
����������
�������

Citation: Xing, J.; Xu, J. An Improved

Incipient Fault Diagnosis Method of

Bearing Damage Based on

Hierarchical Multi-Scale Reverse

Dispersion Entropy. Entropy 2022, 24,

770. https://doi.org/10.3390/

e24060770

Academic Editors: Anne

Humeau-Heurtier, Hamed Azami,

Mostafa Rostaghi, Daniel Abasolo,

Javier Escudero

Received: 27 March 2022

Accepted: 20 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Improved Incipient Fault Diagnosis Method of Bearing
Damage Based on Hierarchical Multi-Scale Reverse
Dispersion Entropy
Jiaqi Xing and Jinxue Xu *

Marine Electrical Engineering College, Dalian Maritime University, Dalian 116026, China;
1120190185@dlmu.edu.cn
* Correspondence: xujx@dlmu.edu.cn

Abstract: The amplitudes of incipient fault signals are similar to health state signals, which increases
the difficulty of incipient fault diagnosis. Multi-scale reverse dispersion entropy (MRDE) only
considers difference information with low frequency range, which omits relatively obvious fault
features with a higher frequency band. It decreases recognition accuracy. To defeat the shortcoming
with MRDE and extract the obvious fault features of incipient faults simultaneously, an improved
entropy named hierarchical multi-scale reverse dispersion entropy (HMRDE) is proposed to treat
incipient fault data. Firstly, the signal is decomposed hierarchically by using the filter smoothing
operator and average backward difference operator to obtain hierarchical nodes. The smoothing
operator calculates the mean sample value and the average backward difference operator calculates
the average deviation of sample values. The more layers, the higher the utilization rate of filter
smoothing operator and average backward difference operator. Hierarchical nodes are obtained by
these operators, and they can reflect the difference features in different frequency domains. Then,
this difference feature is reflected with MRDE values of some hierarchical nodes more obviously.
Finally, a variety of classifiers are selected to test the separability of incipient fault signals treated
with HMRDE. Furthermore, the recognition accuracy of these classifiers illustrates that HMRDE can
effectively deal with the problem that incipient fault signals cannot be easily recognized due to a
similar amplitude dynamic.

Keywords: incipient fault; hierarchical multi-scale reverse dispersion entropy; feature extraction

1. Introduction

In the actual industrial process, a slight degree of deviation is regarded as a minor
symptom. The fault with minor symptoms is defined as the incipient fault [1]. This means
that the fault amplitude of incipient faults is less obvious, which increases recognition
difficulty for these fault signals in the time domain or frequency domain [2].

Incipient faults are similar to each other, which is characterized by a slight deviation
from the normal health condition, but each fault and normal state belong to two classes
of objective existence, respectively. Therefore, it is significant to select and improve signal
treatment methods to reflect the great difference.

Different from feature extraction methods, such as deep learning, which enhances the
learning ability by constructing various network structures [3–5], the signal treatment method
decreases the distinguishing difficulty of incipient fault signals by restructuring new variables
which can embody more obvious difference information. The amplitude of the signal changes
with the passage of time [6]. Furthermore, amplitude deviations of fault are different from
those of the normal state. Many methods with the measurement of the disorder of nonlinear
time series have been proposed and applied to the field of fault diagnosis [7], such as approx-
imate entropy (AE) [8], sample entropy (SE) [9], fuzzy entropy (FE) [10], and permutation
entropy (PE) [9]. For example, approximate entropy has been used in bearing fault diagnosis;
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different fault sizes of the bearing inner are measured by approximate entropy [11]. Com-
pared with approximate entropy, data length does not influence the calculation of sample
entropy. Sample entropy and empirical mode decomposition are combined as the battery
fault detection method [12]. Fuzzy entropy introduces the idea of threshold segmentation. A
Euclidean distance based multi-scale fuzzy entropy method has been proposed to diagnose
bearing faults, which measures the similarity of two vectors with continuous values from zero
to one based on the Euclidean distance of the two vectors [13]. An improved FE named refined
composite multi-scale fuzzy entropy (RCMFE) has been applied to diagnose the significant
bearing fault [14]. Being different from AE, SE, RCMFE, and FE, PE compares and analyzes
the order of amplitude values to obtain the corresponding feature information rather than
considering the value of the time series. Therefore, PE possesses the merit of fast computation.
However, it ignores the difference between different amplitude values, which will cause
the omission of important amplitude information. A method based on variational mode
decomposition and permutation entropy has been used in wind turbine roller bearing fault
diagnosis, and its feature extraction ability is superior to PE [15]. All the same, PE and its
improved methods play an important role in fault diagnosis, such as weighted PE (WPE) [16],
dispersion entropy (DE) [17], reverse permutation entropy (RPE) [18], and reverse dispersion
entropy (RDE) [19]. For example, WPE has been combined with an improved support vector
machine as a bearing fault classification method [20]. Both WPE and DE add amplitude
information to PE, but DE is proposed to generate different fluctuation dispersion patterns
by mapping each element of a measured series to different classes, which means that DE
has faster calculation and the signals that are treated with DE have better separability [17,21].
To promote the feature extraction ability of DE, an improved refined composite multi-scale
dispersion entropy (RCMDE) has been proposed to isolate bearing fault data provided by Case
Western Reserve University [22]. The optimized method RPE is defined as the distance from
white noise and it is better than PE in feature extraction [18]. The merits of DE and RPE are
combined in RDE; therefore, RDE has better feature extraction ability than DE and RPE [19,23].
Based on RDE, multi-scale reverse dispersion entropy (MRDE) [24] has been proposed in 2022;
it can describe the disorder of the signal from different scales, which solves the problem that
RDE ignores useful information on other scales, and it obtains better performance on feature
extraction of the ship-radiated noise.

