistency upon repetition.

4.3. Studying Texture Images

Nine CBT [41,42] images of 640 × 640 pixels, see Figure 4, were split into 144 sub-
images of size 50 × 50 pixels. FuzEnC2D, FuzEnV2D, and FuzEnM2D were calculated for
these sub-images and for a 300 × 300 pixel corner region from each corresponding original
CBT image. The parameters r and m were set to 0.15 and 2, respectively. The results with
FuzEnC2D and FuzEnV2D are depicted in Figures 12 and 13. Similar results to those of
FuzEnV2D are found with FuzEnM2D. We observe that, especially for the RGB color space,
most of the FuzEnC2D, FuzEnV2D, and FuzEnM2D averages of the sub-images overlap
with or are very similar to the value of their corresponding image’s 300 × 300 pixel region.
Moreover, we notice their differentiation ability between different CBT images. In the HSV
and YUV color spaces, the multi-channel approaches outperform FuzEnC2D (Figure 12)
in differentiating the CBT images. We can also observe that for the RGB color space,
the CBT images that are perceived visually to be of higher color and pattern irregularity,
Figure 4c,f,g, obtained higher entropy values than the others, whereas those that appear
to be of periodic well-defined repetitive patterns, Figure 4a,b,e, resulted in lower entropy
values for the three measures FuzEnC2D, FuzEnV2D, and FuzEnM2D. This is in accordance
with the literature of entropy measures and information theory concept applied to gray
level texture images [12,14–18,38].

Figure 12. FuzEnC2D results for the 144 sub-images and 300 × 300 pixels of the CBT in the three
color spaces: RGB, HSV, and YUV, with K1, K2, and K3 being the first, second, and third channel,
respectively. The mean of the 144 sub-images is displayed as a “◦” sign and the value for the
300 × 300 pixels is displayed as “∗”.
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Figure 13. FuzEnV2D results for the 144 sub-images and 300× 300 pixels of the CBT in the three color
spaces: RGB, HSV, and YUV. The mean of the 144 sub-images is displayed as a “◦” sign and the value
for the 300 × 300 pixels is displayed as “∗”.

4.4. Medical Image Analysis

We calculated FuzEnC2D, FuzEnV2D, and FuzEnM2D for 40 melanoma images and
40 melanocytic nevi images from the HAM10000 dataset [45] in the color spaces RGB, HSV,
and YUV. In order to determine the region of interest (ROI) of melanoma and melanocytic
nevi images, the lesions were segmented as shown in Figure 5. Then, the central region
of 128 × 128 × 3 pixels was selected, see Figure 5d. By adopting this procedure, we
ensured that the same number of pixels were processed (equally sized images) and that
no region outside the lesion was included. The parameters r and m were set to 0.15 and 2,
respectively. The images were normalized by subtracting their mean and dividing by their
standard deviation.

To validate the statistical significance of FuzEnC2D, FuzEnV2D, and FuzEnM2D in
differentiating melanoma from melanocytic nevi images, we used the Mann–Whitney U
test. The resulting p-values are presented in Table 2. FuzEnC2D shows statistical significance
(for p < 0.05) in differentiating melanoma and melanocytic nevi for all the channels except
V (of HSV color space). In addition, using FuzEnV2D and FuzEnV2D, melanoma and
melanocytic nevi images are identified as statistically different for the three color spaces.
Moreover, we calculated the Cohen’s d [47,48] to further validate our obtained statistical
results, see Table 3. Most d values reflect “large”, “very Large”, and “huge” effect sizes,
which validates the differentiation ability of our proposed measures.

Table 2. Mann–Whitney U test p-values for FuzEnC2D, FuzEnV2D, and FuzEnM2D of 40 melanoma
and 40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV, from top to
bottom row, respectively.