So far, a lot of recent work has focused on regular fault data for testing the optimized
diagnosis method and proving the promotion of recognition accuracy. Different from regu-
lar faults, once incipient fault occurs in a system, its amplitude difference from the normal
state is more slight [1]. Regular methods, which only extract amplitude change information,
may not be satisfied to deal with incipient fault data. Compared with normal state signals,
incipient fault signals are in a higher frequency band. Because RDE and MRDE only extract
amplitude difference features in the low frequency band, the obvious incipient fault feature
with higher frequency range will be omitted, which will cause the lower incipient fault
recognition accuracy. To overcome the defect of MRDE, an improved hierarchical multi-
scale reserve dispersion entropy (HMRDE) method is proposed to enhance the separability
of signals.

The contributions are summarized as follows:

(1) A new fault extraction approach, named HMRDE, based on MRDE is proposed
to extract obvious difference features with various frequency ranges. It introduces
hierarchical thought to MRDE and uses hierarchical nodes to analyze the frequency
difference features of incipient fault signals for the first time.

(2) HMRDE enhances the disorder difference of each state by calculating the change
deviation with a high-frequency operator and reflects this difference by entropy
values of hierarchical nodes obviously, which helps classifiers greatly in recognizing
incipient faults.
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The remainder is organized as follows. Section 2 briefly describes the motivation of
the proposed method for incipient faults and describes the proposed method, HMRDE.
Section 3 gives a numerical example to test the feature extraction ability of HMRDE for
similar signals and a real fault diagnosis experiment to test the effectiveness of HMRDE for
real incipient faults. The findings and their implications are discussed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Aim Formulation and Methods
2.1. Aim Formulation

Fault signals and normal signals are two kinds of objective existence. Both fault signals
and normal signals have inherent center frequency. Compared with normal signals, fault
signals are in a higher frequency band. Different kinds of faults have different frequency
domain characteristics. Normal signals and fault signals with fixed center frequency can be
analyzed in the frequency domain. Each health status signal can be expressed in the form of
a periodic f (t) with a period T, (T can approach positive infinity). Fourier decomposition
of f (t) can be defined as

f (t) = d +
∞

∑
n=1

(an cos(
2πn

T
t) + bn sin(

2πn
T

t)) (1)

where d represents constant term, an and bn denote amplitudes of periodic function sin(wnt)
and cos(wnt) with frequency wn, wn = 2πn

T . In the time domain, the amplitude difference
of each fault is not obvious. For example, assume a normal state and one incipient fault,
f0(t) and f1(t), respectively, is described through sin(wt) as{

f0(t) = a1 sin(w1t)
f1(t) = a1 sin(w1t) + σ sin(w2t)

(2)

where 1 ≤ w1 < w2 and σ is set to be 0.02a1 [25]. Thus, their first order derivatives can be
calculated as {

f ′0(t) = a1w1 cos(w1t)
f ′1(t) = a1w1 cos(w1t) + σw2 cos(w2t)

(3)

It can be seen that |( f ′1(t)− f ′0(t))| ≥ |( f1(t)− f0(t))|, which shows that the amplitude
difference between f ′1 and f ′0 is greater than that between f1 and f0. f ′1 is more obviously
different from f ′0.

This shows that the natural frequency characteristics of the incipient fault signal are
obviously different from those of the normal signal, and the natural center frequency of the
incipient fault is in a higher frequency band.

Thus, the motivation of the proposed method regarding the recognition of incipient
faults is that the signal treatment method needs to consider the obvious differences of each
incipient fault from others in higher frequency ranges, and it reflects them greatly.

2.2. Methods

Hierarchical multi-scale reverse dispersion entropy defeats the defect that multi-scale
reverse dispersion entropy only analyzes the obvious differences of each incipient fault
from others in low frequency ranges.

For a time series {x(1), x(2), · · · , x(n)}, we define the averaging operator Q0 and
high-frequency operator Q1 as follows [26]

Q0(x) =
x(i) + x(i + 1)

2
, i = 1, 2, · · · , n (4)

Q1(x) =
x(i)− x(i + 1)

2
, i = 1, 2, · · · , n (5)
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where Q0(x) and Q1(x) can be regarded as approximations of a filtering smooth operation
and an average backward differential operation, and they can depict the low frequency and
high frequency information of the time series respectively.

The matrix form of operators Qk
j (j = 0, 1) at hierarchical layer k can be expressed as

Qk
j =



1
2 0 · · · 0︸ ︷︷ ︸

2k−1−1

(−1)j

2 0 · · · 0 0 0

0 1
2 0 · · · 0︸ ︷︷ ︸

2k−1−1

(−1)j

2 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 1

2 0 · · · 0︸ ︷︷ ︸
2k−1−1

(−1)j

2


a×b

(6)

where a = n− 2k + 1 and b = n− 2k−1 + 1. The hierarchical decomposition structure is
exposed in Figure 1.

Figure 1. The hierarchical decomposition structure.

Furthermore, hierarchical nodes can be calculated by

Xk,e = Qk
rk
·Qk−1

rk−1
· · · · · · ·Q1

r1
· X (7)

where X = {x(1), x(2), · · · , x(n)}, and vector [r1, r2, · · · , rk] is given by non-negative
integer e

e =
k

∑
m=1

2k−mrm (8)

where e ∈ {0, 1, · · · , 2k − 1}, rm is 0 or 1, which denotes the average or difference operator
at layer m. The partial calculation process is shown in Figure 2.
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Figure 2. The partial calculation process regarding hierarchical decomposition structure.

In Figures 1 and 2, the larger the value of k, the higher the utilization rate of high-
frequency operators. The higher frequency range of time series is analyzed by the node on
the right side of HMRDE. In a certain unique frequency band, the change of one incipient
fault signal must be obviously different from other faults. Therefore, the difference infor-
mation from low frequency range to high frequency range can be analyzed by increasing
layer k suitably.

Entropy is a reflection of signal disorder, so this signal difference can be measured by
multi-scale reverse dispersion entropy. For a certain component with length n− 2k + 1,
Xk,e = {xk,e(1), xk,e(2), · · · , xk,e(n− 2k + 1)}, the coarse-grained result is as follows

xs
k,e(j) =

1
s

js

∑
i=(j−1)s+1

xk,e(i) (9)

where s is the scale factor of MRDE. Map Xs
k,e = {x

s
k,e(1), xs

k,e(2), · · · , xs
k,e((n− 2k + 1)/s)}

to Ys
k,e using the normal cumulative distribution function, which is expressed as

ys
k,e(j) =

1
σ
√

2π

∫ xs
k,e(j)

−∞
e−

(t−µ)2

2σ2 dt (10)
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where µ and σ2 denote expectation and variance, respectively, and ys
k,e(j) ranges from 0 to 1.