FuzEnC2D FuzEnV2D FuzEnM2D
UK1 UK2 UK3 U U

3.3 × 10−9 7.0 × 10−12 3.4 × 10−11 9.0 × 10−13 4.1 × 10−12

2.9 × 10−5 5.7 × 10−2 1.5 × 10−1 2.9 × 10−5 2.9 × 10−5

9.8 × 10−6 1.7 × 10−3 5.8 × 10−4 4.5 × 10−5 1.1 × 10−5

Table 3. Cohen’s d-values for FuzEnC2D, FuzEnV2D, and FuzEnM2D of 40 melanoma and
40 melanocytic nevi dermoscopic images in the 3 color spaces: RGB, HSV, and YUV.

FuzEnC2D FuzEnV2D FuzEnM2D
UK1 UK2 UK3 U U

RGB 1.50 1.89 1.97 2.71 2.19
HSV 1.14 0.23 0.27 1.14 1.14
YUV 1.10 0.58 0.70 1.00 1.09

Additionally, we compared FuzEnC2D results with Haralick features from 2D co-
occurrence matrices. The results show that FuzEnC2D results in lower p-values than
Haralick features for the G, H, Y, and U channels and none of the methods result in statistical
significance for the S channel. Additionally, we compared FuzEnV2D and FuzEnM2D
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results with Haralick features from 3D co-occurrence matrices. The summaries of results
for FuzEnV2D and FuzEnM2D are shown in Figures 14 and 15, respectively. FuzEnV2D
and FuzEnM2D surpassed Haralick features as p-values obtained for the results of both
entropy measures are mostly lower than those of Haralick features. Moreover, using
Haralick features, some results do not show statistical significance (p > 0.05), whereas all
the three proposed colored entropy measures illustrate evident statistical significance in
differentiating melanoma from melanocytic nevi, except in FuzEnC2D results for S and V
color channels.

Figure 14. FuzEnV2D and Haralick feature p-values of 40 melanoma and 40 melanocytic nevi dermo-
scopic images in the 3 color spaces: RGB, HSV, and YUV. d represents the inter-pixel distances for the
co-occurrence matrices.

In addition to the p-value test, the receiver operating characteristic (ROC) and area
under the ROC curve (AUC) of the results can be used as a criterion to measure the dis-
crimination ability of our proposed measures. Since the best results (lowest p-values) were
obtained for the RGB color space, we further establish the ROC curves for its FuzEnC2D,
FuzEnV2D, and FuzEnM2D results, see Figures 16, 17 and 18, respectively. Moreover, the
AUC, sensitivity, specificity, accuracy, and precision are shown for the RGB, HSV, and YUV
color spaces in Tables 4, 5 and 6, respectively. The results show that FuzEnC2D has high ac-
curacy and AUC values for R, G, B, H, Y, U, and V channels. In addition, the multi-channel
approaches (FuzEnV2D and FuzEnM2D) illustrate high accuracy and AUC values for the
three color spaces. For the three proposed entropy measures, the best accuracy and AUC
values were obtained for the RGB color space.
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Figure 15. FuzEnM2D and Haralick feature p-values of 40 melanoma and 40 melanocytic nevi
dermoscopic images in the 3 color spaces: RGB, HSV, and YUV. d represents the inter-pixel distances
for the co-occurrence matrices.

Figure 16. ROC curves for FuzEnC2D results of the 40 melanoma and 40 melanocytic nevi images in
the RGB color space. The curves are for FuzEnCR2D, FuzEnCG2D, and FuzEnCB2D from left to right.

Figure 17. ROC curves for FuzEnV2D results of the 40 melanoma and 40 melanocytic nevi images in
the RGB color space.
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Figure 18. ROC curves for FuzEnM2D results of the 40 melanoma and 40 melanocytic nevi images in
the RGB color space.

Table 4. ROC analysis for FuzEnC2D, FuzEnV2D, and FuzEnM2D results of 40 melanoma and
40 melanocytic nevi RGB images.