Then, map each ys
k,e(j) to the sequence {1, 2, · · · , c} by linear transformation as follows

zs,c
k,e(j) = round(c ∗ ys

k,e(j) + 0.5) (11)

where round(·) represents the integral function and c is the class number. This formula
limits the magnitude of ys

k,e(j) to an integer range of [1, c]. The embedding vector of
reconstructed matrix Zs,c,m

k,e = {zs,c,m
k,e (1), zs,c,m

k,e (2), · · · , zs,c,m
k,e ((n− 2k + 1)/s− (m− 1)τ)}

with the embedding dimension m is defined by

zs,c,m
k,e (j) = [zs,c

k,e(j), zs,c
k,e(j + τ), · · · , zs,c

k,e(j + (m− 1)τ)] (12)

where τ represents the time delay. Each zs,c,m
k,e (j) corresponds to a dispersion mode which

can be described by [πv0,··· ,vm−1 ]. Calculate the relative frequency of each dispersion mode
by the following equation

pj(πv0,··· ,vm−1) =
Number(πv0,··· ,vm−1)

((n− 2k + 1)/s− (m− 1)τ)
(13)

where Number(·) is the number of mappings from zs,c,m
k,e (j) to {πv0,··· ,vm−1}. Reverse dis-

persion entropy (RDE) is used to calculate the entropy value of each node Xk,e in the
hierarchical layer. RDE is defined as the distance to white noise by combining distance
information [19]. The entropy value of each node Xs

k,e with scale factor s in the hierarchical
layer can be expressed as [19]

RDE(Xs
k,e) =

cm

∑
j=1

(pj −
1

cm )2 (14)

when pj =
1

cm , the value of RDE(Xs
k,e) is 0 (minimum value) [19]. This means that the

smaller the RDE value is, the more disorderly the signal is. The HMRDE of a given time
series X is defined as

HMRDE(X) = [RDE(Xs
k,0), RDE(Xs

k,1), · · · , RDE(Xs
k,2k−1)] (15)

Notably, Xk,0 is generated by k operations of filtering smooth and Xk,2k−1 is acquired
through k calculations of mean change deviation of adjacent sample values. Xk,0 equals
sample entropy at 2k scale in multi-scale analysis. Based on HMRDE, the proposed fault
diagnosis scheme for rolling bearings is given in Figure 3. The specific steps for the
proposed scheme are given as follows.

Step 1: Collect vibration signals with l classes. Each type of data file has the same
number of time series samples, and each series sample has the same number of consecutive
non-overlapping points. Divide the signals randomly into two groups: one for the training
samples, which can be used to optimize the parameters of the method, and the other for
the testing samples.

Step 2: Determine the hyperparameter adjustment range and set the hyperparameter
initialization. For example, the adjustment range of layer k is {n, n + 1, · · · , nmax}.

Step 3: Select optimal hyperparameters of HMRDE. In the training stage, the hy-
perparameters are adjusted, and the same classifier is used to test the effectiveness of
different parameter setting methods. Select the HMRDE parameter setting with the best
feature extraction effect. Under this parameter setting, the data processed by HMRDE has
better distinguishability, and the same classifier can achieve higher classification accuracy.
The flowchart of hyperparameter optimization of layer k is shown in Figure 4. Assume that
the optimal hyperparameter layer k is m.
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Figure 3. The proposed fault diagnosis scheme for rolling bearings.

Step 4: Hierarchical decomposition of testing signals using HMRDE with optimal
hyperparameters, which generates hierarchical nodes of layer k (k = m). Then, calculate
entropy values of these nodes as the fault feature vectors.

Step 5: Use the classifier to classify the test dataset processed by HMRDE.

Figure 4. The flowchart of hyperparameter optimization of layer k.
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3. Results
3.1. Case 1: Numeral Example

Assume the normal condition f0(t) and incipient fault signals f1(t) are described as{
f0(t) = sin(50t)
f1(t) = sin(50t) + 0.02 sin(100t)

(16)

The amplitude of incipient faults is similar to that of the health condition from
Equation (16). Figure 5 shows that there must be relatively obvious fault features in the
higher frequency range when the amplitude difference information with the low frequency
range is very hidden. The first order derivative of the time series under two health
conditions is calculated as{

f0
′(t) = 50 ∗ sin(50t)

f1
′(t) = 50 ∗ sin(50t) + 0.02 ∗ 100 ∗ sin(100t)

(17)

and it is depicted in Figure 6. The difference of f1(t) from f0(t) shown in Figure 6 is
more obvious than that depicted in Equation (16), which indicates that relatively obvious
difference information exists in the higher frequency range rather than in the low frequency
band. Figure 6 shows that the standardized derivative values of f ′1 are more obviously
different from those of f ′0, which illustrates that difference information with a higher
frequency band can be reflected by a derivative operation. At the same time, the relative
obvious fault features with higher frequency range also can be reflected by a high-frequency
operator, as shown in Figure 7.