FuzEnC2D FuzEnV2D FuzEnM2D
UR UG UB U U

AUC 0.884 0.945 0.930 0.964 0.950
Sensitivity 0.825 0.925 0.900 0.925 0.925
Specificity 0.850 0.850 0.825 0.950 0.900
Accuracy 0.837 0.887 0.862 0.937 0.912
Precision 0.846 0.860 0.837 0.948 0.902

Table 5. ROC analysis for FuzEnC2D, FuzEnV2D, and FuzEnM2D results of 40 melanoma and
40 melanocytic nevi HSV images.

FuzEnC2D FuzEnV2D FuzEnM2D
UH US UV U U

AUC 0.771 0.376 0.406 0.771 0.771
Sensitivity 0.650 0.325 0.225 0.650 0.650
Specificity 0.850 0.600 0.850 0.850 0.850
Accuracy 0.750 0.462 0.5375 0.750 0.750
Precision 0.812 0.448 0.600 0.812 0.812

Table 6. ROC analysis for FuzEnC2D, FuzEnV2D, and FuzEnM2D results of 40 melanoma and 40
melanocytic nevi images in YUV.

FuzEnC2D FuzEnV2D FuzEnM2D
UY UU UV U U

AUC 0.787 0.703 0.723 0.765 0.785
Sensitivity 0.725 0.750 0.700 0.750 0.725
Specificity 0.750 0.650 0.700 0.725 0.750
Accuracy 0.737 0.700 0.700 0.737 0.737
Precision 0.743 0.681 0.700 0.731 0.743

Finally, we can say that the three entropy measures were able to differentiate both
pigmented skin lesions. This was validated statistically by p-values, especially in the RGB
color space. In the latter, FuzEnC2D achieved accuracies of 83.7%, 88.7%, 86.2% and AUC
of 88.4%, 94.5%, 93%. On the other hand, FuzEnV2D, resulted in an accuracy of 93.7% and
AUC of 96.4%. In addition, FuzEnM2D showed an accuracy of 91.2% and AUC of 95.0%.
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5. Conclusions

In this paper, we presented a new concept and the first entropy method to investigate
the single- and multi-channel features of colored images. To the best of our knowledge, this
study is the only one that suggests entropy measures for analyzing colored images in their
single- and multi-channel approaches. It was essential to perform some validation tests
before employing those measures for analyzing colored medical images. The study was
carried out as follows:

• Studying the sensitivity of the proposed measures to different initial parameters
(tolerance level r and window size m).

• Identifying different irregularity degrees in colored images.
• Studying colored texture images in three color spaces.
• Analyzing medical images in three color spaces.

The three entropy measures, FuzEnC2D, FuzEnV2D, and FuzEnM2D, showed a reliable
behavior with different initial parameters and an ability to gradually quantify irregularity
degrees of colored textures and consistency upon repetition. When considering different
color spaces, RGB, HSV, and YUV, these entropy measures showed promising results for
the colored texture images.

Regarding the dermoscopic melanoma and melanocytic nevi images, single- and
multi-channel entropy measures were able to differentiate both pigmented skin lesions.
This was validated statistically by p-values, especially in the RGB color space. In the
latter, FuzEnC2D achieved accuracies of 83.7%, 88.7%, 86.2% and AUC of 88.4%, 94.5%,
93%. On the other hand, FuzEnV2D, reached an accuracy of 93.7% and AUC of 96.4%.
In addition, FuzEnM2D showed an accuracy of 91.2% and AUC of 95.0%. Moreover,
FuzEnV2D and FuzEnM2D outperformed both FuzEnC2D and the classical descriptors,
Haralick features, in differentiating the two similar malignant melanoma and benign
melanocytic nevi dermoscopic images. These preliminary results could be the groundwork
for developing an objective computer-based tool for helping medical doctors in diagnosing
melanoma that is often mistaken for a benign melanocytic nevi or is properly diagnosed
only in its late stages. We limited our investigation to three-channel colored images and,
consequently, future work could be directed towards multi-spectral color images and
towards more adapted applications for each color space and extending our study to a
larger dataset.
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