(a)

(b)

Figure 5. The frequency spectrum of time series under two health conditions. (a) Frequency spectrum
of f0; (b) Frequency spectrum of f1.
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Figure 6. The waveform of standardized first order derivative values of time series under two
health conditions.

The node entropy values of time series under two health conditions are depicted in
Figure 7, and these node entropy values are calculated by HMRDE, where layer k is 2,
embedding dimension m is 3, time delay τ is 1, scale factor s is 1, and class number c
is 5. In Figure 7, the entropy value of X2,3 of f1 is lower than that of f0, which is easily
distinguished. The disorder of the signal treated with a high-frequency operator can be
effectively reflected by the entropy values of the high frequency node.

Figure 7. The node entropy values of time series under two health conditions.

3.2. Case 2: Dataset Provided by Padborn University in Germany

In order to verify the practicability of HMRDE, the dataset provided by Padborn
University in Germany [25,27] is used to carry out the real incipient fault diagnosis experi-
ment. Specifically, the fault data generated by the accelerated lifetime test was used in the
recognition of incipient fault in 2020 [28].

The basic setup of operation parameters is that N = 1500 rpm, M = 0.7 Nm, and
F = 1000 N [25]. Then, fault data are assigned to five levels according to Table 1.

Table 1. Damage levels to determine the extent of damage.

Damage Level Assigned Percentage Limits for Bearing

1 0–2% ≤2 mm
2 2–5% >2 mm
3 5–15% >4.5 mm
4 15–35% >13.5 mm
5 >35% >31.5 mm

The dataset consists of three kinds of health conditions: normal, inner ring (IR) fault,
and outer ring (OR) fault; the types of these faults are: single point (S) fault, repetitive (R)
fault, and multiple (M) fault. All the incipient faults of rolling bearing belong to level 1
(extent of damage: 0–2%). A detailed description of the datasets is illustrated in Table 2.
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Table 2. Detailed description of datasets.

Code n Component m Combination Characteristic Level

N01 – – – –
A01 OR R distributed 1
B01 OR+IR M distributed 1
I01 IR M single point 1
I02 IR R single point 1

The number of sample values is 256,000 for each fault and the length of each time
series input is 3000. There are 85 time series inputs. Then, 60% of the time series inputs is
randomly chosen for training and the remaining 40% is chosen for testing.

The waveform of the two random time series samples under five bearing conditions
is sketched in Figure 8. It indicates that the amplitudes of five health condition signals
are similar.

Figure 8. Waveform of time series under five bearing health conditions.

Then, conclude the feature frequency spectrum using FFT transform, as shown in
Figure 9. The sample frequency is 64 kHz and the sample length is 256,000. In Figure 9, it is
difficult to distinguish the five health conditions through amplitudes; although, the am-
plitudes with a low frequency range are high. However, the frequency features of five
health conditions are obviously different from each other in the frequency band marked by
the red, five pointed star, and the frequency spectrum in this frequency range is sketched
in Figure 10. It illustrates that there must be obvious frequency difference information
of the five health condition signals in a certain unique frequency range; although, their
amplitudes are very low and similar. The frequency bands with distinct fault characteristics
for A01, B01, I01, I02, and N01 are described as Fre.(A01), Fre.(B01), Fre.(I01), Fre.(I02),
and Fre.(N01).

Figure 9. The frequency spectrum of bearing samples.
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Figure 10. The frequency spectrum part marked by red, five pointed star.

In the real application of HMRDE, there are five parameters that need to be determined.
Because the low-frequency smoothing operation in HMRDE can be regarded as an MRDE
calculation with scale, for example, entropy values of Xk,0 of HMRDE are equal to MRDE
values of X with scale 2k, the scale of HMRDE should not be larger. Because the obvious
difference information exists in 2690 ∼ 3820 Hz from these two figures, layer k cannot be
selected too large; usually, it is set as 2–6. The embedding dimension m and the number of
classes c can be 3 and 5, respectively, and the time delay τ is 1. For more information about
the parameters m, c, and τ, please refer to the literature [22,24]. Assume the embedding
dimension m is 3, the time delay τ is 1, the scale factor s is 1, the layer k is 3, and the class
number c is 5. Then, calculate the HMRDE of the five health condition data. The node
entropy values of a time series under five bearing conditions are shown in Figure 11. In
Figure 11, node X3,5 and X3,7 of five health conditions are more easily distinguished than
node X3,0, X3,2, X3,4, and X3,6, which explains that the obvious difference information of the
dataset exists in some unique higher frequency ranges rather than low frequency ranges.

A01 with lower frequency range Fre.(A01) is more ordered than other health condi-
tions, and the entropy values of nodes of A01 are larger than others, as shown in Figure 11.
The difference of the disorder of each fault is more easily separated through calculations of
mean change deviation with high-frequency operators.

Figure 11. The node entropy values of a time series under five bearing conditions.

At the same time, in the test of incipient fault recognition, the setting of the parameters
of the proposed method is important. To test the advantage of the proposed method,
the different classifiers are selected to recognize the incipient faults. To guarantee the
reliability of the experiment, eight classifiers are selected to test the effectiveness of HM-
RDE. The selected classifiers are linear discriminant (LD), linear support vector machine
(SVM), medium Gaussian support vector machine (MGSVM), quadratic support vector
machine (QSVM), coarse K nearest neighbors (CKNN), bagged trees (BT), medium tree
(MT), and boosted trees (BoT).

Experiments for each setting are repeated five times. The influence of the selected
layer k on recognition accuracy of classifiers is shown in Figure 12, which depicts the
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highest recognition accuracy of eight classifiers in the training phase. In the training phase,
when k = 2, 3, 4, 5, 6, the incipient fault recognition accuracy is on average 78.3± 0.69%,
93.9± 0.36%, 94.1± 1.17%, 96.5± 0.99%, and 94.6± 1.11%. Therefore, the layer k of HMRDE
can be 5 for these five health condition signals.

Figure 12. Recognition accuracy with different layers in training phase.

Figure 13 shows the recognition accuracy with different layers in the testing phase; it
can be seen that the highest accuracy is on average 97.7± 0.83% when k = 5. Furthermore,
Figure 14 displays confusion matrix results of SVM for the inputs treated with the proposed
method. It shows that the data distinguished by simple classifier SVM is more easily
recognized after being treated with HMRDE, and the difference information of incipient
fault inputs is reflected greatly with HMRDE. Bearing data with different conditions are
described in Table 3 [25]. To test the effectiveness of HMRDE for data under different
conditions, the settings of HMRDE are the same in these tests, and experiments for data
under each condition are repeated five times. In these experiments, the settings of HMRDE
are m = 3, τ = 1, s = 1, k = 5, and c = 5. Effectiveness test results of HMRDE for data with
different conditions are shown in Figure 15, which depicts the highest recognition accuracy
of eight classifiers. In Figure 15, the highest recognition accuracies of eight classifiers with
data treated with HMRDE are 97.65± 0.83%, 91.38± 1.12%, 95.8± 1.28%, and 91.2± 0.65%,
which are all higher than 90%. This illustrates that HMRDE can effectively extract incipient
fault features from incipient data under different conditions.

Figure 13. Recognition accuracy with different layers in testing phase.
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Figure 14. Classification results of SVM for the inputs treated with the proposed method.

Table 3. Bearing data with different conditions.

Condition
Number

Rotational
Speed (rpm)

Load Torque
(Nm) Radial Force (N) Name of Setting

1 1500 0.7 1000 N15M07F10
2 900 0.7 1000 N09M07F10
3 1500 0.1 1000 N15M01F10
4 1500 0.7 400 N15M07F04

Figure 15. Effectiveness test results of HMRDE for data under different conditions.

Assume the inputs treated with HMRDE, MRDE, and the standardization method are
named ’HMRDE data’, ’MRDE data’, and ’Stand. data’, respectively. Here, standardization
method refers to the zero-mean normalization method. The classification accuracy of these
classifiers for ’HMRDE data’, ’MRDE data’, and ’Stand. data’ is summarized in Figure 16.
Experiments for data with different treatments are repeated five times. In Figure 16, the best
average accuracy of the selected classifier for ’Stand. data’ is 85.9% and that for ’HMRDE
data’ is 97.7%. Compared with ’Stand. data’, the accuracy of all classifiers for data treated
with HMRDE is increased by 11.8%, 17.6%, 77.7%, 63.5%, 76.6%, 64.1%, 65.3%, and 48.9%,
and it is increased by 79.5%, 74.1%, 69.5%, 72.9%, 70.0%, 69.5%, and 53% compared to
’MRDE data’, whose classifier classification accuracy is 21.1%.
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Figure 16. Classification accuracy of different classifiers for the data treated with HMRDE and
standardization method.

4. Discussion

Fault state and normal state are two kinds of objective existence, but MRDE cannot
extract relatively obvious difference successfully, which decreases the recognition accuracy,
as depicted in Figure 16. Once incipient fault occurs in a system, the values of samples
slightly fluctuate in the time domain, but amplitude dynamic deviation speed and frequency
change may be obvious, as shown in Equation (17) and Figure 6. The obvious difference
information might exist in a higher frequency band, as shown in Figures 5 and 10, and the
difference information with the high frequency band can be extracted by calculating the
mean change deviation of sample values, such as derivative operation and high-frequency
operator filtering, which is manifested in Equation (17), Figures 6, 7 and 11. Furthermore,
the difference in terms of disorder of each health condition is obviously reflected by MRDE
values of hierarchical nodes, which enhances the separability of fault features and promotes
the recognition accuracy of various classifiers, as depicted in Figures 7, 11, and 16. It
takes between 2.5 and 3.0 s to compute HMRDE at five layers for a time series with
3000 points. HMRDE increases the calculation complexity compared to MRDE, and it
has the same shortcoming that its hyperparameter selection requires expert experience.
However, HMRDE defeats the drawback that MRDE omits frequency change features,
and HMRDE compares favorably with deep learning approaches which require more
hyperparameter adjustments and a more complex learning process.

In the practical application of the fault identification method of rolling bearing,
the longer the transmission pathway of the fault signal, the greater the interference of
the signal, and the less obvious the periodic pulse under the influence of noise. In order to
filter out the noise of higher frequency band and effectively identify the fault signal with the
long pathway, the generated hierarchical nodes can be low-pass filtered by increasing the
scale value of HMRDE, and the higher frequency noise existing in the nodes can be filtered
out, so that HMRDE can handle the fault signal with a longer pathway. Other denoising
methods, such as wavelet denoising and empirical mode decomposition, etc., can also be
used for signal pre-denoising. However, it may increase the computational complexity and
the time of diagnostic methods. Furthermore, in the practical application of the method,
after the fault diagnosis model is trained with data from a single condition, the optimized
diagnosis model needs to be extended to other operating conditions. Figure 15 shows that
HMRDE with the same hyperparameter setting has good feature extraction ability for data
in different environments.

So far, a lot of work has focused on regular fault feature extraction through various
entropy methods [29–31] but how to optimize entropy methods to extract incipient fault
features is still in the early phase. Therefore, the improvement of entropy methods to
extract incipient fault features can be regarded as the future research direction; this research
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direction needs to consider characteristics of incipient fault signals to overcome problems
of entropy methods in incipient fault sample processing.

5. Conclusions

To solve the problem that it is difficult to extract fault features from incipient fault signals,
an improved HMRD method is proposed based on MRDE. The filter smoothing operator and
average backward deviation operator are used to extract the relatively obvious difference
information between incipient fault signals in different frequency ranges and normal signals.
By selecting the appropriate number of layers, the samples are smoothed and backwardly
differentiated in different degrees, and the hierarchical nodes which can reflect the difference
features in different frequency domains are obtained. Entropy values of hierarchical nodes
are calculated by MRDE, and these entropy values are taken as new characteristic variables.
It enhanced the disorder difference of each state signal and the distinguishing ability of
classifier inputs, which solves the problem that MRDE omits obvious fault features in a higher
frequency range and gives classifiers a higher classification accuracy. The use of HMRDE
features for incipient fault classification has been been introduced and its effectiveness is
verified with the use of a numeral example and a dataset generated by accelerated lifetime
tests. The incipient fault recognition accuracy of LD, SVM, MGSVM, QSVM, CKNN, BT, MT,
and BoT for the input treated with HMRDE is much higher than that for the data treated
with MRDE and normalization processing, and HMRDE does not need to consume lots of
time. Furthermore, for incipient data under different conditions, effectiveness test results of
HMRDE with the same hyperparameter settings are excellent. These depict the effectiveness
of HMRDE in incipient fault feature extraction.
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